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The notion of a Carleson measure was introduced by Lennart Carleson in his proof 
of the Corona Theorem for H∞(D). In this paper we will define it for certain type 
of reproducing kernel Hilbert spaces of analytic functions of the complex half-plane, 
C+, which will include Hardy, Bergman and Dirichlet spaces. We will obtain several 
necessary or sufficient conditions for a positive Borel measure to be Carleson by 
preforming tests on reproducing kernels, weighted Bergman kernels, and studying 
the tree model obtained from a decomposition of the complex half-plane. The 
Dirichlet space will be investigated in detail as a special case. Finally, we will present 
a control theory application of Carleson measures in determining admissibility of 
controls in well-posed linear evolution equations.

© 2016 The Author. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let μ be a positive Borel measure on a set Ω ⊆ C, and let H be a Hilbert space of complex-valued 
functions on Ω. If there exists a constant C(μ), depending on μ only, such that for all h ∈ H we have

∫
Ω

|h|2 dμ ≤ C(μ)‖h‖2
H, (1)

then μ is called a Carleson measure for H and we shall refer to (1) as the Carleson criterion. The set of 
Carleson measures for H will be denoted by CM(H). The notion of a Carleson measure was introduced by 
Lennart Carleson in his proof of the Corona Theorem for H∞(D) in [5], where a complete characterisation 
of Carleson measures for Hp(D) (1 ≤ p < ∞) was given. In 1967 Lars Hörmander extended Carleson’s 
result to the unit ball of Cn [17], and since then many other generalisations and variants of this idea have 
been studied (we mention in particular the characterisation of Carleson measures for the weighted Bergman 
spaces on D by J. Cima and W. Wogen in [6] and on the unit ball of Cn by D. Luecking in [22], and for 
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the weighted Dirichlet space on D by D. Stegenga in [25]). The popularity of this area of research is a 
consequence of wide applicability of Carleson embeddings, going far beyond Carleson’s original formulation 
of this concept, and in particular their usefulness in the study of certain classes of operators acting on H
(for example multiplication operators [21,25]). However, this area of research is usually limited to the case 
of Ω = D or the unit ball of Cn, and other domains are rarely considered.

In this paper we shall consider

Ω = C+ := {z = x + iy ∈ C : x > 0} ,

the open right complex half-plane. This choice of domain is not arbitrary and its motivation is drawn from 
two main reasons. First of all, for some of the most well-known Hilbert spaces of analytic functions on the 
open unit disk of the complex place, such as the Hardy space H2 [8,23], the Bergman space B2 [10,15] or 
the Dirichlet space D [3,11], there exists a fundamental relation between the norm on each of this spaces 
and the norm of some weighted sequence space �2, namely

‖f‖2
H2 := sup

0<r<1

1
2π

2π∫
0

∣∣f(reiθ)
∣∣2 dθ =

∞∑
n=0

|an|2
(
∀f(z) =

∞∑
n=0

anz
n ∈ H2

)
,

‖f‖2
B2 := 1

π

∫
D

|f(z)|2 dz =
∞∑

n=0

|an|2
n + 1

(
∀f(z) =

∞∑
n=0

anz
n ∈ B2

)
,

‖f‖2
D := ‖f‖2

H2 + ‖f ′‖2
B2 =

∞∑
n=0

(n + 1)|an|2
(
∀f(z) =

∞∑
n=0

anz
n ∈ D

)
.

But of course for some problems it is more natural to consider the continuous version of the weighted se-
quence space �2, that is the weighted L2(0, ∞) space. It follows from the Plancherel’s Theorem, that for 
some class of weights, the Laplace transform (L) is an isometric map from the weighted space of square-
(Lebesgue)-integrable functions on the positive real half-line to some spaces of analytic functions defined 
on the open right complex half-plane (we shall present this statement rigorously in the next section). And 
for example, if we denote by H2(C+), B2(C+) and D(C+) the spaces of Hardy, Bergman and Dirichlet 
(respectively) on the half-plane, we have:

‖F‖2
H2(C+) := sup

x>0

∞∫
−∞

|F (x + iy)|2 dy

2π =
∞∫
0

|f(t)|2 dt,

‖F‖2
B2(C+) :=

∫
C+

|F (z)|2 dz

π
=

∞∫
0

|f(t)|2 dt

t
,

‖F‖2
D(C+) := ‖F‖2

H2(C+) + ‖F ′‖2
B2(C+) =

∞∫
0

|f(t)|2(t + 1) dt,

for all F = L[f ] in H2(C+), or in B2(C+), or in D(C+) and f in an appropriate weighted L2 space on 
(0, ∞).

One of the instances where the continuous setting is more suitable, and also the second reason motivating 
our research of Carleson measures for these spaces, is the study of control and observation operators for 
linear evolution equations. It has been shown in [20] that the admissibility criterion for these operators is 
equivalent to the Carleson criterion. We shall explain it in the concluding section of this paper.
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In Section 2 we will introduce the definition of spaces which will be studied in this paper and present 
their relation to the weighted L2 spaces on (0, ∞) via the isometric map defined by the Laplace transform. 
In Section 3 we will perform some tests on reproducing and weighted Bergman kernels in order to obtain 
sufficient as well as necessary conditions to satisfy the Carleson criterion. Carleson measures for the Dirichlet 
space will be characterised in Section 4. Following that, in Section 5, we will introduce some techniques 
of analysis on trees to produce a sufficient condition for a measure to be Carleson for spaces which are 
generalisations of the Dirichlet space. Finally, an application of these results to control theory will be given 
in Section 6.

2. Preliminaries

Let us now present some essential definitions and results. Let ν̃ be a positive regular Borel measure on 
[0, ∞) satisfying the so-called Δ2-condition:

sup
r>0

ν̃[0, 2r)
ν̃[0, r) < ∞, (Δ2)

and let λ denote the Lebesgue measure on iR. We define ν := ν̃ ⊗ λ to be a positive regular Borel measure 
on the closed right complex half-plane C+ := [0, ∞) × iR. For this measure and 1 ≤ p < ∞ a Zen space
[19] is defined to be:

Ap
ν :=

⎧⎪⎨
⎪⎩F : C+ −→ C analytic : ‖F‖pAp

ν
:= sup

ε>0

∫
C+

|F (z + ε)|p dν < ∞

⎫⎪⎬
⎪⎭ .

The Zen space definition naturally extends the definition of weighted Bergman spaces, Bp
α(C+). Indeed, 

if dν̃(r) = rαdr/π, for some α > −1, then Ap
ν = Bp

α(C+) (the fact that both Zen and Bergman spaces 
are usually denoted by the letter A justifies why we chose to label the latter with B, avoiding potential 
confusions). Also, if 2πν̃ = δ0, the Dirac measure with point mass at 0, then Ap

ν = Hp(C+), which we may 
also identify with B2

−1(C+). If we now assume that (νn)mn=0 = (ν̃n ⊗ λ)mn=0, m ∈ N ∪ {∞}, is a sequence of 
positive regular Borel measures on C+, each of which satisfies (Δ2)-condition, we can define a new space of 
functions, further extending the definition of Zen spaces (and consequently weighted Bergman spaces), by 
setting

Ap (C+, (νn)mn=0) :=
{
F : C+ −→ C analytic : ‖F‖pAp

ν
:=

m∑
n=0

∥∥∥F (n)
∥∥∥p
Ap

νn

< ∞
}
.

In case of p = 2, the relation between these spaces and the weighted L2 spaces on (0, ∞) has been introduced 
in [21] and we will quote some of the results here.

Theorem 1. The Laplace transform defines an isometric map

L : L2
w(m)

(0, ∞) −→ A2 (C+, (νn)mn=0) ,

where

w(m) :=
m∑

n=0
wn(t) and wn(t) := 2πt2n

∞∫
e−2rt dν̃n(r) (t > 0). (2)
0
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Here by L2
w(m)

(0, ∞) we mean the Hilbert space of functions f : (0, ∞) −→ C such that

‖f‖2
L2

w(m)
(0,∞) :=

∞∫
0

|f(t)|2w(m)(t) dt < ∞.

For m = 0, this result was proved in [19], with some partial results appearing earlier in [13,14], and also in 
[7,9]. Allowing m > 0 enables us to consider L2 spaces with non-decreasing weights, such as w(1)(t) = 1 + t, 
which by the virtue of the above theorem, applied to ν̃0 = δ0/2π and ν̃1 being the weighted (with weight 
1/π) Lebesgue measure on [0, ∞), corresponds to the Dirichlet space on C+.

If the choice of (νn)mn=0 is implicit and unambiguous, we shall adopt the notation

A2
(m) = L

(
L2
w(m)

(0, ∞)
)
.

This is a reproducing kernel Hilbert space (RKHS), with the kernel given by

k
A2

(m)
z (ζ) =

∞∫
0

e−t(z+ζ)

w(m)(t)
dt (∀(z, ζ) ∈ C+), (3)

for details see again [21].

3. Kernel conditions

Since the space A2
(m) is a generalisation of the Dirichlet space, some of the methods used to characterise 

the Carleson measures for the latter space, can also be employed here. The classical Dirichlet space, D, is 
defined on the open unit disk of the complex plane (with some obvious extensions to the n-dimensional 
case). The Carleson measures for D have been completely classified by D. Stegenga in [25], using the notion 
of so-called logarithmic capacity. A number of other characterisations has been obtained later, and although 
none of them is particularly simple, we feel obliged to at least mention a paper [1] by Arcozzi, Rochberg and 
Sawyer since some of the results given there have their half-plane counterparts which are proven in Section 5
of this article. Many of these characterisations however rely heavily on the fact that D is bounded, and the 
Dirichlet spaces defined on unbounded domains are virtually never considered. For example, Stegenga’s 
logarithmic capacity classification of Carleson measures is altogether unsuitable. But yet, some weaker 
results may be adopted to the C+ case. Let us consider the following adaptations of Theorem 5.2.2 (p. 76) 
from [11].

Lemma 1. Let μ be a positive Borel measure on C+, then

sup
‖F‖A2

(m)
≤1

∫
C+

|F (z)|2 dμ(z) = sup
‖G‖L2(C+, μ)≤1

∣∣∣∣∣∣∣
∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dμ(z) dμ(ζ)

∣∣∣∣∣∣∣ . (4)

Proof. If the LHS of (4) is finite (i.e. μ is a Carleson measure for A2
(m)), then the proof is essentially the 

same as the proof of Theorem 5.2.2 from [11]. If it is not finite, let

Ωr =
{
x + iy ∈ C+ : 1

r
≤ x ≤ r, −r ≤ y ≤ r

}
⊂ C+ (r > 0).

Then
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∫
C+

|F |2 dμ|Ωr
≤ μ(Ωr) sup

z∈Ωr

∥∥∥∥kA2
(m)

z

∥∥∥∥
2

‖F‖2
A2

(m)
(F ∈ A2

(m)),

and hence μ|Ωr
(i.e. the restriction of μ to Ωr) is a Carleson measure for A2

(m), so we can use the first part 
of the proof, that is we are given that (4), to get

sup
‖F‖A2

(m)
≤1

∫
C+

|F (z)|2 dμ|Ωr
(z) sup

‖G‖L2(C+, μ)≤1

∣∣∣∣∣∣∣
∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dμ|Ωr

(z) dμ|Ωr
(ζ)

∣∣∣∣∣∣∣ ,

where the RHS is at most equal to the RHS of (4) and the LHS tends to infinity as r approaches infinity. �
Proposition 1. If

sup
z∈C+

∫
C+

∣∣∣∣kA2
(m)

z

∣∣∣∣ dμ < ∞, (5)

then μ is a Carleson measure for A2
(m).

Proof. Let

M := sup
z∈C+

∫
C+

∣∣∣∣kA2
(m)

z

∣∣∣∣ dμ. (6)

Then for all G ∈ L2(C+, μ)

∣∣∣∣∣∣∣
∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dμ(z) dμ(ζ)

∣∣∣∣∣∣∣
Hölder’s

≤

⎛
⎜⎝∫
C+

∫
C+

∣∣∣∣kA2
(m)

ζ (z)
∣∣∣∣ |G(ζ)|2 dμ(z) dμ(ζ)

⎞
⎟⎠

1/2

×

⎛
⎜⎝∫
C+

∫
C+

∣∣∣∣kA2
(m)

z (ζ)
∣∣∣∣ |G(z)|2 dμ(z) dμ(ζ)

⎞
⎟⎠

1/2

(6)
≤ M‖G‖2

L2(C+, μ).

(7)

Therefore

∫
C+

(
|H(z)|

‖H‖A2
(m)

)2

dμ(z) ≤ sup
‖F‖A2

(m)
≤1

∫
C+

|F (z)|2 dμ(z)

(4)= sup
‖G‖L2(C+, μ)≤1

∣∣∣∣∣∣∣
∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dμ(z) dμ(ζ)

∣∣∣∣∣∣∣
(7)
≤ M,

for all H ∈ A2 , as required. �
(m)
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In the RKHS case, in order to obtain necessary conditions for a measure to be Carleson, it is also a fairly 
standard practice to test Carleson criterion on reproducing kernels. However, in A2

(m) it often brings rather 
disappointing results, as the reproducing kernels of A2

(m) are seldom expressible as elementary functions 
(recall formulae (2) and (3)). This can be overcome if the rôle of reproducing kernels of A2

(m) is assumed by 
the reproducing kernels of weighted Bergman spaces. Recall that the weighted Bergman space on the right 
complex half-plane, Bp

α(C+), α ≥ − 1, is the Banach space of analytic functions F : C+ −→ C, such that

‖F‖pBp
α

:= 1
π

∞∫
−∞

∞∫
0

|F (x + iy)|pxα dxdy < ∞ (α > −1),

and Bp
−1(C+) := Hp(C+), [12]. If p = 2, then B2

α(C+) is a RKHS, and

k
B2

−1(C+)
z (ζ) defn= k

H2(C+)
ζ (z) (3)= 1

z + ζ
and k

B2
α(C+)

z (ζ) (3)= 2α(1 + α)
(z + ζ)2+α

, α > −1,

for all (z, ζ) ∈ C
2
+. We shall call all the functions of the form

Kα(z, ζ) := (z + ζ)−2−α, (z, ζ) ∈ C
2
+, α ≥ −1,

the Bergman kernels for the right complex half-plane.

Lemma 2. Suppose that m ∈ N0. Then there exists α0 ≥ −1 such that for all (z, ζ) ∈ C
2
+ and α ≥ α0, 

Kα(z, ζ) is in A2
(m) (viewed as an analytic function in ζ).

Proof. For each 0 ≤ n ≤ m, let

Rn := sup
r>0

ν̃n[0, 2r)
ν̃n[0, r) . (8)

Clearly, for all r > 0

ν̃n[0, r) + ν̃n[r, 2r) = ν̃n[0, 2r)
(8)
≤ Rnν̃n[0, r),

so

ν̃n[r, 2r) ≤ (Rn − 1)ν̃n[0, r). (9)

Choose q > 0 such that

2q > sup
0≤n≤m

Rn.

Define g : [0, ∞) −→ (0, ∞) to be a step function such that g(r) = Re(z)−q, if 0 ≤ r < 1, and g(r) =
(2j + Re(z))−q, if r ∈ [2j , 2j+1), for all j ∈ N0.

∞∫
0

g(r) dν̃n(r) = ν̃n[0, 1)
Re(z)q +

∞∑
j=0

∫
[2j , 2j+1)

dν̃n(r)
(2j + Re(z))q

defn= ν̃n[0, 1)
Re(z)q +

∞∑ ν̃n[2j , 2j+1)
(2j + Re(z))q
j=0
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(9)
≤ ν̃n[0, 1)

Re(z)q + (Rn − 1)
∞∑
j=0

ν̃n[0, 2j)
(2j + Re(z))q

(8)
≤ ν̃n[0, 1)

⎛
⎝ 1

Re(z)q + (Rn − 1)
∞∑
j=0

(
Rn

2q

)j
⎞
⎠ < ∞,

for all 0 ≤ n ≤ m. It follows that

∞∫
0

∣∣tα+1e−tz
∣∣2 wn(t) dt = 2π

∞∫
0

∞∫
0

t2(α+n+1)e−2t(r+Re(z)) dt dν̃n(r)

= πΓ(2α + 2n + 3)
22α+2n+2

∞∫
0

dν̃n(r)
(r + Re(z))2α+2n+3

≤ πΓ(2α + 2n + 3)
22α+2n+2

∞∫
0

g(r) dν̃n(r) < ∞,

whenever α ≥ α0 := (q − 3)/2. And consequently, by Theorem 1, we have

L

[
tα+1e−tz

Γ(α + 2)

]
(ζ) = 1

(z + ζ)α+2 = Kα(z, ζ) ∈ A2
(m). �

Definition 1. Let a ∈ C+. A Carleson square centred at a is defined to be the subset

Q(a) := {z = x + iy : 0 < x ≤ 2 Re(a), |y − Im(a)| ≤ Re(a)} (10)

of the open right complex half-plane.

Theorem 2. Suppose that m ∈ N0. If μ is a Carleson measure for the space A2(C+, (νn)mn=0), then there 
exists a constant C(μ) > 0 such that

μ(Q(a)) ≤ C(μ)
m∑

n=0

νn

(
Q(a)

)
Re(a)2n , (11)

for all a ∈ C+. Here Q(a) denotes the closure of Q(a) in C.

Proof. Given a ∈ C+, we have that for each z ∈ Q(a),

|z + a| defn=
√

(Re(z) + Re(a))2 + (Im(z) − Im(a)2)
(10)
≤

√
10 Re(a). (12)

We also know, by Lemma 2, that there exists β ≥ 0 such that tβe−ta ∈ L2
w(m)

(0, ∞), and

∥∥L[tβe−ta]
∥∥2
L2(C+, μ) ≥ (Γ(β + 1))2

∫
Q(a)

dμ(z)
|z + a|2(β+1)

(12)
≥ (Γ(β + 1))2μ(Q(a))

10β+1 Re(a)2(β+1) . (13)

On the other hand
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∥∥L[tβe−ta]
∥∥2
A2(C+, (νn)mn=0)

Thm 1=
∥∥tβe−ta

∥∥2
L2

w(m)(0,∞)
=

∞∫
0

t2βe−2 Re(a)tw(m)(t) dt

(2)= 2π
m∑

n=0

∞∫
0

∞∫
0

t2(β+n)e−2(r+Re(a))t dt dν̃n(r)

= 2π
m∑

n=0

Γ(2β + 2n + 1)
22β+2n+1

∞∫
0

dν̃n(r)
(r + Re(a))2β+2n+1 .

And again, letting Rn be defined like in (8), for all 0 ≤ n ≤ m, and using essentially the same method as 
that in the proof of Lemma 2 (with ν̃n[0, Re(a)) instead of ν̃n[0, 1), for each 0 ≤ n ≤ m), we get that the 
last expression is less or equal to:

2π
m∑

n=0

Γ(2β + 2n + 1)ν̃n[0,Re(a))
(2 Re(a))2β+2n+1

⎛
⎝1 + (Rn − 1)

∞∑
j=0

Rj
n

(1 + 2j)2β+2n+1

⎞
⎠ ,

and the series converges for β sufficiently large. Therefore, combining this with (13), we get

μ (Q(a)) ≤ C(μ)
m∑

n=0

2 Re(a)2(β+1)ν̃n[0,Re(a))
Re(a)2β+2n+1 ≤ C(μ)

m∑
n=0

νn

(
Q(a)

)
Re(a)2n ,

where

C(μ) := 10β+1πΓ(2β + 2m + 1)
22β−1(Γ(β + 1))2

⎡
⎣1 + max

0≤n≤m

⎛
⎝(Rn − 1)

∞∑
j=0

Rj
n

(1 + 2j)2β+2n+1

⎞
⎠
⎤
⎦C,

and C > 0 is a Carleson constant from the embedding

A2(C+, (νn)mn=0) ↪→ L2(C+, μ). �
In [19] the condition (11) was proved to be equivalent to the Carleson criterion, if m = 0 (i.e. for Zen 

spaces). It is not clear if this remains true for m > 1.

4. The Dirichlet space(s)

Let us now consider a particularly well-known example of A2
(1), corresponding to measures ν̃0 = δ0/2π and 

ν̃1 being the weighted Lebesgue measure on [0, ∞) (with weight 1/π), or alternatively to the Laplace image 
of L2

1+t(0, ∞). That is the Dirichlet space D(C+). The previous section provides us with some information 
about the set of Carleson measures for D(C+).

Proposition 2. Let μ be a positive Borel measure on C+. Then

1. If for each a ∈ C+

μ(Q(a)) = O(Re(a)), (14)

then μ is a Carleson measure for D(C+).
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2. If μ is a Carleson measure for D(C+), then

μ(Q(a)) = O(Re(a) + 1)

for each a ∈ C+.

Proof. If (14) holds, then μ is a Carleson measure for the Hardy space H2(C+), so it must also be a Carleson 
measure for D(C+). Conversely, if it is a Carleson measure for D(C+), then, by the previous theorem, there 
exists a constant C(μ) > 0 such that

μ(Q(a))
(11)
≤ C(μ)

⎛
⎝ν0

(
Q(a)

)
+

ν1

(
Q(a)

)
Re(a)2

⎞
⎠ ≤ 2C(μ) (Re(a) + 2) . �

On the open unit disk of the complex plane the Dirichlet space, D, is defined to be the Banach space of 
analytic functions with derivatives in the (unweighted) Bergman space, B. The quantity

∫
D

|f ′(z)|2 dz (f ∈ D) (15)

is a seminorm on D. A norm on D can be defined by adding an absolute value of the evaluation of f at a 
constant to (15) or by adding to it the Hardy norm, ‖ · ‖2 (it is always possible, since D ⊂ H2). On the disk 
these two norms are equivalent [3,11]. On the complex half-plane, however, it not the case.

Let us consider the following variant of the Dirichlet space on the right complex half-plane: given α ∈ C+, 
let

Dα(C+) :=

⎧⎪⎨
⎪⎩F : C+ −→ C analytic : ‖F ′‖2

B2
0(C+)

defn=
∫
C+

|F ′(z)|2 dz

π
< ∞

⎫⎪⎬
⎪⎭ ,

with the inner product given by

〈F, G〉Dα(C+) := 〈F ′, G′〉B2
0(C+) + F (α)G(α).

It is a reproducing kernel Hilbert space and we can find its reproducing kernel, kD
α(C+)

z , using the following 
method. Let F ∈ Dα(C+) be such that F ′ = L′[f ] for some f ∈ L2

1/t(0, ∞). Then

F ′(z) =
〈
F ′, k

B2
0(C+)

z

〉
B2

0(C+)
= d

dz

〈
F, kD

α(C+)
z

〉
Dα(C+)

.

So by the Fundamental Theorem of Calculus,

F (z) =
∫
C+

F ′(ζ)
z∫

α

dξ

π(ξ + ζ)2
dζ + F (α)

=
〈
F ′,

(
kD

α(C+)
z

)′〉
B2

0(C+)
+ F (α)kD

α(C+)
z (α).
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And by the uniqueness property of reproducing kernels [4,24],

(
kD

α(C+)
z

)′
(ζ) =

z∫
α

dξ

π(ξ + ζ)2
= 1

π

(
1

α + ζ
− 1

z + ζ

)
and kD

α(C+)
z (α) = 1.

And thus

kD
α(C+)

z (ζ) =
ζ∫

α

(
1

α + ξ
− 1

z + ξ

)
dξ

π
+ 1 = ln

(
(α + ζ)(α + z)
2πRe(α)(z + ζ)

)
+ 1.

For any β ∈ C+, ‖ · ‖Dβ(C+) is an equivalent norm on Dα(C+), i.e. for all F ∈ Dα(C+),

‖F‖2
Dα(C+)

defn= ‖F ′‖2
B0(C+) + |F (α)|2

defn= ‖F ′‖2
B0(C+) +

∣∣∣∣〈F, kDβ(C+)
α

〉
Dβ(C+)

∣∣∣∣
2

Cauchy–Schwarz
≤ ‖F ′‖2

B0(C+) + ‖F‖2
Dβ(C+)

∥∥∥kDβ(C+)
α

∥∥∥2

Dβ(C+)

≤
(

1 +
∥∥∥kDβ(C+)

α

∥∥∥2

Dβ(C+)

)
‖F‖2

Dβ(C+) .

The set Dα(C+) properly contains D(C+), since

‖L[f ]‖2
Dα(C+)

defn=
∞∫
0

|f(t)|2t dt +

∣∣∣∣∣∣
∞∫
0

f(t)e−αt dt

∣∣∣∣∣∣
2

≤ max
{

1, 1
2 Re(α)

} ∞∫
0

|f(t)|2(1 + t) dt,

(16)

and all the constant functions belong to Dα(C+), while they cannot be in D(C+), because they are not in 
H2(C+). Moreover D(C+) ⊂ Dα(C+) \ C, since for example (z + 1)1/2 ∈ Dα(C+) \

(
H2(C+) ∪ C

)
.

Proposition 3. For all α ∈ C+ we have that CM(Dα(C+)) ⊂ CM(D(C+)), and the inclusion is proper.

Proof. The inclusion CM(Dα(C+)) ⊆ CM(D(C+)) is obvious by (16). It is proper, since whenever μ ∈
CM(Dα(C+)), then

μ(Ω) ≤
∫
C+

|1|2 dμ ≤ C(μ)‖1‖2
Dα(C+) = C(μ),

for all Ω ⊂ C+ and some C(μ) > 0, not depending on Ω. That is, μ must be bounded, whereas δ0 ⊗ λ is 
clearly an unbounded measure, which belongs to CM(D(C+)). �
Theorem 3. Let μ be a positive Borel measure on C+.

1. The measure μ is a Carleson measure for Dα(C+) if and only if there exists a constant C(α, μ) > 0
such that
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∫
C+

∣∣∣∣∣∣∣
∫
C+

G(ζ) ζ − α

(z + α)(z + ζ)
dμ(ζ)

∣∣∣∣∣∣∣
2

dz ≤ C(α, μ)
∫
C+

|G|2 dμ− (ln π − 1)2

∣∣∣∣∣∣∣
∫
C+

Gdμ

∣∣∣∣∣∣∣
2

,

for all G ∈ L2(C+, μ).
2. The measure μ is a Carleson measure for D(C+) if and only if there exists a constant D(μ) > 0 such 

that

∫
C+

∣∣∣∣∣∣∣
∫
C+

G(ζ)
z + ζ

dμ(ζ)

∣∣∣∣∣∣∣
2

dz

πe2 Re(z) ≤ D(μ)
∫
C+

|G|2 dμ,

for all G ∈ L2(C+, μ).

Proof.

1. A positive Borel measure μ on C+ is a Carleson measure for Dα(C+) if and only if the adjoint of the 
inclusion map ι∗ : L2(C+, μ) ↪→ Dα(C+) is bounded, that is there exists C(α, μ) > 0 such that

‖ι∗G‖2
Dα(C+) ≤ C(α, μ)‖G‖2

L2(C+, μ), (17)

for all G ∈ L2(C+, μ). Also

ι∗G(z) defn=
〈
ι∗G, kD

α(C+)
z

〉
Dα(C+)

defn=
〈
G, kD

α(C+)
z

〉
L2(C+, μ)

defn=
∫
C+

G(ζ)
(

ln
(

(α + ζ)(α + z)
2πRe(α)(z + ζ)

)
+ 1

)
dμ(ζ),

(18)

for all z ∈ C+. And so

C(α, μ)‖G‖2
L2(C+, μ)

(17), (18)
≥

∫
C+

∣∣∣∣∣∣∣
∫
C+

G(ζ) ζ − α

(z + α)(z + ζ)
dμ(ζ)

∣∣∣∣∣∣∣
2

dz + (ln π − 1)2

∣∣∣∣∣∣∣
∫
C+

Gdμ

∣∣∣∣∣∣∣
2

,

as required.
2. By the equation (3) we know that

kD(C+)
z (ζ) =

∞∫
0

e−t(z+ζ)

1 + t
dt (∀(z, ζ) ∈ C+).

And then, similarly as in 1. we have

D(μ)‖G‖2
L2(C+, μ) ≥

∥∥∥∥〈G, k
D(C+)
·

〉
L2(C+, μ)

∥∥∥∥
2

D(C+)

−
∞∫ ∣∣∣∣∣∣∣L

−1

⎡
⎢⎣∫ G(ζ)

∞∫
e−τ(z+ζ)

1 + τ
dτ dμ(ζ)

⎤
⎥⎦ (t)

∣∣∣∣∣∣∣
2

(1 + t) dt

0 C+ 0
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=
∞∫
0

∣∣∣∣∣∣∣
∫
C+

G(ζ)e−tζ dμ(ζ)

∣∣∣∣∣∣∣
2

dt

1 + t
.

Now,

1
1 + t

= 2
∞∫
0

e−2r(t+1) dr = 2π
∞∫
0

e−2rt dr

πe2r ,

hence by Theorem 1

D‖G‖2
L2(C+, μ) ≥

∫
C+

∣∣∣∣∣∣∣
∞∫
0

∫
C+

G(ζ)e−tζ dμ(ζ)etz

∣∣∣∣∣∣∣
2

dz

πe2 Re(z)

=
∫
C+

∣∣∣∣∣∣∣
∫
C+

G(ζ)
z + ζ

dμ(ζ)

∣∣∣∣∣∣∣
2

dz

πe2 Re(z) . �

Corollary 1. If μ is a Carleson measure for D(C+), then there exists a constant C(μ) > 0 such that for all 
a ∈ C+ we have

∫
C+

(
μ(Q(a) ∩Q(z))
eRe(z) Re(z)

)2

dz ≤ C(μ)μ(Q(a)).

Proof. By the previous theorem, applied with G = χQ(a), we get

μ(Q(a)) �
∫
C+

∣∣∣∣∣∣∣
∫

Q(a)

dμ(ζ)
z + ζ

∣∣∣∣∣∣∣
2

dz

e2 Re(z) .

Now

Re
(

1
z + ζ

)
= Re(z) + Re(ζ)

|z + ζ|2
≥ 0, (19)

so for any z ∈ C+, ∣∣∣∣∣∣∣
∫

Q(a)

dμ(ζ)
z + ζ

∣∣∣∣∣∣∣ ≥ Re

⎛
⎜⎝ ∫
Q(a)

dμ(ζ)
z + ζ

⎞
⎟⎠

(19)
≥

∫
Q(a)∩Q(z)

Re(z) + Re(ζ)
(Re(z) + Re(ζ))2 + | Im(z) − Im(ζ)|2 dμ(ζ)

(10)
≥

∫
Q(a)∩Q(z)

Re(z)
10(Re(z))2 dμ(ζ) = μ(Q(a) ∩Q(z))

10 Re(z) ,

and the result follows. �
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5. Carleson embeddings for trees

To investigate sufficient conditions for a measure to be Carleson for the Dirichlet space and similar spaces, 
let us now turn our attention to trees. This approach was introduced in [1] to classify Carleson measures 
for analytic Besov spaces on the unit disk of the complex plane and in [2] for Drury–Averson Hardy space 
and Besov–Sobolev spaces on complex n-balls.

Consider a tree T with a partial order relation “≤” defined on the set of its vertices. We will write v ∈ T

to denote that v is a vertex of T , and in general associate T with the set of its vertices only. Let x, y be 
two distinct elements (vertices) of T . If for all c ∈ T such that x ≤ c ≤ y we have x = c or y = c, then we 
call y the predecessor of x and write y := x−. For any ϕ : T −→ C we define the primitive I of ϕ at x ∈ T

to be

Iϕ(x) :=
∑
y≤x

ϕ(y).

And finally, we let

S(x) := {y ∈ T : y ≥ x} and S(−∞) := T.

The following two lemmata appear in [1] in a similar form. The first of them is, however, only stated for 
rooted trees. This would cause a problem in Lemma 4, because if we decide to decompose a half-plane 
into subsets, each of them corresponding to a vertex of some tree, and we let one of this sets corre-
spond to the root of the tree, then we would only restrict our consideration of Carleson measures to 
those which are bounded on C+. In order to avoid this, we shall rephrase the statement of Lemma 3 (part 
of Theorem 3 in [1], p. 447) in order to incorporate rootless trees as well, and amend the proof where 
necessary.

Lemma 3. Let T be a tree with a partial order defined on it, let 1 < p ≤ q < ∞, and let p′ = p/(p − 1), 
q′ := q/(q − 1) be the adjoint indices of p and q. Let also ρ be a weight on T , and μ be a non-negative 
function on T . If there exists a constant C(μ, ρ) > 0 such that for all r ∈ T ∪ {−∞},

⎛
⎜⎝ ∑

x∈S(r)

⎛
⎝ ∑

y∈S(x)

μ(y)

⎞
⎠

p′

ρ(x)1−p′

⎞
⎟⎠

q′/p′

≤ C(μ, ρ)
∑

x∈S(r)

μ(x), (20)

then there exists a constant C ′(μ, ρ) > 0 such that for all ϕ : T −→ C,

(∑
x∈T

|Iϕ(x)|qμ(x)
)1/q

≤ C ′(μ, ρ)
(∑

x∈T

|ϕ(x)|pρ(x)
)1/p

.

Proof. Let g ∈ Lp(T, ρ). To prove this lemma we only need to show that

‖Ig‖Lq(T, μ) ≤ C ′(μ, ρ)‖g‖Lp(T, ρ),

for all g ≥ 0, in which case Ig is non-decreasing with respect to the order relation on T . Let

Ωk :=
{
x ∈ T : Ig(x) > 2k

}
=
⋃

S(rkj ),

j
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where {rkj ∈ T : j = 1, . . . } is the set of minimal points in Ωk with respect to the partial order on T , if 
such points exist. Otherwise we define rk1 := −∞ and

Ωk :=
{
x ∈ T : Ig > 2k

} defn= S(rk1 ) defn= S(−∞) defn= T.

Let Ek
j = S(rkj ) ∩ (Ωk+1 \ Ωk+2). Then for x ∈ Ek

j we get

I(χS(rkj )g)(x) =
∑

rkj ≤y≤x

g(y) = Ig(x) − Ig((rkj )−) ≥ 2k,

where we adopt a convention that Ig((rkj )−) := 0, whenever rkj = −∞. Let μ̃ be a measure on the σ-algebra 
P(T ) (the power set of T ) defined by μ̃({x}) := μ(x), for all x ∈ T . Thus we have,

2kμ̃(Ek
j ) = 2k

∑
x∈Ek

j

μ(x)

≤
∑
x∈Ek

j

I(χS(rkj )g)(x)μ(x)

=
∑

y∈S(rkj )

g(y)
∑

x∈Ek
j , x≥y

μ(x)

=
∑

y∈S(rkj )

g(y)I∗χEj
k
(y)

=
∑

y∈S(rkj )∩(Ωk+2∪Ωc
k+2)

g(y)I∗χEk
j
(y)

=
∑

y∈S(rkj )∩Ωk+2

g(y)I∗χEk
j
(y) +

∑
y∈S(rkj )∩Ωc

k+2

g(y)I∗χEk
j
(y),

where Ωc
k+2 denotes the complement of Ωk+2 in C+. But since I∗χEk

j
(y) = 0 for all y ∈ Ωk+2,

2kμ̃(Ek
j ) ≤

∑
y∈S(rkj )∩Ωc

k+2

g(y)I∗χEk
j
(y). (21)

Now,

∑
x∈T

|Ig(x)|qμ(x) ≤
∑
k∈Z

μ̃
{
x ∈ T : 2k+1 < Ig(x) ≤ 2k+2} 2(k+2)q

= 22q
∑
k∈Z

2kqμ̃ (Ωk+1 \ Ωk+2)

≤ 22q
∑

k∈Z, j

μ̃(Ek
j )2kq

= 22q

⎛
⎝ ∑

μ̃(Ek
j )2kq +

∑
μ̃(Ek

j )2kq
⎞
⎠ ,
(k,j)∈E (k,j)∈F
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where

E :=
{

(k, j) : μ̃(Ek
j ) ≤ βμ̃(S(rjk))

}
, (22)

F :=
{

(k, j) : μ̃(Ek
j ) > βμ̃(S(rjk))

}
, (23)

for some 0 < β < 1−2−q

2 . Let {xn
k}k,n ⊆ T ∪ {∅} be a collection of distinct elements of this set, such that {

xk
n

}
k,n

= Ωk \ Ωk+1, for all k ∈ Z \ {0}. Then

∑
(k,j),k≥1

μ̃(S(rkj ))2kq =
∞∑
k=1

μ̃(Ωk)2kq =
∞∑
k=1

μ̃(Ωk \ Ωk+1)
k∑

l=1

2lq

=
∞∑
k=0

μ̃({xk
n}n)

k−1∑
l=0

2(k−l)q ≤
∞∑
k=0

∑
n

μ(xk
n)|Ig(xk

n)|q
k−1∑
l=0

2−lq

≤ 1
1 − 2−q

∑
x∈T

|Ig(x)|qμ(x) defn= 1
1 − 2−q

‖Ig‖qLq(T, μ).

Similarly,

∑
(k,j),k<1

μ̃(S(rjk))2
kq =

0∑
k=−∞

μ̃(Ωk)2kq

=
( ∞∑

l=0

2−lq

)(
μ̃(Ω0) +

∞∑
k=1

μ̃(Ω−k \ Ω−k+1)2−kq

)

≤ 1
1 − 2−q

⎛
⎝∑

j

μ(r0
j )|Ig(r0

j )|q +
∞∑
k=1

μ(x−k
n )|Ig(x−k

n )|q
⎞
⎠

≤ 1
1 − 2−q

∑
x∈T

|Ig(x)|qμ(x) defn= 1
1 − 2−q

‖Ig‖qLq(T, μ).

So

22q
∑

(k,j)∈E

μ̃(Ek
j )2kq

(22)
≤ 22q+1

1 − 2−q
β‖Ig‖qLq(T, μ).

For the sum indexed by F we have

∑
(k,j)∈F

μ̃(Ek
j )2kq

(21)
≤

∑
(k,j)∈F

μ̃(Ek
j )

∣∣∣∣∣∣μ̃(Ek
j )−1

∑
y∈S(rkj )∩Ωc

k+2

g(y)I∗χEk
j
(y)

∣∣∣∣∣∣
q

(23)
≤ β1−q

∑
(k,j)∈F

μ̃(S(rkj ))1−q

∣∣∣∣∣∣
∑

y∈S(rkj )∩Ωc
k+2

g(y)I∗χEk
j
(y)

∣∣∣∣∣∣
q

Hölder’s
≤ β1−q

∑
(k,j)∈F

μ̃(S(rkj ))1−q

×

⎛
⎝ ∑

y∈S(rk)∩Ωc

∣∣∣I∗χEk
j
(y)
∣∣∣p′

ρ(y)1−p′

⎞
⎠

q
p′
⎛
⎝ ∑

y∈S(rk)∩Ωc

|g(y)|p ρ(y)

⎞
⎠

q
p

j k+2 j k+2
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≤ β1−q
∑

(k,j)∈F

⎛
⎝ ∑

x∈S(rkj )

μ(x)

⎞
⎠

1−q

×

⎛
⎜⎝ ∑

x∈S(rkj )

⎛
⎝ ∑

y∈S(x)

μ(y)ρ(y)1−p′

⎞
⎠

p′⎞
⎟⎠

q′(q−1)
p′ ⎛

⎝ ∑
y∈S(rkj )∩Ωc

k+2

|g(y)|p ρ(y)

⎞
⎠

q
p

(20)
≤ β−qCq−1

∑
(k,j)

⎛
⎝ ∑

y∈S(rkj )∩Ωc
k+2

|g(y)|p ρ(y)

⎞
⎠

q/p

q≥p

≤ β−qCq−1

⎛
⎝∑

(k,j)

∑
y∈S(rkj )∩Ωc

k+2

|g(y)|p ρ(y)

⎞
⎠

q/p

= Cq−1β−q

⎛
⎝∑

k∈Z

∑
y∈Ωk∩Ωc

k+2

|g(y)|p ρ(y)

⎞
⎠

q/p

= Cq−1β−q

⎛
⎝∑

k∈Z

∑
y∈Ωk\Ωk+2

|g(y)|p ρ(y)

⎞
⎠

q/p

= 2q/pβ−qCq−1

(∑
x∈T

|g(x)|p ρ(y)
)q/p

defn= 2q/pCq−1‖g‖qLp(T, ρ).

Therefore we can conclude that

‖Ig‖qLq(T, μ) ≤
22q+1

1 − 2−q
β‖Ig‖qLq(μ) + 2q/pCq−1β1−q‖g‖qLp(T (ζ)),

and since

β <
1 − 2−q

22q+1 ,

we get the desired result. �

Given ζ ∈ C+, consider the following decomposition of the right complex half-plane: for any (k, l) ∈ Z
2

let

R(k,l)(ζ) :=
{
z ∈ C+ : 2k−1 <

Re(z) ≤ 2k, 2kl ≤ Im(z) − Im(ζ)
< 2k(l + 1)

}
.
Re(ζ) Re ζ
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We can view each element of the set of rectangles {R(k,l)(ζ) : (k, l) ∈ Z
2} as a vertex of an abstract 

graph. If we also have that x, y ∈ {R(k,l)(ζ) : (k, l) ∈ Z
2} and x ∩ y is a vertical segment in C+, then we 

say there is an edge between x and y. With this convention, these vertices and edges form an abstract tree, 
which we shall denote by T (ζ). Let A(·) a positive function on the set vertices of T (ζ) assigning to each of 
them the area of the corresponding rectangle from {R(k,l)(ζ) : (k, l) ∈ Z

2}. We can define a partial order 
on T (ζ) by considering the unique path between each pair x, y ∈ T (ζ). If for each vertex c lying on this 
path, A(x) ≥ A(c) ≥ A(y), then x ≤ y. With this setting and the following definition, we may proceed 
to prove next lemma, which has a disk counterpart in [1] (part of Theorem 1, p. 445) using the Whitney 
decomposition of D.

Definition 2. A positive weight ρ : C+ −→ (0, ∞) is called regular if for all ε > 0 there exists δ > 0 such 
that ρ(z1) ≤ δρ(z2), whenever z1 and z2 are within (Poincaré) hyperbolic right half-plane distance ε, i.e.

dH(z1, z2)
defn= cosh−1

(
1 + (Re(z1) − Re(z2))2 + (Im(z1) − Im(z2))2

2 Re(z1) Re(z2)

)
≤ ε.

Lemma 4. Let ρ : C+ −→ (0, ∞) be regular, let μ be a positive Borel measure on C+. If there exists a 
constant C(μ, ρ) > 0, such that for all a ∈ C+ we have
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⎛
⎜⎝ ∫
Q(a)

(μ(Q(a) ∩Q(z))p′

(Re(z))2 ρ(z)1−p′
dz

⎞
⎟⎠

q′/p′

≤ C(μ, ρ)μ(Q(a)), (24)

then there exists a constant C ′(μ, ρ) > 0 such that

⎛
⎜⎝∑

β≥α

⎛
⎝∑

γ≥β

μ(γ)

⎞
⎠

p′

ρ̃(β)1−p′

⎞
⎟⎠

q′/p′

≤ C ′
∑
β≥α

μ(β),

for all α ∈ T (ζ). Here ρ̃(β) is defined to be ρ(zβ), for some fixed zβ ∈ β ⊂ C+, for all β ∈ T (ζ).

Proof. Choose any ζ ∈ C+. Then for all α ∈ T (ζ) there exists a ∈ C+ such that

Q(a) =
⋃
β≥α

β and μ(Q(a)) =
∑
β≥α

μ(β) (25)

(or to be precise: this holds after removing some horizontal lines from some the sets β ≥ α, to avoid covering 
the same set twice, and otherwise keeping the tree model intact). Given β ≥ α, let (k, l) ∈ Z

2 be such that 
β = R(k, l)(ζ) and let

S(β) :=
{
z ∈ C+ : 2k−1 <

Re(z)
Re(ζ) ≤ 2k,

∣∣Im(z) − Im(ζ) − 2k
(
l + 1

2
)
Re(ζ)

∣∣
tan

(
π
4
) < Re(z) − 2k−1

}
.

Now

⋃
γ≥β

γ ⊆ Q(z),

whenever z ∈ S(β) ⊂ β ≥ α, and also

Q(a) ∩Q(z) ⊇
⋃
γ≥β

γ. (26)

We also have that for any z1 and z2 in β

dH(z1, z2) ≤ cosh−1
(

1 + 22k−2 + 22k

22k−2

)
= cosh−1

(
7
2

)
,

which does not depend on the choice of β ∈ T (ζ), so there exists δ > 0 such that

C
∑
β≥α

μ(β) (25)= Cμ(Q(a))
(24)
≥

⎛
⎜⎝ ∫
Q(a)

(μ(Q(a)) ∩Q(z))p′

(Re(z))2 ρ(z)1−p′
dz

⎞
⎟⎠

q′/p′

(25)
≥ δq

′/p′

⎛
⎜⎝∑

β≥α

ρ(β)1−p′
∫ (μ(Q(a) ∩Q(z)))p

′

(Re(z))2 dz

⎞
⎟⎠

q′/p′
β
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≥ δq
′/p′

⎛
⎜⎝∑

β≥α

ρ(β)1−p′
∫

S(β)

(μ(Q(a) ∩Q(z)))p
′

(Re(z))2 dz

⎞
⎟⎠

q′/p′

(26)
≥ δq

′/p′

⎛
⎝∑

β≥α

ρ(β)1−p′
(μ(

⋃
γ≥β

γ))p
′

⎞
⎠

q′/p′

= δq
′/p′

⎛
⎜⎝∑

β≥α

⎛
⎝∑

γ≥β

μ(γ)

⎞
⎠

p′

ρ(β)1−p′

⎞
⎟⎠

q′/p′

,

as required. �
The following theorem is a half-plane and Hilbertian version of Theorem 1 from [1].

Theorem 4. Let ρ be a regular weight such that ‖F‖2
A2

(m)
≥
∫
C+

|F ′(z)|2ρ(z) dz, for all F ∈ A2
(m), and let μ

be a positive Borel measure on C+. If

∫
Q(a)

(
μ(Q(a) ∩Q(z))

Re(z)

)2
dz

ρ(z) ≤ C(μ, ρ)μ(Q(a)), (27)

for all a ∈ C+, then μ is a Carleson measure for A2
(m).

Proof. Let ζ ∈ C+. Given F ∈ A2
(m), for each α ∈ T (ζ) let wα, zα ∈ α ⊂ C+ be such that

zα := sup
z∈α

{|F (z)|} and wα := sup
w∈α

{|F ′(w)|}.

Define a weight ρ̃ on T (ζ) by ρ̃(α) := ρ(zα). And also: rα = Re(wα)/4, Φ(α) := F (zα), ϕ(α) = Φ(α) −
Φ(α−), for all α ∈ T (ζ). Note that Iϕ = Φ, because

lim
α−→−∞

|F (zα)| = lim
α−→−∞

∣∣∣∣∣
〈
F, k

A2
(m)

z

〉
A2

(m)

∣∣∣∣∣
Cauchy–Schwarz

≤ ‖F‖A2
(m)

lim
α−→−∞

∞∫
0

e−2t Re(zα)

w(m)(t)
dt = 0.

Since (27) holds, we can apply Lemma 3 to ϕ, ρ̃, μ̃ (where μ̃(α) := μ(α), for all α ∈ T (ζ)) in the following 
way ∫

C+

|F |2 dμ =
∑

α∈T (ζ)

∫
α

|F |2 dμ ≤
∑

α∈T (ζ)

|Φ(α)|2μ̃(α)

Lemma 3
≤

∑
α∈T (ζ)

|ϕ(α)|2ρ̃(α) defn=
∑

α∈T (ζ)

|Φ(α) − Φ(α−)|2ρ̃(α)

Fundamental Thm
of Calculus

≤
∑

α∈T (ζ)

∣∣∣∣∣∣∣
zα∫

z

F ′(w) dw

∣∣∣∣∣∣∣
2

ρ̃(α)

α−
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�
∑

α∈T (ζ)

diam(α)2|F ′(wα) + F ′(wα−)|2ρ̃(α)

�
∑

α∈T (ζ)

diam(α)2|F ′(wα)|2ρ̃(α)

Mean-Value
Property

≤
∑

α∈T (ζ)

diam(α)2

∣∣∣∣∣∣∣
1

πr2
α

∫
B(wα, rα)

F ′(z) dz

∣∣∣∣∣∣∣
2

ρ̃(α)

Hölder’s
≤

∑
α∈T (ζ)

diam(α)2

πr2
α

∫
B(wα, rα)

|F ′(z)|2 dzρ̃(α)

�
∑

α∈T (ζ)

∫
⋃

β∈T (ζ) : β∩B(wα, rα)�=∅

|F ′(z)|2ρ(z) dz

�
∑

α∈T (ζ)

∫
α

|F ′(z)|2ρ(z) dz

≤ ‖F‖2
A2

(m)
. �

Corollary 2. Let μ be a positive Borel measure on C+. If there exists a constant C(μ) > 0 such that

∫
Q(a)

(
μ(Q(a) ∩Q(z))

Re(z)

)2

dz ≤ C(μ)μ(Q(a)),

for all a ∈ C+, then μ is a Carleson measure for D(C+).

Note that Theorem 4 cannot be applied to Dα(C+), since the limit of its functions, as the real part of 
their arguments approaches infinity, is not necessarily 0.

6. An application

Let A be an infinitesimal generator of a C0-semigroup (T (t))t≥0 on a Hilbert space H. Consider the linear 
system

dx(t)
dt

= Ax(t) + Bu(t), x(0) = x0, t ≥ 0.

Here u(t) ∈ C is the input at time t, and B : C −→ D(A∗)′, the control operator, where D(A∗)′ denotes the 
completion of H with respect to the norm

‖x‖D(A∗)′ :=
∥∥(β −A)−1x

∥∥
H ,

for any β ∈ ρ(A). To ensure that the state x(t) is in H, we need B ∈ L(C, D(A∗)′) and
∥∥∥∥∥∥

∞∫
0

T (t)Bu(t) dt

∥∥∥∥∥∥
H

≤ m0‖u‖L2
w(0,∞),

for some m0 ≥ 0. Then we say that the control operator B is L2
w(0, ∞)-admissible. We refer to the survey 

[18] and the book [26] for the basic background to admissibility in the context of well-posed systems. 
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The following theorem appears in [19] and [20] (with weaker results appearing earlier in [16] and [27] for 
H2(C+) = L 

[
L2(0, ∞)

]
, and [28] for B2

−α(C+) = L 
[
L2
tα(0, ∞)

]
, −1 < α < 0).

Theorem 5. Suppose the semigroup (T (t))t≥0 acts on a Hilbert space X with a Riesz basis of eigenvectors 
(φk); that is, T (t)φk = eλktφk, for each k, (λk) are the eigenvalues of eigenvectors forming a Riesz basis 
of A, each of which lies in the open left complex half-plane C−, and (φk) is a Schauder basis of X such that 
for some constants c, C > 0 we have

c
∑

|ak|2 ≤
∥∥∥∑ akφk

∥∥∥2
≤ C

∑
|ak|2,

for all sequences (ak) ∈ �2. Suppose also that B is a linear bounded map from C to D(A∗)′ corresponding 
to the sequence (bk). Then the control operator B is L2

w(0, ∞)-admissible for (T (t))t≥0 if and only if

μ :=
∑
k

|bk|2δ−λk

is a Carleson measure for L 
[
L2
w(0,∞)

]
.

This theorem can also be stated for observation operators (see again [20]). Combining the above statement 
with Theorem 1, we get a direct application of the results established throughout this paper (i.e. if w is of 
the form (2), then B is L2

w(0, ∞)-admissible if and only if μ is a Carleson measure for A2
(m)). We leave the 

details for the reader.
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