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Abstract

In this paper, we consider the initial boundary value problem for a class of thin-

film equations in R
n with a p-Laplace term and a nonlocal source term |u|q−2u −

1
|Ω|

∫
Ω |u|q−2udx. We prove that there exist weak solutions for the problem with ar-

bitrarily initial energy that blow up in finite time. We also obtain the upper bounds for

the blow-up time.

Keywords: Thin-film equation, blow-up, upper bound for blow-up time, arbi-

trary initial energy, nonlocal source
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1 Introduction

The thin-film equation

ut −Δ2u+∇ · (f(∇u)) = g
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can be used to describe the evolution of the epitaxial growth of nanoscale thin films [1–3].

Various mathematical aspects of the thin-film equation have been studied by many researchers

in recent years, as reported in [4–11] and the references therein. In [12], Qu and Zhou studied

the following thin-film equation with a nonlocal source term

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + uxxxx = |u|p−1u− 1
|Ω|

∫
Ω
|u|p−1udx, (x, t) ∈ Ω× (0, T ),

ux = uxxx = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω = (0, a), p > 1, and u0 ∈ H2(Ω) with
∫
Ω
u0dx = 0 and u0 �≡ 0. By using the potential

well method, the authors obtained a threshold result for the global existence and finite time

blow-up of the weak solutions with initial data at low energy level (i.e. J(u0) ≤ d). They

also studied the extinction of the solutions for the problem under some conditions. In [13], Li

et al. studied the following thin-film equation with the same initial and boundary conditions

ut + uxxxx −
(|ux|p−2ux

)
x
= |u|q−1u− 1

|Ω|
∫
Ω

|u|q−1udx, (x, t) ∈ (0, a)× (0,T),

where p > 1, q > max{1, p − 1}, and obtained similar results by using the potential well

method. In [14], Zhou considered problem (1.1) and established a new blow-up result for the

case that the initial energy is positive but upper bounded. He also gave an estimate for the

upper bound of the blow-up time.

To our knowledge, no results have been obtained about the global existence, extinction

or finite time blow-up for the solutions of the thin-film equation in R
n with initial data at

high energy level. In this paper, we are concerned with the finite time blow-up for the weak

solutions of the following initial-boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut +Δ2u−Δpu = |u|q−2u− 1
|Ω|

∫
Ω
|u|q−2udx, (x, t) ∈ Ω× (0, T ),

∂u
∂n

= ∂(Δu)
∂n

= 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.2)

where Ω is a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω, p > 1, q > 2,

Δpu = div (|∇u|p−2∇u), u0 ∈ H2(Ω) such that
∫
Ω
u0dx = 0 and u0 �≡ 0. In addition, we

assume p, q satisfy the following conditions:
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(H1) 2 < q < +∞, if n ≤ 4; 2 < q < 2n
n−4

, if n > 4.

(H2) 1 < p < +∞, if n ≤ 2; 1 < p < 2n
n−2

, if n > 2.

(H3) q > max{2, p}.

By applying the technique similar to that in [9,15] and using Levine’s concavity method [16],

we show that there are weak solutions of problem (1.2) with arbitrarily initial energy that

blow up in finite time. We also obtain the upper bounds for the blow-up time.

2 Preliminaries

For convenience, we denote the Lr-norm (1 ≤ r ≤ ∞) by | · |r and the usual norm of H2(Ω)

by ‖u‖H2 =
( ∫

Ω
(|u|2 + |∇u|2 + |Δu|2) dx

) 1
2
. We also denote (·, ·) as the inner product on

the Hilbert space L2(Ω).

Recalling that u0 ∈ H2(Ω) with
∫
Ω
u0dx = 0 and considering the homogenous Neumann

boundary condition of problem (1.2), we introduce the following space

H2
N(Ω) :=

{
u ∈ H2(Ω) :

∂u

∂n

∣∣∣
∂Ω

= 0 and

∫
Ω

udx = 0

}
.

For every u ∈ H2
N(Ω), we have

|∇u|22 =
∣∣∣∣
∫
Ω

∇u · ∇udx

∣∣∣∣ =
∣∣∣∣
∫
∂Ω

u
∂u

∂n
dS−

∫
Ω

uΔudx

∣∣∣∣ =
∣∣∣∣
∫
Ω

uΔudx

∣∣∣∣ ≤ |u|2|Δu|2. (2.1)

Let λN > 0 be the first nontrivial eigenvalue of −Δ in Ω with homogeneous Neumann bound-

ary condition ∂u
∂n

∣∣
∂Ω

= 0. By (2.1), we have

λ2
N |u|22 ≤ λN |∇u|22 ≤ |Δu|22

for all u ∈ H2
N(Ω). Moreover, following from [4] and [17], H2

N(Ω) is a Hilbert space with the

inner product (u, v)N :=
∫
Ω
ΔuΔvdx and the norm ‖u‖ := (u, u)

1
2
N = |Δu|2 is equivalent to

the usual norm ‖ · ‖H2 in H2
N(Ω).

In this paper, we consider the weak solutions as defined below:
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Definition 2.1 A function u ∈ L∞(0, T ;H2
N(Ω)) with ut ∈ L2(0, T ;H2

N(Ω)) is said to be a

weak solution of problem (1.2) if u(0) = u0 ∈ H2
N(Ω) and

∫ t

0

∫
Ω

[
utφ+ΔuΔφ+ |∇u|p−2∇u · ∇φ−

(
|u|q−2u− 1

|Ω|
∫
Ω

|u|q−2udy

)
φ

]
dxdτ = 0

for all φ ∈ L2(0, T ;H2
N(Ω)).

By using the argument similar to that in [4], we can obtain the local existence, uniqueness

and regularity for the weak solutions of problem (1.2).

Suppose that u is a weak solution of problem (1.2) with initial data u0 and T ∗ is the

maximal existence time of u. Integrating equation (1.2) over Ω, in view of the boundary

condition, we have

d

dt

∫
Ω

udx =

∫
Ω

utdx =

∫
Ω

[
−Δ2u+Δpu+ |u|q−2u−

(
1

|Ω|
∫
Ω

|u|q−2udy

)]
dx

= −
∫
∂Ω

∂(Δu)

∂n
ds +

∫
∂Ω

|∇u|p−2∂u

∂n
ds

+

∫
Ω

|u|p−2udx−
(

1

|Ω|
∫
Ω

|u|q−2udy

)∫
Ω

dx

= 0, (2.2)

so
∫
Ω
u(t)dx is a constant for all t ∈ [0, T ∗). Since u0 ∈ H2(Ω), u0 �≡ 0 and 1

|Ω|
∫
Ω
u0dx = 0,

we obtain that ∫
Ω

u(t)dx =

∫
Ω

u0dx = 0 for all t ∈ [0,T∗). (2.3)

Since u is a nontrivial solution of problem (1.2), (2.3) implies that u is a sign-changing solution.

Multiplying equation (1.2) with ut and then integrating the equation over Ω by parts, in

view of the boundary condition, we have

(|u|q−2u, ut

)− (
1

|Ω|
∫
Ω

|u|q−2udy, ut

)
= |ut|22 + (Δ2u, ut)− (Δpu, ut)

= |ut|22 +
(∫

∂Ω

ut
∂(Δu)

∂n
ds−

∫
∂Ω

Δu
∂ut

∂n
ds +

∫
Ω

Δu div(∇ut)dx

)

−
(∫

∂Ω

ut|∇u|p−2 ∂u

∂n
ds−

∫
Ω

|∇u|p−2∇u · ∇utdx

)

= |ut|22 +
d

dt

(
1

2
|Δu|22dx

)
+

d

dt

(
1

p
|∇u|pp

)
.
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On the other hand, by (2.2) we get

(|u|q−2u, ut

)−(
1

|Ω|
∫
Ω

|u|q−2udy, ut

)
=

(|u|q−2u, ut

)− 1

|Ω|
∫
Ω

|u|q−2udy

∫
Ω

utdx =
d

dt

(
1

q
|u|qq

)
.

So
d

dt

(
1

2
|Δu|22 +

1

p
|∇u|pp −

1

q
|u|qq

)
= −|ut|22. (2.4)

Motivated by the calculation above, we introduce the energy functional J and the Nehari

functional I on H2
N(Ω) for problem (1.2) by

J(u) =
1

2
|Δu|22 +

1

p
|∇u|pp −

1

q
|u|qq, (2.5)

I(u) = |Δu|22 + |∇u|pp − |u|qq. (2.6)

Since p, q satisfy the assumptions (H1) and (H2), the functionals J and I are well-defined

and continuous on H2
N(Ω). Furthermore, simple calculation shows that

J(u) =
q − 2

2q
|Δu|22 +

q − p

pq
|∇u|pp +

1

q
I(u). (2.7)

By using the Fountain Theorem, we obtain the following lemma.

Lemma 2.2 Assume that p, q satisfy (H1)-(H3). Then the functional J on H2
0 (Ω) ∩H2

N(Ω)

has a sequence of critical points {uk} such that

J(uk) =
1

2
|Δuk|22 +

1

p
|∇uk|pp −

1

q
|uk|pp → +∞, as k → ∞.

Proof. The proof is similar to that of Theorem 1.1 in [17] with a few modifications. �

In view of (2.4), we have the following lemma.

Lemma 2.3 Assume that p, q satisfy (H1) and (H2) and u is a solution of problem (1.2)

with initial data u0. Then
d
dt
J(u(t)) ≤ 0 and

J(u(t)) +

∫ t

0

|ut(τ)|22dτ = J(u0) for all t ∈ [0,T∗). (2.8)
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3 Main results

Theorem 3.1 Assume that p, q satisfy (H1)-(H3) and u is a weak solution of problem (1.2)

with initial data u0 ∈ H2
N(Ω). Suppose that one of the following statements holds:

(i) J(u0) < 0;

(ii) 0 ≤ J(u0) <
C∗
2q
|u0|22, where C∗ = (q − 2)λ2

N .

Then T ∗ < ∞, which means that u blows up in finite time. Moreover, the upper bound for T ∗

is estimated as follows:

• In case (i),

T ∗ ≤ |u0|22
(2− q)qJ(u0)

.

• In case (ii),

T ∗ ≤ 8q|u0|22
(q − 2)2 (C∗|u0|22 − 2qJ(u0))

.

Proof.

(i) For the case of J(u0) < 0, let

θ(t) =
1

2
|u(t)|22, η(t) = −J(u(t)),

then θ(0) > 0, η(0) > 0. By (2.7) and Lemma 2.3, we have

η′(t) = − d

dt
J(u(t)) = |ut(t)|22 ≥ 0,

then η(t) ≥ η(0) > 0 for all t ∈ [0, T ∗). Since q > max{2, p} and in view of the boundary

condition, (2.3), (2.6) and (2.7), it holds that

θ′(t) =
(
u(t), ut(t)

)
=

(
u(t), −Δ2u(t) + Δpu(t) + |u(t)|q−2u(t)− 1

|Ω|
∫
Ω

|u|q−2udy
)

= −|Δu(t)|22 − |∇u(t)|pp + |u(t)|qq
= −I(u(t))

=
q − 2

2
|Δu(t)|22 +

q − p

p
|∇u(t)|pp − qJ(u(t))
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≥ qη(t) (3.1)

for all t ∈ [0, T ∗). Using the Cauchy-Schwartz inequality, we obtain that

θ(t)η′(t) ≥ 1

2
|u(t)|22|ut(t)|22 ≥

1

2

(
(u(t), ut(t))

)2

=
1

2
(θ′(t))2 ≥ q

2
θ′(t)η(t), (3.2)

By (3.2) and through simple calculation, we have

(
ηθ−

q
2

)′
= θ−

q
2
−1

(
θη′ − q

2
ηθ′

)
≥ 0,

so

0 < M := η(0)θ−
q
2 (0) ≤ η(t)θ−

q
2 (t) ≤ 1

q
θ′(t)θ−

q
2 (t) =

2

(2− q)q

(
θ−

q−2
2 (t)

)′
. (3.3)

Since q > 2, integrating (3.3) yields

0 ≤ θ−
q−2
2 (t) ≤ −(q − 2)q

2
Mt+ θ−

q−2
2 (0), t ∈ [0, T ∗(u0)). (3.4)

Note that the above inequality (3.4) does not hold for all t > 0. So T ∗ < +∞. Moreover, by

(3.4), we get

T ∗ ≤ 2

(q − 2)qM
θ−

q−2
2 (0) =

|u0|22
(2− q)qJ(u0)

.

(ii) For the case of 0 ≤ J(u0) <
C∗
2q
|u0|22, suppose that the solution u of problem (1.2) with

initial data u0 is global.

Since

∫ t

0

|ut(τ)|2dτ ≥
∣∣∣∣
∫ t

0

ut(τ)dτ

∣∣∣∣
2

= |u(t)− u0|2 ≥ |u(t)|2 − |u0|2, t ∈ [0,∞),

by the Hölder’s inequality and (2.8), we obtain that

|u(t)|2 ≤ |u0|2 + t
1
2

(∫ t

0

|ut(τ)|22dτ
) 1

2

= |u0|2 + t
1
2

(
J(u0)− J(u(t))

) 1
2
. (3.5)
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Since u is a global solution of problem (1.2), we have J(u(t)) ≥ 0 for all t ∈ [0,∞). Otherwise,

there exists t0 ∈ (0,∞) such that J(u(t0)) < 0. From the first part of the proof, it follows

that u blows up in finite time, which is a contradiction. Finally, (3.5) implies that

|u(t)|2 ≤ |u0|2 + t
1
2

(
J(u0)− J(u(t))

) 1
2 ≤ |u0|2 + t

1
2

(
J(u0)

) 1
2

for all t ∈ [0,∞). (3.6)

On the other hand, from (3.1), it follows that

d

dt

(
1

2
|u(t)|22

)
= θ′(t) =

q − 2

2
|Δu(t)|22 +

q − p

p
|∇u(t)|pp − qJ(u(t))

≥ q − 2

2
λ2
N |u(t)|22 − qJ(u(t))

= C∗
(
1

2
|u(t)|22 −

q

C∗J(u(t))
)
.

Since d
dt
J(u(t)) ≤ 0, we have

d

dt

(
1

2
|u(t)|22 −

q

C∗J(u(t))
)

≥ d

dt

(
1

2
|u(t)|22

)
≥ C∗

(
1

2
|u(t)|22 −

q

C∗J(u(t))
)
.

Let H(t) = 1
2
|u(t)|22 − q

C∗J(u(t)), then
d
dt
H(t) ≥ C∗H(t) for all t ∈ [0,∞). By using the

Gronwall’s inequality, we get H(t) ≥ eC
∗tH(0), hence

|u(t)|22 ≥
2q

C∗J(u(t)) + 2eC
∗tH(0), t ∈ [0,∞).

Since 0 ≤ J(u0) < C∗
2q
|u0|22, we have H(0) > 0. Recall that 0 ≤ J(u(t)) ≤ J(u0) for all

t ∈ [0,∞), we have |u(t)|22 ≥ 2eC
∗tH(0), i.e.,

|u(t)|2 ≥ (2H(0))
1
2 e

C∗
2

t for all t ∈ [0,∞), (3.7)

which contradicts (3.6) for t sufficiently large. So T ∗ < +∞.

Next, we will find an upper bound for T ∗.

By (2.7), we have

I(u0) = qJ(u0)− q − 2

2
|Δu0|22 −

q − p

p
|∇u0|pp
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= q

(
J(u0)− C∗

2q
|u0|22

)
− q − 2

2

(|Δu0|22 − λ2
N |u0|22

)− q − p

p
|∇u0|pp

< 0.

We claim that I(u(t)) < 0 for all t ∈ [0, T ∗). Otherwise, there exists t0 ∈ (0, T ∗) such that

I(u(t0)) = 0, I(u(t)) < 0, t ∈ [0, t0).

By (3.1), we have θ′(t) = −I(u(t)), then θ(t) is strictly increasing on [0, t0), hence

0 ≤ J(u0) <
C∗

2q
|u0|22 <

C∗

2q
|u(t0)|22. (3.8)

On the other hand, by (2.7) and Lemma 2.3, we have

J(u0) ≥ J(u(t0)) =
q − 2

2q
|Δu(t0)|22 +

q − p

pq
|∇u(t0)|pp +

1

q
I(u(t0))

≥ q − 2

2q
|Δu(t0)|22 ≥

C∗

2q
|u(t0)|22,

which contradicts (3.8). So, I(u(t)) < 0 for all t ∈ [0, T ∗) and θ(t) is strictly increasing on

[0, T ∗).

For any T ∈ (0, T ∗), α > 0, β > 0 and σ > 0, define the function

F (t) =

∫ t

0

|u(τ)|22dτ + (T∗ − t)|u0|22 + β(t + σ)2, t ∈ [0,T].

In view of (2.7), (2.8) and (3.1), we have

F ′(t) = |u(t)|22 − |u0|22 + 2β(t+ σ)

=

∫ t

0

d

dτ
|u(τ)|22dτ + 2β(t + σ)

= 2

∫ t

0

(u, ut)dτ + 2β(t + σ), (3.9)

F ′′(t) = 2(u, ut) + 2β

= −2I(u(t)) + 2β

= −2qJ(u(t)) + (q − 2)|Δu|22 +
2(q − p)

p
|∇u|pp + 2β

9



= −2qJ(u0) + 2q

∫ t

0

|ut|22dτ + (q− 2)|Δu|22 +
2(q− p)

p
|∇u|pp + 2β (3.10)

for all t ∈ [0, T ]. Notice that F (0) = T ∗|u0|22 + βσ2 > 0 and F ′(0) = 2βσ > 0. Recalling

that θ(t) is strictly increasing on [0, T ∗), it follows that F ′(t) > 0 on [0, T ], that is, F (t) is

strictly increasing on [0, T ]. By using the Cauchy-Schwartz inequality and Young’s inequality,

we have

ξ(t) :=

(∫ t

0

|u|22dτ + β(t + σ)2
)(∫ t

0

|ut|22dτ + β

)
−
(∫ t

0

(u, ut)dτ + β(t + σ)

)2

≥ 0 (3.11)

for all t ∈ [0, T ]. Therefore, in view of (3.9)-(3.11), for any α > 0, we get

FF ′′ − α (F ′)2

= FF ′′ − 4α

(∫ t

0

(u, ut)dτ + β(t + σ)

)2

= FF ′′ + 4α

[(∫ t

0

|u|22dτ + β(t + σ)2
)(∫ t

0

|ut|22dτ + β

)

−
(∫ t

0

(u, ut)dτ + β(t + σ)

)2

−
(
F − (T ∗ − t)|u0|22

)(∫ t

0

|ut|22dτ + β

)]

= FF ′′ + 4αξ(t) + 4α(T ∗ − t)|u0|22
(∫ t

0

|ut|22dτ + β

)
− 4αF

(∫ t

0

|ut|22dτ + β

)

≥ F

(
F ′′ − 4α

∫ t

0

|ut|22dτ − 4αβ

)

= F

[
−2qJ(u0) + 2q

∫ t

0

|ut|22dτ + (q− 2)|Δu|22 +
2(q− p)

p
|∇u|pp

−4α

∫ t

0

|ut|22dτ − 4αβ

]

≥ F

[
−2qJ(u0) + (q − 2)λ2

N |u(t)|22 + (2q − 4α)

∫ t

0

|ut|22dτ − 4αβ

]

≥ F

[
−2qJ(u0) + (q − 2)λ2

N |u0|22 + (2q − 4α)

∫ t

0

|ut|22dτ − 4αβ

]

= F

[
2q

(
C∗

2q
|u0|22 − J(u0)

)
+ (2q − 4α)

∫ t

0

|ut|22dτ − 4αβ

]
(3.12)

for any t ∈ [0, T ]. Taking α = q
2
in (3.12), we have

FF ′′ − q

2
(F ′)2 ≥ 2qF

[(
C∗

2q
|u0|22 − J(u0)

)
− β

]
≥ 0 (3.13)
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for any t ∈ [0, T ] and β ∈
(
0, C

∗
2q
|u0|22 − J(u0)

]
. Let G(t) = F 1− q

2 (t) for t ∈ [0, T ]. Through

simple calculation, we obtain

G′(t) =
(
1− q

2

)
F− q

2 (t)F ′(t), (3.14)

G′′(t) =
(
1− q

2

)
F− q

2
−1(t)

(
F (t)F ′′(t)− q

2
(F ′(t))2

)

for any t ∈ [0, T ]. By (3.13) and since q > 2, we have G′′(t) ≤ 0 for all t ∈ [0, T ]. This means

that G(t) is concave on [0, T ]. Then, it holds that

G(T ) ≤ G(0) +G′(0)T. (3.15)

Since F (0) > 0 and F (t) is strictly increasing on [0, T ], we have

G(0) = F 1− q
2 (0) > 0 (3.16)

and

G(T ) = F 1− q
2 (T ) > 0 (3.17)

for any T ∈ (0, T ∗). In addition, recalling that F ′(0) > 0, p > 2 and using (3.14), we have

G′(0) =
(
1− q

2

)
F− q

2 (0)F ′(0) =
(
1− q

2

)
G(0)

F ′(0)
F (0)

< 0. (3.18)

Therefore, from (3.15)-(3.18), it follows that

T ≤ −G(0)

G′(0)
=

2F (0)

(q − 2)F ′(0)
=

T ∗|u0|22 + βσ2

(q − 2)βσ
=

|u0|22
(q − 2)βσ

T ∗ +
σ

q − 2

for any T ∈ (0, T ∗), so

T ∗ ≤ |u0|22
(q − 2)βσ

T ∗ +
σ

q − 2
(3.19)

for any β ∈
(
0, C

∗
2q
|u0|22 − J(u0)

]
and σ > 0. Fixing an arbitrary β0 ∈

(
0, C

∗
2q
|u0|22 − J(u0)

]
, it

holds that

0 <
|u0|22

(q − 2)β0σ
< 1
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for any σ ∈
(

|u0|22
(q−2)β0

,+∞
)
. Then, by (3.19), we obtain

T ∗ ≤ σ

q − 2

(
1− |u0|22

(q − 2)β0σ

)−1

=
β0σ

2

(q − 2)β0σ − |u0|22
(3.20)

for any σ ∈
(

|u0|22
(q−2)β0

,+∞
)
. Define a function Tβ0(σ) by

Tβ0(σ) =
β0σ

2

(q − 2)β0σ − |u0|22
, σ ∈

( |u0|22
(q − 2)β0

,+∞
)
.

It is easy to verify that Tβ0(σ) has a unique minimum at σβ0 :=
2|u0|22

(q−2)β0
∈

(
|u0|22

(q−2)β0
,+∞

)
.

Then, in view of (3.20), we have

T ∗ ≤ inf
σ∈

(
|u0|22

(q−2)β0
,+∞

)Tβ0(σ) = Tβ0(σβ0) =
4|u0|22

(q − 2)2β0

(3.21)

for any β0 ∈
(
0, C

∗
2q
|u0|22 − J(u0)

]
. Finally, it holds that

T ∗ ≤ inf
β0∈(0,C∗

2q
|u0|22−J(u0)]

4|u0|22
(q − 2)2β0

=
8q|u0|22

(q − 2)2 (C∗|u0|22 − 2qJ(u0))
.

�

Corollary 3.2 Assume that p, q satisfy (H1)-(H2). Then there exists weak solution for

problem (1.2) with initial data at arbitrary high energy level that blows up in finite time .

Proof. Let Ω1, Ω2 be two disjoint open subdomain of Ω and v be an arbitrary nonzero

function in C∞
0 (Ω1) ∩H2

N(Ω). For any R > 0, there exists r1 > 0 sufficiently large such that

|r1v|22 = r21

∫
Ω

|v|2dx = r21

∫
Ω1

|v|2dx >
2q

C∗R. (3.22)

We claim that there exist w̃ ∈ H2
N(Ω) and r > r1 such that J(w̃) = R − J(rv). In fact, due

to Lemma 2.2, there exists a sequence {wk} ⊂ H2
0 (Ω2) ∩H2

N(Ω2) such that

1

2

∫
Ω2

|Δwk|2dx + 1

p

∫
Ω2

|∇wk|pdx− 1

q

∫
Ω2

|wk|qdx → +∞, as k → ∞.

12



On the other hand, since q > max{2, p}, it holds that

R− J(rv) = R− 1

2
r2|Δv|22 −

1

p
rp|∇v|pp +

1

q
rq|v|qq → +∞, as r → +∞.

So, there exist k ∈ N and r > r1 both sufficiently large such that

R− J(rv) =
1

2

∫
Ω2

|Δwk|2dx + 1

p

∫
Ω2

|∇wk|pdx− 1

q

∫
Ω2

|wk|qdx. (3.23)

Now, extend w = wk ∈ H2
0 (Ω2) ∩H2

N(Ω2) to be w̃ ∈ H2
N(Ω) such that

w̃ =

⎧⎨
⎩ w, x ∈ Ω2,

0, x ∈ Ω \ Ω2.

By (3.23), we obtain

R− J(rv) =
1

2

∫
Ω2

|Δw|2dx + 1

p

∫
Ω2

|∇w|pdx− 1

q

∫
Ω2

|w|qdx

=
1

2

(∫
Ω2

|Δw̃|2dx +
∫
Ω\Ω2

|Δw̃|2dx
)

+
1

p

(∫
Ω2

|∇w̃|pdx +
∫
Ω\Ω2

|∇w̃|pdx
)

−1

q

(∫
Ω2

|w̃|qdx +
∫
Ω\Ω2

|w̃|qdx
)

= J(w̃). (3.24)

Let u0 := rv + w̃. In view of (3.22) and (3.24), we have u0 ∈ H2
N(Ω),

|u0|22 =
∫
Ω

|u0|2dx ≥
∫
Ω1

|rv|2dx >
2q

C∗R

and

J(u0) =
1

2

∫
Ω

|Δu0|2dx + 1

p

∫
Ω

|u0|pdx− 1

q

∫
Ω

|u0|qdx

=

∫
Ω1

(
1

2
|rΔv|2 + 1

p
|rv|p − 1

q
|rv|q

)
dx

+

∫
Ω2

(
1

2
|Δw|2 + 1

p
|w|p − 1

q
|w|q

)
dx
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= J(rv) + J(w̃)

= R <
C∗

2q
|u0|22.

According to Theorem 3.1, the solution u of problem (1.2) with initial data u0 blows up in

finite time. This completes the proof. �

Remark 3.3 If J(u0) < 0, we have I(u0) < 0. If u0 ∈ H2
N(Ω) satisfies the statement (ii)

in Theorem 3.1, in view of (2.7), it also holds that I(u0) < 0. It is a natural question that

whether negative initial Nehari energy I(u0) < 0 is sufficient for the finite time blow-up of

the weak solution to problem (1.2) with initial data u0. For the heat equation

ut −Δu = |u|p−1u,

where 1 < p < n+2
n−2

, Dickstein et al. proved that negative initial Nehari energy I(u0) :=

|∇u0|22 − |u0|p+1
p+1 < 0 is not sufficient for the finite time blow-up of the solution [18]. While,

in [19], the authors studied the following pseudo-parabolic equation

ut −Δu−Δut + u = |u|p−2u,

where 2 < p < 2∗, and proved that negative initial Nehari energy I(u0) := |u0|22 + |∇u0|22 −
|u0|pp < 0 is sufficient for the finite time blow-up of the solution.
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