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type we establish conditions sufficient for the power series coefficients of the general-
ized Turánian formed by these series to have constant sign. Finally, we furnish seven 
examples of basic hypergeometric functions satisfying our general theorems. This 
investigation extends our previous results on power series with coefficient involving 
the ordinary gamma functions and the shifted factorials.
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1. Introduction

In a series of papers [8–10,12–15] we considered the logarithmic convexity and concavity with respect to 
the parameter μ for the class of functions defined by the series

f(μ;x) = A0(μ)
∑
n≥0

fnA1(n + μ)xn, (1)

where the coefficients A0(·), A1(·) are chosen from the following nomenclature

A0, A1 ∈
{

1,Γ(·), 1
Γ(·) ,

Γ(a + ·)
Γ(b + ·)

}
(2)
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and fn is a (usually non-negative) real sequence. Here Γ stands for Euler’s gamma function and a, b are 
non-negative parameters. The main motivating examples of functions of the form (1) are the (generalized) 
hypergeometric functions. Moreover, their derivatives with respect to parameters other than μ are also 
instances of (1). Further examples of (1) can be given with fn not expressible in terms of gamma functions. 
Our papers [8–10,12–15] cover nearly all possible combinations of A0 and A1 from the collection (2). Most 
our results are shaped as follows. Logarithmic concavity (convexity) of μ → f(μ;x) on an interval I is 
equivalent to non-negativity (non-positivity) of the generalized Turánian

Δf (α, β;x) = f(μ + α;x)f(μ + β;x) − f(μ;x)f(μ + α + β;x) =
∞∑

m=0
δmxm (3)

for arbitrary α, β ≥ 0 such that μ, μ + α, μ + β, μ + α + β ∈ I. In many cases, however, we were only 
able to prove non-negativity of Δf(α, β; x) for μ, β ≥ 0 and α ∈ N, so that our results in such cases are 
incomplete in the sense that they can probably be still extended to all α ≥ 0. On the other hand, in most 
cases we actually demonstrate that, under certain restrictions, all coefficients δm have the same sign. This 
type of results can be termed “coefficient-wise logarithmic concavity/convexity” and can be viewed as a 
strengthening of usual log-concavity/log-convexity.

The purpose of this paper is to extend our previous results by substituting the nomenclature (2) with 
{1, Γq(·), [Γq(·)]−1}, where Γq(·) denotes the q-gamma function, defined in (6) below. To this end, we 
prove four theorems corresponding to four nontrivial combinations of A0, A1 chosen from the above set. 
We also present a number of corollaries giving two-sided bounds and integral representations for the gen-
eralized Turánians (3) and certain product ratios of functions (1). Finally, we furnish seven examples of 
q-hypergeometric functions satisfying our general theorems. Some results dealing with the Turán type 
inequalities for q-hypergeometric functions have been recently obtained by Baricz, Raghavendar and Swami-
nathan in [2,3] and Mehrez and Sitnik in [18,19]. In particular, our Theorem 1 can be seen as a far-reaching 
generalization of [2, Theorem 3.2], their connection explored in Example 2. Furthermore, our Theorem 3
generalizes some statements from [2, Theorem 3.1] and [19, Theorem 1] which we explore in Example 3. 
Continued fractions for and the mapping properties of the ratios of the basic hypergeometric functions have 
been recently studied in [1,3].

2. Definitions and preliminaries

Let us fix some notation and terminology. We will use the standard symbols N, R and C to denote 
natural, real and complex numbers, respectively; N0 = N ∪ {0}, R+ = [0, ∞). A positive function is called 
logarithmically concave (convex) if its logarithm is concave (convex). Next, a function f : I → (0, ∞) defined 
on an interval I ⊂ (0, ∞) is said to be multiplicatively concave if

f(xλy1−λ) ≥ f(x)λf(y)1−λ

for λ ∈ [0, 1] and all x, y such that xλy1−λ ∈ I. It is multiplicatively convex if the above inequality is 
reversed. In other words this says that log(f) is concave function of log(x), i.e. log[f(ex)] is concave. If f is 
continuous, its multiplicative concavity is equivalent to

f(√xy) ≥
√
f(x)f(y), x, y ∈ I, (4)

which can be termed Jensen multiplicative concavity, GG-concavity or concavity with respect to geometric 
means [21, section 2.3]. We will need the following elementary lemma.
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Lemma 1. A positive function f is Jensen multiplicatively concave (convex) on an interval I ⊂ (0, ∞) iff

f(a)2 ≥ (≤)f(a/q)f(aq) for all q ∈ (0, 1) and all a such that aq, aq−1 ∈ I. (5)

Proof. Suppose (4) holds. By symmetry we may assume that 0 < y < x. Denote a = √
xy ∈ I, q =√

y/x ∈ (0, 1). Solving these equations we get y = aq, x = a/q, so that (4) squared becomes (5). For reverse 
implication note that aq, aq−1 ∈ I implies a ∈ I and apply the inverse change of variable. �

From the above lemma we conclude that for continuous f (and this is the only case we are dealing with 
here) inequality (5) is equivalent to multiplicative concavity. Recall that a nonnegative function f defined 
on an interval I is called completely monotonic there if it has derivatives of all orders and (−1)nf (n)(x) ≥ 0
for n ∈ N0 and x ∈ I, see [23, Defintion 1.3].

Lemma 2. Suppose φ(x) =
∑

k≥0 φkx
k converges for |x| < R with 0 < R ≤ ∞ and φk ≥ 0. Then x → φ(x)

is multiplicatively convex and y → φ(1/y) is completely monotonic on (1/R, ∞).

Proof. Hardy, Littlewood and Pólya theorem [21, Proposition 2.3.3] states that functions with non-negative 
power series coefficients are multiplicatively convex. Furthermore, y−m, m ∈ N0, is apparently completely 
monotonic and a convergent series of completely monotonic functions with nonnegative coefficients is again 
completely monotonic according to [20, Theorem 3]. �

A sequence f : N0 → R+ is PF2 (Pólya frequency sub two) or doubly positive if it is nontrivial, log-
concave, f2

k ≥ fk−1fk+1, k ∈ N, and has no internal zeros. The last claim means that fN = 0 implies either 
fN+i = 0 for all i ∈ N0 or fN−i = 0 for i = 0, . . . , N .

The next two lemmas can be found in [9, Lemmas 2 and 3].

Lemma 3. Let f be a nonnegative-valued function defined on R+ and

Δf (α, β) = f(μ + α)f(μ + β) − f(μ)f(μ + β + α) ≥ 0 for α = 1 and all μ, β ≥ 0.

Then Δf (α, β) ≥ 0 for all α ∈ N and μ, β ≥ 0. If inequality is strict in the hypothesis of the lemma then it 
is also strict in the conclusion.

Lemma 4. Let f =
∑∞

n=0 fn(μ)xn and Δf (α, β; x) be defined in (3). Suppose that Δf (1, β; x) has non-
negative power series coefficients for all μ, β ≥ 0. Then Δf (α, β; x) has non-negative power series coefficients 
for all α ∈ N, α ≤ β +1 and μ, β ≥ 0. If the coefficients in the hypothesis are strictly positive, then they are 
strictly positive in the conclusion.

Next, we formulate an elementary inequality we will repeatedly use below.

Lemma 5. Suppose u, v, r, s > 0, u = max(u, v, r, s) and uv > rs. Then u + v > r + s.

The proof is straightforward and will be omitted. Note also that Lemma 5 is a particular case of a much 
more general result on logarithmic majorization, see [17, 2.A.b].

In the next lemma proved in [8, Lemma 2.1] we say that a sequence has no more than one change of sign 
if it has the pattern (− − · · · − −00 · · · 00 + + · · · + +), where zeros and minus signs may be missing.
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Lemma 6. Suppose {fk}nk=0 is a doubly positive sequence and A0, A1, . . . , A[n/2] is a real sequence satisfying 
A[n/2] > 0, 

∑
0≤k≤n/2

Ak ≥ 0 and having no more than one change of sign. Then

∑
0≤k≤n/2

fkfn−kAk ≥ 0.

Equality is only attained if fk = f0α
k, α > 0, and 

∑
0≤k≤n/2

Ak = 0.

We will use the standard definition of the q-shifted factorial [5,7]:

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), n ∈ N.

This definition works for any complex a and q but in this paper we confine ourselves to the case 0 < q < 1. 
Under this restriction we also define

(a; q)∞ = lim
n→∞

(a; q)n,

where the limit can be shown to exist as a finite number for all complex a. For products of the q-shifted 
factorials we will use the usual short-hand notation

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

where n may take the value ∞. The q-gamma function is defined by

Γq(z) = (1 − q)1−z (q; q)∞
(qz; q)∞

(6)

for |q| < 1 and all complex z such that qz+k 
= 1 for k ∈ N0. A q-number [x]q is the ratio (1 − qx)/(1 − q). 
The generalized q-hypergeometric series is defined by [5, formula (1.2.22)]

rφs(a1, a2, . . . , ar; b1, . . . , bs; q; z) =
∞∑

n=0

(a1, a2, . . . , ar; q)n
(q, b1, . . . , bs; q)n

[
(−1)nq

(n
2
)]1+s−r

zn, (7)

where r ≤ s + 1 and the series converges for all z if r ≤ s and for |z| < 1 if r = s + 1 [5, section 1.2].
In our previous work on log-concavity we repeatedly used the celebrated Chu–Vandermonde identity [5, 

formula (1.2.9)] as, for instance, in [15, Theorem 1] and [8, Lemma 2.2]. This identity can be obtained by 
equating coefficients in (1 − z)a(1 − z)b = (1 − z)a+b. Here, we will need a q-analogue of this simple equality. 
The q-analogue usually found in the literature reads [5, formula (1.3.13)]

1φ0(a;−; z)1φ0(b;−; az) = 1φ0(ab;−; z).

The apparent asymmetry of the left-hand side with respect to a and b makes this formula inappropriate for 
our purposes. Instead, we will use the following symmetric version.

Lemma 7. The following q-identity holds when both sides are well defined

1φ0(a;−; z)1φ0(b;−; z) = 1φ0(ab;−; z)2φ1(a, b; abz; z). (8)
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Proof. Applying q-binomial theorem [5, formula (1.3.2)] and Heine’s q-Gauss theorem [5, formula (1.5.1)]
we get:

1φ0(a;−; z)1φ0(b;−; z) = (az, bz; q)∞
[(z; q)∞]2

= (abz; q)∞
(z; q)∞

(az, bz; q)∞
(abz, z; q)∞

= 1φ0(ab;−; z)2φ1(a, b; abz; z). �
The next lemma is a q-analogue of [8, Lemma 2.3].

Lemma 8. Suppose m ≥ 0 is an integer. Then for all complex β and μ

Sm(μ, β) =
m∑

k=0

{
1

Γq(k + μ + 1)Γq(m− k + μ + β) − 1
Γq(k + μ)Γq(m− k + μ + β + 1)

}

= (qμ+β ; q)m+1 − (qμ; q)m+1

Γq(μ + m + 1)Γq(μ + β + m + 1)(1 − q)m+1 . (9)

Proof. We will use the following simple properties of q-gamma function which are straightforward from its 
definition (6):

Γq(x + 1) = [x]qΓq(x), Γq(x + k)
Γq(x) = (qx; q)k

(1 − q)k . (10)

Denote a = qμ, b = qβ for brevity and compute utilizing the above formulas,

Sm(μ, β) = 1
Γq(μ + 1)Γq(μ + β + 1)

×
m∑

k=0

{
Γq(μ + 1)Γq(μ + β)[μ + β]q

Γq(μ + 1 + k)Γq(μ + β + m− k) − Γq(μ)Γq(μ + β + 1)[μ]q
Γq(μ + k)Γq(μ + β + 1 + m− k)

}

= (1 − q)m

Γq(μ + 1)Γq(μ + β + 1)

m∑
k=0

{
[μ + β]q

(qμ+1; q)k(qμ+β ; q)m−k
− [μ]q

(qμ; q)k(qμ+β+1; q)m−k

}

= (1 − q)m−1

Γq(μ + 1)Γq(μ + β + 1)

m∑
k=0

(1 − a)(1 − ab)
(a; q)k(ab; q)m−k

{
1

1 − aqk
− 1

1 − abqm−k

}

= a(1 − q)m−1

Γq(μ + 1)Γq(μ + β + 1)

m∑
k=0

qk − bqm−k

(aq; q)k(abq; q)m−k
.

Define

uk = 1
(aq; q)k−1(abq; q)m−k

, 1 ≤ k ≤ m, u0 = 1 − a

(abq; q)m
, um+1 = 1 − ab

(aq; q)m
.

An easy calculation shows that

uk+1 − uk = a(qk − bqm−k)
(aq; q)k(abq; q)m−k
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for k = 0, 1, . . . , m, so that

a

m∑
k=0

qk − bqm−k

(aq; q)k(abq; q)m−k
=

m∑
k=0

(uk+1 − uk) = um+1 − u0 = (ab; q)m+1 − (a; q)m+1

(aq; q)m(abq; q)m

and

Sm(μ, β) = (1 − q)m−1

Γq(μ + 1)Γq(μ + β + 1)
(ab; q)m+1 − (a; q)m+1

(aq; q)m(abq; q)m
,

which is equivalent to (9) after substituting back a = qμ, b = qβ . �
The next corollary is a straightforward consequence of formula (9).

Corollary 8.1. If m ∈ N0, μ ≥ −1, β ≥ 0 and μ + β ≥ 0, then Sm(μ, β) ≥ 0. The inequality is strict unless 
β = 0.

3. Main results

Our first theorem is a q-analogue of [15, Theorem 1]. The power series in this theorem is to be understood 
as formal. Nonetheless, we will show in a remark below that it has a positive radius of convergence under 
the hypotheses of the theorem.

Theorem 1. For a real sequence {fn}n≥0 and fixed 0 < q < 1 define

f(a;x) =
∞∑

n=0
fn

(a; q)n
(q; q)n

xn. (11)

Suppose {fn}n≥0 is doubly positive. Then the generalized Turánian

Δf (α, β;x) = f(qμ+α;x)f(qμ+β ;x) − f(qμ;x)f(qμ+α+β ;x) (12)

has positive coefficients at all positive powers of x for all α, β > 0 and μ ≥ 0. In particular, μ → f(qμ;x) is 
log-concave on [0, ∞) for each fixed x > 0 in the domain of convergence.

Proof. Writing Δf (α, β; x) =
∑

m≥0 δf (m)xm we calculate using the Cauchy product:

δf (m) =
m∑

k=0

fkfm−k
(qμ+α; q)k(qμ+β ; q)m−k − (qμ+α+β ; q)k(qμ; q)m−k

(q; q)k(q; q)m−k
=

m∑
k=0

fkfm−kMk,

where the last equality is the definition of the numbers Mk. We aim at applying Lemma 6 with Ak =
Mk + Mm−k for 0 ≤ k < m/2, Ak = Mk for k = m/2 (this term is only present for even m). To this end, 
we first need to demonstrate that

δ̂f (m) =
∑

0≤k≤m/2

Ak =
m∑

k=0

Mk > 0.

This definition together with (7) and Lemma 7 yields the next chain of equalities:
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∞∑
m=0

δ̂f (m)xm = 1φ0(qμ+α;−;x)1φ0(qμ+β ;−;x) − 1φ0(qμ+α+β ;−;x)1φ0(qμ;−;x)

= 1φ0(q2μ+α+β ;−;x)
[
2φ1(qμ+α, qμ+β ; q2μ+α+βx;x) − 2φ1(qμ+α+β , qμ; q2μ+α+βx;x)

]
= 1φ0(q2μ+α+β ;−;x)

∞∑
k=0

(qμ+α, qμ+β ; q)k − (qμ+α+β , qμ; q)k
(q2μ+α+βx; q)k(q; q)k

xk.

As

1
(q2μ+α+βx; q)k

= (q2μ+α+β+kx; q)∞
(q2μ+α+βx; q)∞

=
∞∑

n=0

(q2μ+α+β+k; q)n
(q; q)n

xn

by the q-binomial theorem [5, formula (1.3.2)], to prove positivity of δ̂f (m) it remains to check that the 
difference (qμ+α, qμ+β ; q)k − (qμ+α+β , qμ; q)k is positive. This amounts to

(qμ+α, qμ+β ; q)k − (qμ+α+β , qμ; q)k = (qμ+α, qμ+β ; q)∞
(qμ+α+k, qμ+β+k; q)∞

− (qμ, qμ+α+β ; q)∞
(qμ+k, qμ+α+β+k; q)∞

> 0

⇐ (1 − qαsj)(1 − qβsj)
(1 − sj)(1 − qα+βsj)

>
(1 − qαtj)(1 − qβtj)
(1 − tj)(1 − qα+βtj)

,

where sj = qμ+j > tj = qμ+k+j for all j ∈ N0 and k ∈ N. The last inequality is true since the function

x �→ U(x) = (1 − qαx)(1 − qβx)
(1 − qα+βx)(1 − x) (13)

is easily seen to be increasing on [0, 1). This completes the proof of positivity of δ̂f (m) for all m ≥ 1.
Our next goal is to show that the sequence A0, A1, . . . , A[m/2] satisfies A[m/2] > 0 and has no more 

than one change of sign. It suffices to prove the implication Ak ≤ 0 ⇒ Ak−1 < 0 for k ≥ 1. Indeed, as 
δ̂f (m) =

∑
0≤k≤m/2 Ak > 0, this implication immediately leads to the conclusion that A[m/2] > 0. Next, we 

spell out:

(q; q)k(q; q)m−kAk = (qμ+α; q)k(qμ+β ; q)m−k︸ ︷︷ ︸
uk

+ (qμ+α; q)m−k(qμ+β ; q)k︸ ︷︷ ︸
vk

− (qμ+α+β ; q)k(qμ; q)m−k︸ ︷︷ ︸
rk

− (qμ+α+β ; q)m−k(qμ; q)k︸ ︷︷ ︸
sk

for 0 ≤ k < m− k.

Assuming that Ak = uk + vk − rk − sk ≤ 0, we need to show that

0 > (q; q)k−1(q; q)m−k+1Ak−1 = 1 − qμ+β+m−k

1 − qμ+α+k−1︸ ︷︷ ︸
=I1

uk + 1 − qμ+α+m−k

1 − qμ+β+k−1︸ ︷︷ ︸
=I2

vk

− 1 − qμ+m−k

1 − qμ+α+β+k−1︸ ︷︷ ︸
=I3

rk − 1 − qμ+α+β+m−k

1 − qμ+k−1︸ ︷︷ ︸
=I4

sk.

Performing some elementary calculations and employing the increase of the function U(x) from (13), we 
see that rk < min(uk, vk, sk), ukvk > rksk and uk ≥ vk if α ≤ β while uk < vk if α > β. Combined 
with our hypothesis uk + vk − rk − sk ≤ 0 these inequalities imply that sk > uk ≥ vk > rk if α ≤ β or 
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sk > vk > uk > rk if α > β. Indeed, if uk ≥ sk ≥ vk > rk or uk ≥ vk ≥ sk > rk, then uk + vk − rk − sk > 0. 
Rearranging the above expression for Ak−1 gives

(q; q)k−1(q; q)m−k+1Ak−1 =

I2(uk + vk − rk − sk) + (I2 − I4)(sk − uk) + (I1 − I4)(uk − rk) + (I1 + I2 − I3 − I4)rk. (14)

The first term on the right is non-positive by the assumption Ak ≤ 0. We will show that all further terms 
on the right hand side are negative. The second term is negative since sk > uk (as we have just proved) and

I2 < I4 ⇔ 1 − qμ+α+m−k

1 − qμ+β+k−1 <
1 − qμ+α+β+m−k

1 − qμ+k−1 ,

which is true as β > 0 and 0 < q < 1. Next,

I1 < I4 ⇔ 1 − qμ+β+m−k

1 − qμ+α+k−1 <
1 − qμ+α+β+m−k

1 − qμ+k−1 ,

which is true as α > 0 and 0 < q < 1. In view of uk > rk the third term in (14) is then negative. It remains 
to show that I1 + I2 < I3 + I4 which will be accomplished by means of Lemma 5. We have

I3 < I4 ⇔ 1 − qμ+m−k

1 − qμ+α+β+k−1 <
1 − qμ+α+β+m−k

1 − qμ+k−1

as α + β > 0 and 0 < q < 1. Therefore, I4 = max{I1, I2, I3, I4}. Furthermore,

I1I2 < I3I4 ⇔ 1 − qμ+α+m−k

1 − qμ+β+k−1 · 1 − qμ+β+m−k

1 − qμ+α+k−1 <
1 − qμ+m−k

1 − qμ+α+β+k−1 · 1 − qμ+α+β+m−k

1 − qμ+k−1

⇔ 1 − qμ+α+m−k

1 − qμ+m−k
· 1 − qμ+β+m−k

1 − qμ+α+β+m−k
<

1 − qμ+α+k−1

1 − qμ+k−1 · 1 − qμ+β+k−1

1 − qμ+α+β+k−1 .

The last inequality holds because 0 ≤ k − 1 < m −k and the function U(x) from (13) is increasing on [0, 1). 
Hence, I1 + I2 < I3 + I4 by Lemma 5 and negativity of the last term on the right hand side of (14) follows. 
This completes the proof that A0, A1, . . . , A[m/2] has no more than one change of sign and A[m/2] > 0. 
According to Lemma 6 the coefficients δf (m) are positive for all m ≥ 1. �
Remark. Log-concavity of the sequence {fn}n≥0 implies that the series (11) has a positive radius of con-
vergence, Rf > 0. Indeed, by log-concavity we have fn/fn+1 ≥ fn−1/fn, so that the nonnegative sequence 
{fn/fn+1}n≥0 is increasing. Hence,

Rf = lim
n→∞

∣∣∣∣ fn(a; q)n(q; q)n+1

fn+1(a; q)n+1(q; q)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ fn(1 − qn+1)
fn+1(1 − aqn)

∣∣∣∣ = lim
n→∞

∣∣∣∣ fn
fn+1

∣∣∣∣ > 0.

Remark. The conclusion of Theorem 1 holds trivially also for −2k− 1 ≤ μ < −2k, k ∈ N0, as long as μ +α

and μ +β are positive, since in this case the rightmost term in (12) has non-positive power series coefficients.

Corollary 1.1. Suppose {fn}n≥0 is a doubly positive sequence. Then the function a → f(a;x) defined in
(11) is multiplicatively concave on (0, 1). If also α, β > 0, and μ ≥ 0, then the function x → Δf (α, β; x)
defined in (12) is multiplicatively convex on (0, Rf ), where Rf is the radius of convergence in (11), while 
the function y → Δf (α, β; 1/y) is completely monotonic (and therefore log-convex) on (1/Rf , ∞).
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Proof. Multiplicative concavity of a → f(a;x) follows from Theorem 1 by Lemma 1. Multiplicative convexity 
of x → Δf (α, β; x) and complete monotonicity of y → Δf (α, β; 1/y) are implied by Lemma 2 as the power 
series coefficients of Δf (α, β; x) are positive by Theorem 1. �
Remark. Complete monotonicity of y → Δf (α, β; 1/y) implies by Bernstein’s theorem [23, Theorem 1.4]
that there exists a non-negative measure τ supported on [0, ∞) such that

Δf (α, β;x) =
∫

[0,∞)

e−(1/x−1/Rf )tτ(dt).

If Rf = ∞, this measure is given by

τ(dt) = δf (0)10 +
(∑∞

m=1

δf (m)tm

(m− 1)!

)
dt,

where 10 is the unit mass concentrated at zero. This formula can be easily verified by termwise integration. 
Note, that in this situation the function Δf (α, β; 1/y) satisfies the conditions of [16, Theorem 1.1] and hence 
enjoys all the properties stated in that theorem.

The next theorem is a q-analogue of [15, Theorem 2]. Again, the power series in this theorem is to be 
understood as formal.

Theorem 2. Suppose {dn}n≥0 is a non-negative sequence, 0 < q < 1 is fixed and d(μ; x) is defined by

d(μ;x) =
∞∑

n=0
dnΓq(μ + n)xn. (15)

Then, the generalized Turánian

Δd(α, β;x) = d(μ + α;x)d(μ + β;x) − d(μ;x)d(μ + α + β;x)

has negative coefficients at all powers of x for all μ, α, β > 0. In particular, the function μ → d(μ;x) is 
log-convex on (0, ∞) for each fixed x > 0 in the domain of convergence.

Proof. Writing Δd(α, β; x) =
∑∞

m=0 δd(m)xm we calculate using the Cauchy product:

δd(m) =
m∑

k=0

dkdm−k{Γq(μ + α + k)Γq(μ + β + m− k) − Γq(μ + k)Γq(μ + α + β + m− k)}.

We can rewrite δd(m) in the form

δd(m) =
[m/2]∑
k=0

dkdm−kAk,

where, for k < m/2,

Ak = Γq(μ + α + k)Γq(μ + β + m− k)︸ ︷︷ ︸
=uk

+ Γq(μ + α + m− k)Γq(μ + β + k)︸ ︷︷ ︸
=vk

− Γq(μ + k)Γq(μ + α + β + m− k)︸ ︷︷ ︸
=rk

−Γq(μ + m− k)Γq(μ + α + β + k)︸ ︷︷ ︸
=sk
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and, for k = m/2,

Ak = Γq(μ + α + k)Γq(μ + β + m− k) − Γq(μ + k)Γq(μ + α + β + m− k).

We aim to show that Ak < 0 for k = 0, . . . , [m/2] using Lemma 5. For k < m − k the following comparisons 
between the numbers uk, vk, rk and sk are straightforward to verify from the increase of x → Γq(μ +γ+x)/
Γq(μ + x) for any γ > 0 (which is equivalent to log-convexity of x → Γq(x)):

uk < rk ⇔ Γq(μ + α + k)
Γq(μ + k) <

Γq(μ + α + β + m− k)
Γq(μ + β + m− k) ,

vk < rk ⇔ Γq(μ + β + k)
Γq(μ + k) <

Γq(μ + α + β + m− k)
Γq(μ + α + m− k) ,

sk < rk ⇔ Γq(μ + α + β + k)
Γq(μ + k) <

Γq(μ + α + β + m− k)
Γq(μ + m− k)

and

ukvk < rksk ⇔ Γq(μ + β + k)
Γq(μ + k) · Γq(μ + β + m− k)

Γq(μ + m− k) <
Γq(μ + α + β + k)

Γq(μ + α + k) · Γq(μ + α + β + m− k)
Γq(μ + α + m− k) .

Therefore, according to Lemma 5 uk + vk < rk + sk, so that Ak < 0 for 0 < k < m/2. For even m the 
inequality between uk and rk remains true and implies Ak < 0 for k = m/2. �

In the next two corollaries Rd > 0 denotes the radius of convergence of the series in (15). Our first 
corollary is similar to Corollary 1.1 and is a direct consequence of Lemma 2.

Corollary 2.1. Under conditions of Theorem 2 and for all α, β, μ > 0, the function x → −Δd(α, β; x) is 
multiplicatively convex on (0, Rd), while the function y → −Δd(α, β; 1/y) is completely monotonic (and 
therefore log-convex) on (1/Rd, ∞).

The next two corollaries are obtained by joint application of Theorems 1 and 2.

Corollary 2.2. Suppose {dn(q; q)n}n≥0 is a doubly positive sequence and d(μ; x) is defined in (15). Then for 
all μ, α, β > 0 and 0 ≤ x < Rd the following estimates hold:

Γq(μ + α)Γq(μ + β)
Γq(μ)Γq(μ + α + β) ≤ d(μ + α;x)d(μ + β;x)

d(μ;x)d(μ + α + β;x) < 1

and [
Γq(μ + α)Γq(μ + β)
Γq(μ)Γq(μ + α + β) − 1

]
d(μ;x)d(μ + α + β;x) ≤ Δd(α, β;x)

≤ d2
0 [Γq(μ + α)Γq(μ + β) − Γq(μ)Γq(μ + α + β)]

with equality only at x = 0. The upper bounds in both inequalities remain valid if {dn}n≥0 is any non-negative 
sequence.

Proof. The upper bound in the first inequality is equivalent to Δd(α, β; x) < 0 which is one of the conclusions 
of Theorem 2. To prove the lower bound define fn = dn(q; q)n(1 −q)−n and notice that {fn}n≥0 is doubly pos-
itive by hypothesis of the corollary. If f(a; x) is given by (11) then (10) implies that f(qμ; x) = d(μ; x)/Γq(μ). 
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Hence, the lower bound is equivalent to Δf(α, β; x) ≥ 0 which is a conclusion of Theorem 1. The right hand 
side of the second inequality is equal to δd(0), so that the upper bound in the second inequality follows imme-
diately from Theorem 2. The lower bound is a rearrangement of the lower bound in the first inequality. �

Recall that Rf is the radius of convergence in (11). We have

Corollary 2.3. Suppose {fn}n≥0 is a doubly positive sequence and f(μ; x) is defined in (11). Then for all 
α, β > 0, μ ≥ 0 and 0 ≤ x < Rf the following bounds hold true:

Γq(μ + α)Γq(μ + β)
Γq(μ)Γq(μ + α + β) <

f(qμ;x)f(qμ+α+β;x)
f(qμ+α;x)f(qμ+β ;x) ≤ 1

and

f0f1(1 − qα)(1 − qβ) qμx

1 − q
≤ Δf (α, β;x) <

[
1 − Γq(μ + α)Γq(μ + β)

Γq(μ)Γq(μ + α + β)

]
f(qμ+α;x)f(qμ+β ;x)

with equality only at x = 0. The lower bound in the first inequality and the upper bound in the second 
inequality remain valid if {fn}n≥0 is any non-negative sequence.

Proof. The upper bound in the first inequality is equivalent to Δf (α, β; x) ≥ 0 which is one of the conclusions 
of Theorem 1. To prove the lower bound define dn = (1 −q)nfn. If d(μ; x) is given by (15), then (10) implies 
that d(μ; x) = Γq(μ)f(qμ; x). Hence, the lower bound is equivalent to Δd(α, β; x) < 0 which is a conclusion 
of Theorem 2. The left hand side of the second inequality is equal to δf (1)x, so that the lower bound 
follows immediately from Theorem 1. The upper bound is a rearrangement of the lower bound in the first 
inequality. �

The next theorem is a q-analogue of [8, Theorem 3.5].

Theorem 3. For a real sequence {gn}n≥0 and fixed 0 < q < 1 define

g(μ;x) =
∞∑

n=0

gnx
n

Γq(μ + n) . (16)

Suppose {gn}∞n=0 is doubly positive. Then (16) has a positive radius of convergence Rg and the generalized 
Turánian

Δg(α, β;x) = g(μ + α;x)g(μ + β;x) − g(μ;x)g(μ + α + β;x)

is positive for 0 < x < Rg if α ∈ N, β > 0 and μ ≥ max(−β, −1). If, in addition, α ≤ β+1, then Δg(α, β; x)
has positive power series coefficients at all powers of x.

Proof. The convergence of the series (16) in some disk when {gn}∞n=0 is doubly positive follows from the 
argument given in the remark after Theorem 1 together with the asymptotic formula for the q-gamma 
function [4, (2.4)]. To prove the remaining statements it is sufficient to consider the case α = 1 according 
to Lemmas 3 and 4. Writing Δg(α, β; x) =

∑∞
m=0 δg(m)xm we calculate using the Cauchy product:

δg(m) =
m∑

k=0

{
gkgm−k

Γq(k + μ + 1)Γq(m− k + μ + β) − gkgm−k

Γq(m− k + μ)Γq(k + μ + 1 + β)

}
=

∑
0≤k≤m/2

gkgm−kAk,
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where

Ak = [Γq(k + μ + 1)Γq(m− k + μ + β)]−1 + [Γq(k + μ + β)Γq(m− k + μ + 1)]−1

− [Γq(m− k + μ)Γq(k + μ + 1 + β)]−1 − [Γq(k + μ)Γq(m− k + μ + 1 + β)]−1

for k < m/2 and

Am/2 = [Γq(m/2 + μ + 1)Γq(m/2 + μ + β)]−1 − [Γq(m/2 + μ)Γq(m/2 + μ + 1 + β)]−1

for k = m/2 (this term is only present for even m). This last term is always positive since x → Γq(x + α)/
Γq(x) is increasing on (0, ∞) for any α > 0 due to log-convexity of x → Γq(x). For Sm(μ, β) defined in (9)
we get ∑

0≤k≤m/2

Ak = Sm(μ, β) > 0

by Corollary 8.1. We will demonstrate that the sequence {Ak}[m/2]
k=0 has no more than one change of sign in 

order to apply Lemma 6. This amounts to showing the implication Ak ≤ 0 ⇒ Ak−1 < 0 for 1 ≤ k < m/2. 
Using the second formula in (10) we can rewrite Ak as

Ak = (1 − q)m+1

Γq(μ)Γq(μ + β) (F (a, b, k) + F (a, b,m− k) − F (b, a, k) − F (b, a,m− k)) ,

where a := qμ > b := qμ+β and F (a, b, k) := [(a; q)k+1(b; q)m−k]−1. It is easy to verify that

F (b, a,m− k) = 1 − aqk

1 − bqm−k
F (a, b, k) and F (a, b,m− k) = 1 − bqk

1 − aqm−k
F (b, a, k),

which yields

Ak = (1 − q)m+1qk

Γq(μ)Γq(μ + β)

(
a− bqm−2k

1 − bqm−k
F (a, b, k) + aqm−2k − b

1 − aqm−k
F (b, a, k)

)
.

Hence, the condition Ak ≤ 0 is equivalent to

(b; q)k+1(a; q)m−k+1

(a; q)k+1(b; q)m−k+1
≤ b− aqm−2k

a− bqm−2k .

Assuming this to be true for some 1 ≤ k < m/2, we immediately conclude that Ak−1 < 0 as

(b; q)k(a; q)m−k+2

(a; q)k(b; q)m−k+2
<

(b; q)k+1(a; q)m−k+1

(a; q)k+1(b; q)m−k+1
≤ b− aqm−2k

a− bqm−2k <
b− aqm−2k+2

a− bqm−2k+2 ,

where both the rightmost and the leftmost inequalities follow from 0 < b < a < 1. An application of 
Lemma 6 completes the proof. �

We believe that the restrictions α ∈ N and α ≤ β + 1 in the hypotheses of Theorem 3 solely reflect the 
limitations of our method of proof. Writing Rg > 0 for the radius of convergence in (16), we claim that the 
next conjecture is true.
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Conjecture 1. All conclusions of Theorem 3 are valid for all α > 0, while conditions on other parameters 
remain intact. In particular, μ → g(μ;x) is log-concave for each fixed 0 < x < Rg.

Corollary 3.1. Suppose {gn}n≥0 is a doubly positive sequence. Then the function

a → ĝ(a; y) = (a; q)∞
∞∑

n=0

gny
n

(a; q)n

is multiplicatively concave on (0, 1) for each fixed 0 < y < Rg, where Rg is the radius of convergence of this 
series.

Proof. Indeed, on applying the definition (6) and the obvious identity (qμ+n; q)∞ = (qμ; q)∞/(qμ; q)n, the 
inequality Δg(1, 1; x) ≥ 0 takes the form

(qμ
′
; q)2∞

( ∞∑
n=0

gny
n

(qμ′ ; q)n

)2

≥ (qμ
′−1; q)∞(qμ

′+1; q)∞

( ∞∑
n=0

gny
n

(qμ′−1; q)n

)( ∞∑
n=0

gny
n

(qμ′+1; q)n

)
,

where μ′ = μ + 1 and y = x(1 − q). Setting a = qμ
′ this inequality can be rewritten as ĝ(a; y)2 ≥

ĝ(a/q; y)ĝ(aq; y). The claim now follows by Lemma 1. �
Corollary 3.2. Suppose β > 0, β + 1 ≥ α ∈ N, μ ≥ 0. Then the function x → Δg(α, β; x) is multiplicatively 
convex on (0, Rg) and the function y → Δg(α, β; 1/y) is completely monotonic (and therefore log-convex) 
on (1/Rg, ∞).

The next theorem is a q-analogue of [15, Theorem 3]. The power series in this theorem is to be understood 
as formal. It might converge or diverge depending on the behavior of the coefficients.

Theorem 4. Suppose {hn}n≥0 is a non-negative sequence, 0 < q < 1 is fixed and h(a; x) is defined by

h(a;x) =
∞∑

n=0

hnx
n

(a; q)n
. (17)

Then, the generalized Turánian

Δh(α, β;x) = h(qμ+α;x)h(qμ+β ;x) − h(qμ;x)h(qμ+α+β ;x) (18)

has negative coefficients at all positive powers of x for all μ, α, β > 0. In particular, the function μ → h(qμ;x)
is log-convex on (0, ∞) for each fixed x > 0 in the domain of convergence.

Proof. Writing Δh(α, β; x) =
∑∞

m=0 δh(m)xm we calculate using the Cauchy product:

−δh(m) =
m∑

k=0

hkhm−k

(
1

(qμ; q)k(qμ+α+β ; q)m−k
− 1

(qμ+α; q)k(qμ+β ; q)m−k

)
=

∑
0≤k≤m/2

hkhm−kAk,

where, for k < m/2,
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Ak = 1
(qμ; q)k(qμ+α+β ; q)m−k︸ ︷︷ ︸

=uk

+ 1
(qμ; q)m−k(qμ+α+β ; q)k︸ ︷︷ ︸

=vk

− 1
(qμ+α; q)k(qμ+β ; q)m−k︸ ︷︷ ︸

=rk

− 1
(qμ+α; q)m−k(qμ+β ; q)k︸ ︷︷ ︸

=sk

,

and, for k = m/2,

Ak = 1
(qμ; q)k(qμ+α+β ; q)m−k

− 1
(qμ+α; q)k(qμ+β ; q)m−k

.

The following comparisons between the numbers uk, vk, rk and sk are straightforward to verify:

vk > uk ⇔ 1
(qμ; q)m−k(qμ+α+β ; q)k

>
1

(qμ; q)k(qμ+α+β ; q)m−k
⇔

m−k−1∏
i=k

1 − qμ+i

1 − qμ+α+β+i
< 1.

Next,

vk > rk ⇔ 1
(qμ; q)m−k(qμ+α+β ; q)k

>
1

(qμ+β ; q)m−k(qμ+α; q)k

⇔
k−1∏
i=0

1 − qμ+α+i

1 − qμ+α+β+i
>

k−1∏
i=0

1 − qμ+i

1 − qμ+β+i

m−k−1∏
i=k

1 − qμ+i

1 − qμ+β+i
.

The rightmost product is clearly less than one. Comparing i-th terms in the remaining two products amounts 
to (1 − qμ+α+i)(1 − qμ+β+i) > (1 − qμ+α+β+i)(1 − qμ+i) which is equivalent to (1 − qα)(1 − qβ) > 0. The 
inequality vk > sk is proved similarly by exchanging the roles of α and β. Finally,

ukvk > rksk ⇔ (qμ+β ; q)k(qμ+β ; q)m−k

(qμ; q)k(qμ; q)m−k
>

(qμ+α+β ; q)k(qμ+α+β ; q)m−k

(qμ+α; q)k(qμ+α; q)m−k
.

The last inequality holds because each function

x → 1 − xqμ+β+i

1 − xqμ+i
, i = 0, 1, . . . ,

is increasing on [0, 1]. Now we are in the position to apply Lemma 5 to conclude that uk + vk > rk + sk or 
Ak > 0, 0 < k < m/2. For even m from the inequality between vk and rk yields Ak > 0 for k = m/2. �

By Lemma 1 we see that a → h(a;x) is multiplicatively convex on (0, 1) for each fixed 0 < x < Rh, where 
Rh is the radius of convergence in (17). Next, we have:

Corollary 4.1. Suppose α, β, μ > 0. Then the function x → −Δh(α, β; x) is multiplicatively convex on (0, Rh), 
while the function y → −Δh(α, β; 1/y) is completely monotonic (and therefore log-convex) on (1/Rh, ∞).

Corollary 4.2. Suppose {hn}n≥0 is a doubly positive sequence and h(a; x) is defined in (17). Then for all 
μ, β > 0, α ∈ N and 0 ≤ x < Rh the following estimates hold:

Γq(μ + α)Γq(μ + β)
<

h(qμ+α;x)h(qμ+β ;x)
μ μ+α+β

≤ 1
Γq(μ)Γq(μ + α + β) h(q ;x)h(q ;x)
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and [
Γq(μ + α)Γq(μ + β)
Γq(μ)Γq(μ + α + β)

− 1
]
h(qμ;x)h(qμ+α+β ;x) < Δh(α, β;x)

≤ −h0h1xq
μ(1 − qα)(1 − qβ)

(1 − qμ)(1 − qμ+α+β)(1 − qμ+α)(1 − qμ+β)

with equality only at x = 0. The upper bounds in both inequalities remain valid if {hn}n≥0 is any non-negative 
sequence and α is any positive number.

Proof. The upper bound in the first inequality is equivalent to Δh(α, β; x) ≤ 0 which is one of the conclusions 
of Theorem 4. To prove the lower bound define gn = hn(1 −q)−n and notice that {gn}n≥0 is doubly positive. 
If g(μ; x) is given by (16) then (6) shows that g(μ; x) = h(qμ; x)/Γq(μ). Hence, the lower bound is equivalent 
to Δg(α, β; x) > 0 which is a conclusion of Theorem 3. The right hand side of the second inequality is equal 
to δh(1)x, so that the upper bound in the second inequality follows immediately from Theorem 4. The lower 
bound is a rearrangement of the lower bound in the first inequality. �
Corollary 4.3. Suppose α ∈ N, β > 0, μ ≥ max(−β, −1), {gn}n≥0 is a doubly positive sequence and g(μ; x)
is defined in (16). Then the estimates

Γq(μ + α)Γq(μ + β)
Γq(μ)Γq(μ + α + β) ≤ g(μ;x)g(μ + α + β;x)

g(μ + α;x)g(μ + β;x) < 1 (19)

and

g2
0(1 − q)α[(qμ; q)−1

α − (qμ+β ; q)−1
α ]

Γq(μ)Γq(μ + β) ≤ Δg(α, β;x) ≤
[
1 − (qμ; q)α

(qμ+β ; q)α

]
g(μ + α;x)g(μ + β;x)

hold for 0 ≤ x < Rg, where Rg is the radius of convergence in (16), and equality is only attained at x = 0. 
The lower bound in the second inequality requires the additional restriction α ≤ β + 1.

Proof. The upper bound in the first inequality is a restatement of Theorem 3 since it is equivalent to 
Δg(α, β; x) > 0. To prove the lower bound we first assume that μ > 0 and define hn = gn(1 − q)n. For 
h(a; x) given in (17) formula (6) shows that h(qμ; x) = Γq(μ)g(μ; x). The lower bound is then equivalent to 
Δh(α, β; x) ≤ 0. If μ = 0, then the left hand side is zero, while the ratio in the middle is nonnegative. For 
μ = −1 the lower bound is again zero if α, β 
= 1. If α = 1 or β = 1, then the lower bound is finite and 
negative while for α = β = 1 it is negative and infinite. It remains to consider −1 < μ < 0. Since Γq(μ) < 0, 
the lower bound in (19) reduces to

Γq(μ + α)g(μ + α;x)Γq(μ + β)g(μ + β;x) − Γq(μ)g(μ;x)Γq(μ + α + β)g(μ + α + β;x) > 0.

This inequality holds since Γq(μ)g(μ; x) =
∑∞

n=0(1 − q)ngnxn[(qμ; q)n]−1 and the m-th power series coeffi-
cient of the expression on the left hand side equals

(1 − q)m
m∑

k=0

gkgm−k

{
1

(qμ+α; q)k(qμ+β ; q)m−k
− 1

(qμ; q)k(qμ+α+β ; q)m−k

}
.

Each term of this sum is positive because (qμ; q)k < 0 for k = 1, 2, . . . , m, and (qμ+β; q)m < (qμ+α+β ; q)m
for k = 0.
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To prove the lower bound in the second inequality we employ the second formula in (10) to check that 
it is equal to δg(0). Hence, the lower bound follows immediately from Theorem 3. The upper bound is a 
rearrangement of the lower bound in the first inequality in view of the second formula in (10). �
4. Applications

In this section we explore the application of the general theorems from the previous section to derive 
inequalities for concrete special functions. Expectedly, the most natural examples come from the basic 
hypergeometric functions although their q-derivatives in parameters or “mixed” classical-basic series could 
also be considered.

Example 1. The q-analogues of the modified Bessel function Iν were introduced by Ismail [6, (2.5)] and 
rediscovered by Olshanetskii and Rogov [22, section 3.1]. These q-analogues are given by [22, (17), (18)]

I(1)
ν (y; q) = (y/2)ν

(1 − q)ν
∞∑

n=0

(y/2)2n

(1 − q)n(q; q)nΓq(ν + n + 1) , |y| < 2,

and

I(2)
ν (y; q) = (y/2)ν

(1 − q)ν
∞∑

n=0

qn
2+nν(y/2)2n

(1 − q)n(q; q)nΓq(ν + n + 1) , y ∈ C.

The sequences g(1)
n = (q; q)−1

n (1 − q)−n and g(2)
n = qn

2+nν(q; q)−1
n (1 − q)−n, n = 0, 1, . . ., are immediately 

seen to be doubly positive, and hence we are in the position to apply Theorem 3 and its corollaries to the 
functions (y/2)−ν(1 − q)νI(j)

ν (y), j = 1, 2, with x = (y/2)2 and μ = ν +1. In particular, Corollary 4.3 yields 
the following bounds:

(y/2)2ν+α+β [(qν+1; q)−1
α − (qν+β+1; q)−1

α ]
Γq(ν + 1)Γq(ν + β + 1)(1 − q)2ν+β

≤ I
(j)
ν+α(y; q)I(j)

ν+β(y; q) − I(j)
ν (y; q)I(j)

ν+α+β(y; q)

≤
[
1 − (qν+1; q)α

(qν+β+1; q)α

]
I
(j)
ν+α(y; q)I(j)

ν+β(y; q)

for ν > max(−β − 1, −2), β > 0, α ∈ N and 0 < y < Rj , where R1 = 2, R2 = ∞. For α = β = 1 and 
changing ν to ν − 1 this leads to the Turán type inequality (recall that [x]q = (1 − qx)/(1 − q)),

(y/2)2νqν(1 − q)−2ν

[ν + 1]q[Γq(ν + 1)]2 ≤ (I(j)
ν (y; q))2 − I

(j)
ν−1(y; q)I

(j)
ν+1(y; q) ≤

qν

[ν + 1]q
(I(j)

ν (y; q))2.

Using the limit relations [22, Remark 3.1] limq↑1 I
(j)
ν ((1 − q)y; q) = Iν(y), j = 1, 2, the above inequality 

reduces to [8, (26)]. Finally, we remark that, in fact, ν → I
(1)
ν (y; q) is log-concave on (−1, ∞) for each 

0 < y < 2. A proof of this claim will be presented in our forthcoming work.

Example 2. The q-Kummer function can either be defined by r = s = 1 case of (7):

φ(1)(a; b; z) = 1φ1(a; b; q;−z) =
∞∑

n=0

(a; q)nqn(n−1)/2

(b, q; q)n
zn, z ∈ C,

which corresponds to the Gasper–Rahman definition [5, (1.2.22)] or by the series
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φ(2)(a; b; z) = 2φ1(a, 0; b; q; z) =
∞∑

n=0

(a; q)n
(b, q; q)n

zn, |z| < 1,

which is the definition used by Bailey and Slater [24, (3.2.1.11)]. Both sequences f (1)
n = qn(n−1)/2(b; q)−1

n

and f (2)
n = (b; q)−1

n are easily seen to be doubly positive for any 0 < b < 1. Hence, we are in the position 
to apply Theorem 1 and its corollaries and conclude that μ → φ(j)(qμ; b; q; z) is log-concave on [0, ∞) for 
j = 1, 2 and the power series coefficients of the generalized Turánians Δφ(j)(α, β; x) (see definition (3)) have 
positive coefficients at all positive powers of x. Furthermore, by Corollary 2.3 we have the following bounds:

(1 − qα)(1 − qβ)
(1 − b)(1 − q) qμx ≤ Δφ(j)(α, β;x) <

[
1 − Γq(μ + α)Γq(μ + β)

Γq(μ)Γq(μ + α + β)

]
φ(j)(qμ+α; b;x)φ(j)(qμ+β ; b;x)

for j = 1, 2. These results for the function φ(2)(a; b; z) strengthen and generalize [2, Theorem 3.2] due to 
Baricz, Raghavendar and Swaminathan which asserts that

φ(2)(qa, qc;x)2 > φ(2)(qa+m, qc;x)φ(2)(qa−m, qc;x)

for x > 0, c > 0, a ≥ m− 1, m ∈ N.

Example 3. Keeping the notation of Example 2, we see that the functions hj(b; x) = φ(j)(a; b; x), j = 1, 2, 
satisfy the conditions of Theorem 4 and its corollaries. In particular, μ → φ(j)(a; qμ; x) is log-convex on 
(0, ∞), Δhj

(α, β; x) has negative power series coefficients for all μ, α, β > 0. Furthermore, it is easy to 

check that the sequences h(1)
n = qn(n−1)/2(a; q)n/(q; q)n and h(2)

n = (a; q)n/(q; q)n, n ∈ N0, are both doubly 
positive if 0 < a < q. Hence, by Corollary 4.2 we have for j = 1, 2:

[
Γq(μ + α)Γq(μ + β)
Γq(μ)Γq(μ + α + β) − 1

]
φ(j)(a; qμ;x)φ(j)(a; qμ+α+β ;x) < Δhj

(α, β;x)

≤ −(1 − a)xqμ(1 − qα)(1 − qβ)
(1 − q)(1 − qμ)(1 − qμ+α+β)(1 − qμ+α)(1 − qμ+β)

for all 0 < a < q, μ, β > 0, α ∈ N and 0 ≤ x < Rj , where R1 = ∞, R2 = 1. The upper bound holds all 
0 < a < 1 and μ, α, β > 0. Note that for j = 2 this inequality is a refinement of the second statement in [19, 
Theorem 1]. It is interesting to remark here that the first statement in [19, Theorem 1] states essentially that 
the ratio in the middle of the first inequality in Corollary 4.2 built on h2(b; x) = φ(2)(a; b; x) is a monotone 
function of x.

Example 4. Put fn = (b; q)n/(c; q)n for n = 0, 1, . . .. Then for f(a; x) defined in (11) we have

f(a;x) = 2φ1(a, b; c; q;x), |x| < 1,

where the function on the right hand side is given in (7). It is straightforward to check that {fn}n≥0 is doubly 
positive if 0 < b < c < 1. Under this condition we can apply Theorem 1 and its corollaries. In particular, 
the function μ → 2φ1(qμ, b; c; q; x) is log-concave on [0, ∞) for each fixed 0 < x < 1 and Δf (α, β; x) has 
positive power series coefficients. Furthermore, according to Corollary 2.3 we have:

qμx(1 − b)(1 − qα)(1 − qβ)
(1 − q)(1 − c) ≤ Δf (α, β;x) <

[
1 − Γq(μ + α)Γq(μ + β)

Γq(μ)Γq(μ + α + β)

]
f(qμ+α;x)f(qμ+β ;x)

for all α, β > 0, μ ≥ 0 and 0 ≤ x < 1.
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Example 5. Put hn = (a; q)n(b; q)n for n ∈ N0. Then for h(c; x) defined in (17) we have

h(c;x) = 2φ1(a, b; c; q;x), |x| < 1,

where the function on the right hand side is given in (7). Hence, we are in the position to apply Theorem 4
to conclude that the function μ → 2φ1(a, b; qμ; q; x) is log-convex on [0, ∞) for any fixed 0 < a, b, x < 1
and Δh(α, β; x) defined in (18) has negative power series coefficients at all positive powers of x. Moreover, 
according to the upper bound in the second inequality of Corollary 4.2 we have

Δh(α, β;x) ≤ −(1 − a)(1 − b)(1 − qα)(1 − qβ)qμx
(1 − qμ)(1 − qμ+α+β)(1 − qμ+α)(1 − qμ+β) .

Before turning to the next example let us define the rational function

Rr,s(x) =
∏r

k=1(ak + x)∏s
k=1(bk + x)

(20)

with positive ak, bk. Let em(c) = em(c1, . . . , cr) denote the m-th elementary symmetric polynomial,

e0(c1, . . . , cr) = 1, e1(c1, . . . , cr) = c1 + c2 + · · · + cr,

e2(c1, . . . , cr) = c1c2 + c1c3 + · · · + c1cq + c2c3 + · · · + c2cq + · · · + cr−1cr, . . . ,

er(c1, . . . , cr) = c1c2 · · · cr.

We will need the following lemma [11, Lemma 3].

Lemma 9. If r ≤ s and

es(b)
er(a) ≤ es−1(b)

er−1(a) ≤ · · · ≤ es−r+1(b)
e1(a) ≤ es−r(b), (21)

then the function Rr,s(x) defined in (20) is monotone decreasing on (0, ∞).

Example 6. Suppose αi > 0, i = 1, . . . , r, βj > 0, j = 1, . . . , s and r ≤ s. Define fn = qn(n−1)(s−r)/2(qα1 , . . . ,
qαr ; q)n/(qβ1 , . . . , qβs ; q)n for n ∈ N0. This sequence is clearly positive. By definition of log-concavity, it is 
doubly positive if and only if the sequence {fn+1/fn}n≥0 is decreasing. Straightforward calculation then 
reveals:

fn+1

fn
= q(s−r)n (1 − qα1+n) · · · (1 − qαr+n)

(1 − qβ1+n) · · · (1 − qβs+n)

= q(s−r)n
∏r

k=1 q
αk∏s

k=1 q
βk

∏r
k=1(q−αk − qn)∏s
k=1(q−βk − qn)

= q(s−r)n
∏r

k=1 q
αk∏s

k=1 q
βk

∏r
k=1(ak + yn)∏s
k=1(bk + yn)

,

where ak = q−αk − 1 > 0, bk = q−βk − 1 > 0, yn = 1 − qn > 0. As n → yn is increasing, it is clear that 
{fn+1/fn}n≥0 is decreasing if

F (y) =
∏r

k=1(ak + y)∏s
k=1(bk + y)

is decreasing. Hence, if condition (21) is satisfied with ak = q−αk − 1, bk = q−βk − 1, then
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f(a;x) =
∞∑

n=0
fn

(a; q)n
(q; q)n

xn = r+1φs

(
a, qα1 , . . . , qαr ; qβ1 , . . . , qβs ; q; (−1)s−rx

)
satisfies Theorem 1 and Corollaries 1.1 and 2.3. Note that the logarithmic convexity of r+1φr with respect 
to shifts in βk, k ∈ {1, . . . , r}, has been recently proved in [19, Theorem 2].

Example 7. Suppose αi > 0, i = 1, . . . , r, βj > 0, j = 1, . . . , s − 1, βs = 1 and r ≤ s + 1. Define 
gn = qn(n−1)(1+s−r)/2(qα1 , . . . , qαr ; q)n/(qβ1 , . . . , qβs ; q)n for n ∈ N0. Similarly to the previous example 
this sequence is doubly positive if (21) is satisfied with ak = q−αk − 1, k = 1, . . . , r and bk = q−βk − 1, 
k = 1, . . . , s. Then using (10) we have

g(μ;x) =
∞∑

n=0

gnx
n

Γq(μ + n) = 1
Γq(μ) rφs

(
qα1 , . . . , qαr ; qμ, qβ1 , . . . , qβs−1 ; q; (1 − q)(−1)1+s−rx

)
satisfies Theorem 3 and Corollaries 3.1, 3.2 and 4.3.
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