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Abstract

We present methods that allow to estimate the distance between the approximate and exact zeros
of some polynomial equations and systems of them (also infinite) in ultrametric Banach algebras.
To make our results more useful, we consider that issue in a more general situation, i.e., for some
functional equations of polynomial form; moreover, we do it almost everywhere (with respect to a
given σ−ideal). As an auxiliary tool we prove an ultrametric version of a fixed point theorem in
some function spaces (also almost everywhere). Our investigations have been motivated by several
previous outcomes and the notion of Ulam stability.
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1. Introduction and preliminaries

The roots of polynomials are very important in numerous investigations. Unfortunately, except
some particular situations, we only can determine explicitly values that satisfy those equations
approximately (accurately to a certain degree). Therefore it seems to be important to know how
much those approximate solutions differ from the exact solutions to the equations. In this paper
we study that problem in an ultrametric Banach algebra B, over a non-archimedean field K.

Actually, we consider a more general issue, that is we investigate approximate solutions to the
polynomial functional equation of the form

f(μ(x)) +
m∑
j=0

aj(x)f(ξj(x))
pj(x) = 0, (1)

for functions mapping a nonempty set X into B, where m is a positive integer, μ, ξ0, . . . , ξm : X →
X, a0, . . . , am : X → B and p0, . . . , pm : X → N0 (nonnegative integers) are given. Namely, we
investigate functions f : X → B satisfying the inequality∥∥∥f(μ(x)) + m∑

j=0

aj(x)f(ξj(x))
pj(x)

∥∥∥ ≤ δ(x), x ∈ X, (2)

with a given δ : X → R+ (nonnegative reals). Moreover, we study that inequality almost every-
where with respect to some σ−ideals in X, because it seems to be natural to assume that in some
cases values of a function can be determined only outside some subsets of its domain (Corollary 5
supplies a very simple example of such situation).
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Note that if X has only one element x0 and p0(x0) = 0, then, with y := f(x0), γ = −a0(x0)
(here we assume that, for each b ∈ B, b0 is the neutral element in B) and aj := aj(x0), pj := pj(x0)
for j = 1, . . . ,m, the equation becomes the following classical polynomial equation in B

y +

m∑
j=1

ajy
pj = γ. (3)

Therefore, in this way we also obtain results concerning approximate solutions to (3) in ultrametric
Banach algebras.

Next, if X = {1, . . . , k} with some k ∈ N (positive integers), m ≤ k, p0(i) = 0, μ(i) = i and
ξj(i) = j for j = 1, . . . ,m and i = 1, . . . , k, then (1) can be written as the following system of k
polynomial equations (with k variables y1, . . . , yk)

yi +

m∑
j=1

ajiy
pji

j = γi, i = 1, . . . , k, (4)

with pji := pj(i), yj := f(j), aji := aj(i), γi := −a0(i) for j = 1, . . . ,m and i = 1, . . . , k.
Note yet that, when for instance X is the set of integers or positive integers, p0(i) = 0, μ(i) = i

and ξj(i) = j + i for j = 1, . . . ,m and i ∈ X, then (1) is the following system of infinitely many
polynomial equations (with infinitely many variables yi for i ∈ X) of the form

yi +
m∑
j=1

ajiy
pji

j+i = γi, i ∈ X, (5)

where pji := pj(i), aji := aj(i), yi := f(i), γi := −a0(i) for j = 1, . . . ,m and i ∈ X.
Our results allow, in particular, to estimate the distance between the approximate and exact

solutions of (3), (4) and (5) (see Corollaries 4-5, 9-12), which corresponds to the outcomes, e.g.,
in [8, 17, 19, 21, 23] motivated by the notion of Ulam stability (for more details and references on
this notion see, e.g., [1, 3, 4, 12, 15, 16, 20]).

We apply a fixed point approach and therefore, except the answer to the above question, we
also prove, as an auxiliary tool, an almost everywhere version of a fixed point theorem in some
ultrametric function spaces, which can be applied in various similar studies in the ultrametric
setting (cf., e.g., [1, 4, 5, 7, 6, 9]).

Now we recall some definitions and facts. Denote by N, N0, R and R+ the sets of positive
integers, nonnegative integers, reals and nonnegative real numbers, respectively.

An ultrametric space is a metric space (X, d) in which the metric satisfies the strong triangle
inequality

d(x, y) ≤ max{d(x, z), d(z, y)}, x, y, z ∈ X.

It is easily seen that a sequence (xn) in an ultrametric space is Cauchy if and only if the sequence
d(xn+1, xn) converges to zero. A well-known example of an ultrametric space is Qp, the field
of p−adic numbers equipped with the p−adic absolute value (for more information, examples,
applications and properties of such spaces see for instance [22]). It has gained the interest of
physicists because of connections to problems coming from quantum physics, p−adic strings and
superstrings (cf., e.g., [18]).

The notion of ultrametric valuation in a field is defined by the properties analogous to those
of the p−adic absolute value. Namely, we say that a function | · | : K → R+ is an ultrametric
valuation in a field K provided it satisfies the following three conditions:

(i) |a| = 0 if and only if a = 0;

(ii) |ab| = |a||b| for every a, b ∈ K;

(iii) |a+ b| ≤ max{|a|, |b|} for every a, b ∈ K.

If | · | : K → R+ is an ultrametric valuation in a field K, then we say that the pair (K, | · |) is an
ultrametric (or non-archimedean) field.
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The p−adic absolute value is a classical example of an ultrametric valuation. But, for any field
K, there exists the trivial ultrametric valuation, which takes value 1 for all a ∈ K \ {0}. Moreover,
for each ultrametric field (K, | · |), the function d(a, b) := |a − b|, a, b ∈ K, is an ultrametric in K

that is invariant (i.e., d(a+ c, b+ c) = d(a, b) for every a, b, c ∈ K).
Let Y be a linear space over an ultrametric field (K, | · |). We say that a function ‖ · ‖ : Y → R+

is an ultrametric norm in Y provided the following three conditions are valid:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖ay‖ = |a| ‖y‖ for y ∈ Y , a ∈ K;

(iii) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} for every x, y ∈ Y .

If ‖ · ‖ : Y → R+ is an ultrametric norm in Y , then the pair (Y, ‖ · ‖) is said to be the ultrametric
normed space and the function d(x, y) := ‖x − y‖, x, y ∈ Y , is an invariant ultrametric in Y ; we
say that the ultrametric d is induced by the norm. A Banach ultrametric space is an ultrametric
normed space in which the ultrametric induced by the norm is complete.

If Y is a commutative algebra over an ultrametric field, endowed with an ultrametric norm
‖ · ‖ : Y → R+ such that

‖xy‖ ≤ ‖x‖ ‖y‖, x, y ∈ Y,

then we say that Y is an ultrametric commutative algebra (with unit, if there exists an identity
element in Y ); if additionally (Y, ‖ · ‖) is a Banach ultrametric space, then we say that Y is a
Banach commutative algebra.

Let X be a nonempty set. A family I ⊂ 2X is a σ−ideal in X if it contains the empty set, and
subsets and countable unions of its elements.

Remark 1 Below we provide several natural examples of σ−ideals I ⊂ 2X .

(a) The trivial example is I = {∅}.

(b) If D ⊂ X is nonempty, then 2D (the family of all subsets of D) forms a σ−ideal; analogously
2X\D is a σ−ideal.

(c) If X is of cardinality greater than N, then the family {A ⊂ X : A is at most countable} is
a σ−ideal; moreover, if the cardinality of X is not of countable cofinality, then so is the set
{A ⊂ X : cardA < cardX}.

(d) If X is either Rn or Cn, then the family of all subsets of X that are of the Lebesgue measure
zero forms a σ−ideal.

(e) If X is a topological space, then the family of all first category subsets of X is a σ−ideal.

(f) If X is an abelian Polish group, then σ−ideals are the family of all Haar zero subsets of X
(see [11]), the family of all Christensen zero subsets of X (see [14]) and the family of all Haar
meager subsets of X (see [13]).

We say that a property p(x) holds I−almost everywhere in X (I − (a.e.) in X, for short) if
there exists a set A ∈ I such that p(x) is valid for all x ∈ X \ A. Clearly, if I = {∅}, then every
property p(x), that holds I−almost everywhere in X, actually holds for every x ∈ X.

Finally, given a nonempty set Y and I ⊂ 2X , we say that g ∈ Y X is an I−unique function
fulfilling some properties provided g fulfills the properties and g(x) = h(x) I−(a.e.) in X for every
function h ∈ Y X satisfying those properties.

2. The main results

In this section we assume that I is a σ−ideal in a nonempty set X and B is an ultrametric
Banach commutative algebra with the unit element denoted by e. For r > 0 we write

Br := {u ∈ BX : ‖u(x)‖ ≤ r I − (a.e.) in X}.
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Moreover, m ∈ N, a0, . . . , am ∈ BX , p0, . . . , pm : X → N0, μ, ξ0, . . . , ξm ∈ XX and μ is bijective.
We consider approximate solutions to the polynomial functional equation (1), i.e., the equation

f(μ(x)) +

m∑
j=0

aj(x)f(ξj(x))
pj(x) = 0, (6)

where f ∈ BX is the unknown function and f(x)j = (f(x))j for all j ∈ N0, x ∈ X (u0 = e for each
u ∈ B).

In what follows, for a fixed r > 0, Λ : RX
+ → RX

+ is an operator given by

(Λη)(x) := max
0≤i≤m

‖ai(μ−1(x))‖rpi(μ
−1(x))−1 η(ξi(μ

−1(x))), η ∈ RX
+ , x ∈ X. (7)

We have the following theorem, which is in particular a counterpart of [8, Theorem 2] and [2,
Theorem 3.4] for the ultrametric setting (the proof of it is provided at the end of this paper).

Theorem 2 Assume that

ξ−1
j (I), μ−1(I), μ(I) ∈ I, I ∈ I, j ∈ {0, 1, . . . ,m}, (8)

and δ ∈ RX
+ , r > 0, f ∈ Br satisfy the following three conditions

∥∥∥f(μ(x)) + m∑
j=0

aj(x)f(ξj(x))
pj(x)

∥∥∥ ≤ δ(x) I − (a.e.) in X, (9)

max
0≤i≤m

‖ai(x)‖rpi(x)−1 ≤ 1 I − (a.e.) in X, (10)

lim
n→∞

(
Λnε

)
(x) = 0 I − (a.e.) in X, (11)

where ε := δ ◦ μ−1. Then there is an I−unique function g ∈ Br such that

g(μ(x)) +

m∑
j=0

aj(x)g(ξj(x))
pj(x) = 0 I − (a.e.) in X (12)

and
‖g(x)− f(x)‖ ≤ sup

n≥0
(Λnε)(x) I − (a.e.) in X. (13)

Moreover, g(x) := limn→∞(T nf)(x) I−(a.e.) in X, for a certain operator T : BX → BX

satisfying for each u ∈ BX

(T u)(x) = −
m∑
i=0

ai(μ
−1(x))u(ξi(μ

−1(x)))pi(μ
−1(x)) I − (a.e.) in X. (14)

Remark 3 Note that if we modify condition (10) in the following way

max
0≤j≤m

‖aj(x)‖rpj(x)−1 ≤ d < 1 I − (a.e.) in X, (15)

then it implies (11) for every δ ∈ RX
+ that is bounded (in view of (8)). So, Theorem 2 yields the

following corollary.

Corollary 4 Let δ̂ > 0, r > 0 and (8) be valid. If f ∈ Br satisfies (9) with δ(x) ≡ δ̂ and (15)
holds with some d > 0, then there is an I-unique function g ∈ Br satisfying (12) and such that

‖g(x)− f(x)‖ ≤ δ̂ I − (a.e.) in X. (16)
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Before the next corollary, let us remind that, for any given D ⊂ X, the families 2X\D and 2D

are σ−ideals (see Remark 1 (b)); clearly, if in particular D = X, then

2X\D = 2∅ = {∅}.

Corollary 5 Suppose that X ∈ {N0,Z}, D ⊂ X is nonempty, r > 0, δ̂ > 0, d ∈ R+, pji ∈ N0,
aji ∈ B for j = 0, 1, . . . ,m and i ∈ X,

μ(X \D) ⊂ X \D, ξj(D) ⊂ D, j = 0, 1, . . . ,m, (17)

max
0≤j≤m

‖aji‖rpji−1 ≤ d < 1, i ∈ D. (18)

If a sequence (zi)i∈X in Y := {b ∈ B : ‖b‖ ≤ r} satisfies∥∥∥zμ(i) + m∑
j=0

ajiz
pji

ξj(i)

∥∥∥ ≤ δ̂, i ∈ D, (19)

then there is a 2X\D-unique sequence (yi)i∈X in Y such that

‖zi − yi‖ ≤ δ̂, yμ(i) +
m∑
j=0

ajiy
pji

ξj(i)
= 0, i ∈ D. (20)

Proof. We apply Corollary 4 with I = 2X\D, f(i) := zi, aj(i) := aji and pj(i) := pji for
j = 0, 1, . . . ,m and i ∈ X (clearly, (17) implies (8)). �

Remark 6 Corollary 5 shows that for a sequence (zi)i∈X in Y we obtain a somewhat similar
outcome as in Theorem 2 even if we replace the system of equations

zμ(i) +

m∑
j=0

ajiz
pji

ξj(i)
= 0, i ∈ X,

by a smaller system

zμ(i) +
m∑
j=0

ajiz
pji

ξj(i)
= 0, i ∈ D,

with any set D ⊂ X such that (17) holds.

The next theorem shows some possible modifications that can be made in Theorem 2. It
concerns a particular case of equation (6) with p0(x) = 0 for x ∈ X (then the form of ξ0 does not
matter), that is the equation

f(μ(x)) +

m∑
j=1

aj(x)f(ξj(x))
pj(x) = γ(x),

with γ(x) = −a0(x) for x ∈ X. Thus we obtain another example of the situation when (11) holds.
The theorem is an analogue of [8, Theorem 3] in the ultrametric case almost everywhere.

Theorem 7 Suppose that p0(x) ≡ 0, δ ∈ RX
+ , r > 0, (8) holds and, for every i, j ∈ {1, . . . ,m},

the following conditions are fulfilled I−(a.e.) in X:

δ(μ−1(x)) ≤ δ(x), δ(ξj(x)) ≤ δ(x), ‖aj(μ−1(x))‖ ≤ ‖aj(x)‖, ‖aj(ξi(x))‖ ≤ ‖aj(x)‖, (21)

rpj(μ
−1(x)) ≤ rpj(x), rpj(ξi(x)) ≤ rpj(x). (22)

If f ∈ Br satisfies (9) and

‖a0(x)‖ ≤ r, λ(x) := max
1≤j≤m

‖aj(x)‖rpj(x)−1 < 1 I − (a.e.) in X, (23)

then there is an I−unique function g ∈ Br satisfying (12) and such that

‖g(x)− f(x)‖ ≤ δ(x) I − (a.e.) in X. (24)
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The proof of Theorem 7 is provided in the last section.

Remark 8 The form of g in Theorem 7 can be easily deduced from the proof (see the last section).
Namely, g(x) := limn→∞(T nf)(x) I−(a.e.) in X, where the operator T satisfies (14) (cf. (49))
with p0(x) ≡ 0.

If all functions aj and pj are constant (i.e., aj(x) ≡ aj ∈ B and pj(x) ≡ pj ∈ N0 for j =
0, 1 . . . ,m), then we obtain the following simplified version of Theorem 7.

Corollary 9 Suppose that p0 = 0, δ̂ > 0, r > 0, (8) holds and

‖a0‖ ≤ r, max
1≤j≤m

‖aj‖rpj−1 < 1. (25)

If f ∈ Br satisfies ∥∥∥f(μ(x)) + m∑
j=0

ajf(ξj(x))
pj

∥∥∥ ≤ δ̂ I − (a.e.) in X,

then there is an I−unique function g ∈ Br satisfying

g(μ(x)) +

m∑
j=0

ajg(ξj(x))
pj = 0 I − (a.e.) in X

and such that
‖g(x)− f(x)‖ ≤ δ̂, I − (a.e.) in X. (26)

Now, we present some further simple consequences of Theorem 7. The next corollary is to some
extent a counterpart of [21, Theorem 18.1] and [8, Corollary 1].

Corollary 10 Assume that ε > 0, r > 0 and c0, . . . , cm ∈ B fulfill

‖c0‖ ≤ r, ‖c1 − e‖ < 1, max
2≤i≤m

‖ci‖ri−1 < 1.

Then, for every y ∈ B satisfying

‖y‖ ≤ r, ‖cmym + · · ·+ c1y + c0‖ ≤ ε,

there exists a unique y0 ∈ B such that

‖y0‖ ≤ r, cmym0 + · · ·+ c1y0 + c0 = 0, ‖y − y0‖ ≤ ε.

Proof. We apply Theorem 7 for X = {x0} and I = {∅}, with f(x0) = y, a1(x0) = c1 − e,
ai(x0) = ci for i = 0 and i = 2, . . . ,m, and pi(x0) = i for i = 0, 1, . . . ,m; then, clearly, μ(x0) = x0

and ξi(x0) = x0 for i = 0, 1, . . . ,m, whence conditions (21)–(23) hold with δ(x0) = ε. �

Corollary 11 Suppose that k ∈ N, X = {1, . . . , k}, q1, . . . , qm ∈ N0, aj , γi ∈ B for j = 1, . . . ,m
and i = 1, . . . , k, ε > 0, r > 0, and

‖γi‖ ≤ r, ‖aj‖ < r1−qj , j = 1, . . . ,m, i = 1, . . . , k. (27)

If z1, . . . , zk ∈ Y := {b ∈ B : ‖b‖ ≤ r} satisfy∥∥∥zμ(i) + m∑
j=1

ajz
qj
ξj(i)

− γi

∥∥∥ ≤ ε, i = 1, . . . , k, (28)

then there are unique y1, . . . , yk ∈ Y such that

yμ(i) +

m∑
j=1

ajy
qj
ξj(i)

= γi, i = 1, . . . , k, (29)

‖zj − yj‖ ≤ ε, j = 1, . . . , k. (30)
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Proof. We use Theorem 7 with I = {∅}, a0(i) = −γi, p0(i) = 0, f(i) = zi, aj(i) = aj ,
pj(i) = qj , and δ(i) = ε for j = 1, . . . ,m and i = 1, . . . , k (then (21)–(23) hold). �

Corollary 12 Suppose that X ∈ {N0,Z}, r > 0, δi ≥ 0, qj ∈ N0, âj , γi ∈ B for j = 1, . . . ,m and
i ∈ X, and

max
1≤k≤m

‖âk‖rqk−1 < 1, δξj(i) ≤ δi, ‖γi‖ ≤ r, j = 1, . . . ,m, i ∈ X. (31)

If a sequence (zi)i∈X in Y := {b ∈ B : ‖b‖ ≤ r} satisfies∥∥∥zi + m∑
j=1

âjz
qj
ξj(i)

− γi

∥∥∥ ≤ δi, i ∈ X, (32)

then there is a unique sequence (yi)i∈X in Y such that

‖zi − yi‖ ≤ δi, yi +
m∑
j=1

âjy
qj
ξj(i)

= γi, i ∈ X. (33)

Proof. Let a0(i) := −γi, p0(i) := 0, δ(i) := δi, f(i) := zi, μ(i) := i, aj(i) := âj and pj(i) := qj
for j = 1, . . . ,m and i ∈ X. Then it is easy to check that conditions (21)–(23) are valid. Hence, it
is enough to apply Theorem 7 with I = {∅}. �

Remark 13 The values of y0 and yi in Corollaries 10–12 can be described analogously as in
Remark 8, with a suitable operator T .

3. Auxiliary fixed point theorem

For the proofs of Theorems 2 and 7 we need an auxiliary fixed point result in some function
spaces (in the ultrametric settings). We prove it in a bit more general form than it is necessary
in the proof, because it corresponds to recent results in, e.g., [4, 5, 10] and complements the main
theorem in [2] (proved for the case of classical complete metric spaces).

In this part (Y, d) denotes a complete ultrametric space, X is a nonempty set and I stands for
a σ−ideal in X, unless explicitly stated otherwise.

Let Λ : RX
+ → RX

+ . We say that Λ has the property (C0) if, for each sequence (δn)n∈N of
elements of RX

+ ,

lim
n→∞ δn(x) = 0 I − (a.e.) in X =⇒ lim

n→∞(Λδn)(x) = 0 I − (a.e.) in X. (C0)

Next, Λ is said to be I−nondecreasing if, for every δ1, δ2 ∈ RX
+ ,

δ1(x) ≤ δ2(x) I − (a.e.) in X =⇒ (Λδ1)(x) ≤ (Λδ2)(x) I − (a.e.) in X.

Finally, an operator T : Y X → Y X is called Λ−contractive I−(a.e.) if for any u, v ∈ Y X and
δ ∈ RX

+

d(u(x), v(x)) ≤ δ(x) I − (a.e.) in X =⇒ d((T u)(x), (T v)(x)) ≤ (Λδ)(x) I − (a.e.) in X.

In the sequel, given u, v ∈ Y X , the function |u, v| : X → R is always defined by |u, v|(x) :=
d(u(x), v(x)) for x ∈ X. We have the following fixed point theorem in the ultrametric case.

Theorem 14 Assume that Λ : RX
+ → RX

+ has the property (C0) and let T : Y X → Y X be
Λ−contractive I−(a.e.). Suppose that there are functions ε ∈ RX

+ and f ∈ Y X such that

d
(
(T f)(x), f(x)

)
≤ ε(x) I − (a.e.) in X (34)
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and
lim
n→∞(Λnε)(x) = 0 I − (a.e.) in X. (35)

Then the limit
g(x) := lim

n→∞(T nf)(x) (36)

exists I−(a.e.) in X.
Moreover, the following two statements are valid.

(i) Any function g ∈ Y X , satisfying (36) I−(a.e.) in X, fulfils the condition

(T g)(x) = g(x) I − (a.e.) in X (37)

and is an I−unique function, from Y X , such that

d((T nf)(x), g(x)) ≤ sup
j≥n

(Λjε)(x) =: σn(x) I − (a.e.) in X (38)

for every n ∈ N0.

(ii) If for σ0, defined in (38), we have

lim
n→∞(Λnσ0)(x) = 0 I − (a.e.) in X, (39)

then any function g ∈ Y X , satisfying (37) and such that

d(f(x), g(x)) ≤ σ0(x) I − (a.e.) in X, (40)

is I−unique.

Proof. First we show by induction that, for every n ∈ N0, there is An ∈ I such that

d
(
(T n+1f)(x), (T nf)(x)

)
≤ (Λnε)(x), x ∈ X \An. (41)

Clearly, by (34), the case n = 0 is trivial. Now fix n ∈ N0 and suppose that (41) is valid. Since T
is Λ−contractive I−(a.e.), according to the inductive assumption, we get

d
(
(T n+2f)(x), (T n+1f)(x)

)
≤ Λ(Λnε)(x) = (Λn+1ε)(x)

for all x ∈ X \An+1, with some An+1 ∈ I. This completes the proof of (41).
Now, using (41), for every n, j ∈ N0, n > j, we have

d
(
(T nf)(x), (T jf)(x)

)
≤ max

j≤i≤n−1

(
Λiε

)
(x), x ∈ X \

⎛⎝n−1⋃
i=j

Ai

⎞⎠ . (42)

Since the equality in (35) holds for x ∈ X \C with some C ∈ I, it follows from the above estimate
that, for every x ∈ X \ (C ∪⋃∞

i=0 Ai),
(
(T nf)(x)

)
n∈N

is a Cauchy sequence and, as (Y, d) is
complete, the limit g(x) given by (36) exists for all x ∈ X \D, where

D := C ∪
∞⋃
i=0

Ai ∈ I.

Taking n → ∞ in (42), we obtain that the inequality in (38) holds for all x ∈ X \D.
Next, we prove (i). So, take g ∈ Y X satisfying (36) I−(a.e.) in X. Then, using (C0) with

δn = |T nf, g|, according to (36), we have limn→∞(Λ|T nf, g|)(x) = 0 for x ∈ X \ E, with some
E ∈ I. As T is Λ−contractive I−(a.e), this means that

d((T n+1f)(x), (T g)(x)) ≤ (Λ|T nf, g|)(x), n ∈ N0, x ∈ X \ F,
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with some F ∈ I, whence it follows that

lim
n→∞ d((T n+1f)(x), (T g)(x)) = 0, x ∈ X \ (E ∪ F ).

Hence, in view of (36), g(x) = (T g)(x) for x ∈ X \ (E ∪ F ∪D).
Suppose that also g1 ∈ Y X satisfies (38) (with g replaced by g1). Then there is a set G ∈ I

such that
d((T nf)(x), g(x)) ≤ sup

i≥n
(Λiε)(x), x ∈ X \G,n ∈ N,

d((T nf)(x), g1(x)) ≤ sup
i≥n

(Λiε)(x), x ∈ X \G,n ∈ N.

This means that

d(g(x), g1(x)) ≤ max{d((T nf)(x), g(x)), d((T nf)(x), g1(x))}
≤ sup

i≥n
(Λiε)(x), x ∈ X \G,n ∈ N.

Hence, with n → ∞, (in view of (35)) we obtain d(g1(x), g(x)) = 0 for x ∈ X \ (G ∪ C). Thus
g = g1 I−(a.e.) in X.

Finally, assume that (39) holds and g1, g2 ∈ Y X are such that

(T gi)(x) = gi(x), x ∈ X \ Ii, i = 1, 2, (43)

d(f(x), gi(x)) ≤ σ0(x), x ∈ X \ Ii, i = 1, 2. (44)

with some I1, I2 ∈ I. Since T is Λ−contractive I−(a.e.), for each n ∈ N we have

d(g1(x), g2(x)) = d((T ng1)(x), (T ng2)(x)) ≤ (Λnσ0)(x), x ∈ X \ Jn, (45)

with some Jn ∈ I. Hence letting n → ∞, by (39), we have g1 = g2 I−(a.e.) in X, which ends the
proof. �

Note that Theorem 14 can be reformulated in the following weaker, but much simpler form.

Corollary 15 Assume that Λ : RX
+ → RX

+ has the property (C0) and let T : Y X → Y X be
Λ−contractive I−(a.e.). Suppose that there are functions ε ∈ RX

+ and f ∈ Y X such that (34) and
(35) are valid. Then there exists an I−unique function g ∈ Y X satisfying (37) and (38) for every
n ∈ N0. Moreover,

g(x) := lim
n→∞(T nf)(x) I − (a.e.) in X. (46)

Proof. Clearly, (36) means that there is a set D ∈ I such that, for each x ∈ X \D, the limit
limn→∞(T nf)(x) exists in X. So, it is enough to define g by g(x) = 0 for x ∈ D and

g(x) := lim
n→∞(T nf)(x), x ∈ X \D.

�

4. Proofs of Theorems 2 and 7

First we present a proof for Theorem 2.

Proof. Observe that Λ (given by (7)) can be written in the form

(Λη)(x) := max
0≤i≤m

Li(x)η(hi(x)), η ∈ RX
+ , x ∈ X, (47)

with Li(x) := ‖ai(μ−1(x))‖rpi(μ
−1(x))−1 and hi := ξi ◦ μ−1 for i = 0, 1, . . . ,m. So, it is easily seen

that Λ is I−nondecreasing (also for I = {∅}).
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We show that Λ satisfies (C0). So, take a sequence (δn)n∈N of elements of RX
+ such that

lim
n→∞ δn(x) = 0, x ∈ X \K,

for some K ∈ I. Then

lim
n→∞ δn(hi(x)) = 0, i = 0, 1, . . . ,m, x ∈ X \ h−1

i (K),

and, according to (8), h−1
i (K) ∈ I for i = 0, 1, . . . ,m. Consequently,

lim
n→∞(Λδn)(x) = lim

n→∞ max
0≤i≤m

Li(x)δn(hi(x)) = 0, x ∈ X \D,

where

D :=

m⋃
i=0

h−1
i (K) ∈ I.

This means that (C0) is valid.
Next, we show that (11) yields (39), where σ0(x) := supj≥0 (Λ

jε)(x) for x ∈ X, with ε := δ◦μ−1.
To this end note that (11) implies the condition

lim
n→∞σn(x) = 0 I − (a.e.) in X, (48)

where σn(x) := supj≥n (Λ
jε)(x) for x ∈ X and n ∈ N0. Further,

(Λσ0)(x) = max
0≤i≤m

Li(x) sup
j≥0

(Λjε)(hi(x)) = sup
j≥0

max
0≤i≤m

Li(x)(Λ
jε)(hi(x))

= sup
j≥0

(Λj+1ε)(x) = σ1(x), x ∈ X,

and by induction we obtain analogously that

(Λnσ0)(x) = σn(x), n ∈ N0, x ∈ X.

Hence, in view of (48), limn→∞(Λnσ0)(x) = 0 I−(a.e.) in X.
Clearly Y := {b ∈ B : ‖b‖ ≤ r} is a complete ultrametric space with the ultrametric d, given

by
d(y1, y2) = ‖y1 − y2‖, y1, y2 ∈ Y.

Let I ∈ I be such that
‖f(x)‖ ≤ r, x ∈ X \ I,

and the inequalities in (9) and (10), and the equality in (11) hold for x ∈ X \I. Define the operator
T : BX → BX as follows

(T u)(x) :=

{
−∑m

i=0 ai(μ
−1(x)) u(ξi(μ

−1(x)))pi(μ
−1(x)), x ∈ X \ μ(I);

0, x ∈ μ(I),
u ∈ BX . (49)

Observe that, by (10) and (49),

‖(T u)(x)‖ =
∥∥∥ m∑

i=0

ai(μ
−1(x)) u(ξi(μ

−1(x)))pi(μ
−1(x))

∥∥∥
≤ max

0≤i≤m
‖ai(μ−1(x))‖ rpi(μ

−1(x)) ≤ r

for every u ∈ Y X and x ∈ X \ μ(I) and ‖(T u)(x)‖ = 0 for x ∈ μ(I), whence T (Y X) ⊂ Y X .
Next, since ‖u(x)‖ ≤ r for u ∈ Y X and x ∈ X, we have

‖u(x)n − v(x)n‖ ≤ ‖u(x)− v(x)‖
∥∥∥ n−1∑

j=0

u(x)jv(x)n−j−1
∥∥∥

≤ ‖u(x)− v(x)‖rn−1, u, v ∈ Y X , x ∈ X, n ∈ N,

(50)
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and consequently, using (49) and (50), we obtain

‖(T u)(x)− (T v)(x)‖=
∥∥∥ m∑

i=0

ai(μ
−1(x))

(
u(ξi(μ

−1(x)))pi(μ
−1(x)) − v(ξi(μ

−1(x)))pi(μ
−1(x))

)∥∥∥
≤ max

0≤i≤m
‖ai(μ−1(x))‖

∥∥u(ξi(μ−1(x)))− v(ξi(μ
−1(x)))

∥∥ rpi(μ
−1(x))−1

= max
0≤i≤m

‖ai(μ−1(x))‖ rpi(μ
−1(x))−1 d(u(ξi(μ

−1(x)), v(ξi(μ
−1(x)))

for u, v ∈ Y X and x ∈ X \ μ(I). Thus we have proved that

d((T u)(x), (T v)(x)) ≤ (Λ|u, v|)(x), x ∈ X, (51)

for every u, v ∈ Y X . Since Λ is I-nondecreasing, this means that T , restricted to Y X , is
Λ−contractive I−(a.e.).

Set
A := I ∪ μ(I) ∈ I

and define f̃ ∈ Y X as follows

f̃(x) :=

{
f(x), x ∈ X \ I;
0, x ∈ I.

Then, by (9),

d
(
(T f̃)(x), f̃(x)

)
=

∥∥∥f̃(x)− (T f̃)(x)
∥∥∥ ≤ δ(μ−1(x)) = ε(x), x ∈ X \A.

Moreover, in view of (11), (35) is valid. So, we can apply Theorem 14 for f̃ and thereby deduce
that the limit (36) with f replaced by f̃ exists for x ∈ X \D, with some D ∈ I. Write g(x) = 0 for
x ∈ D. In view of Theorem 14, it is easily seen that so defined g ∈ Y X is an I−unique function
satisfying (37) and (40). Clearly, (12) and (37) are equivalent and (40) is just (13). �

Now, we prove Theorem 7.

Proof. First, note that (23) implies (10). Let Λ be given by

(Λη)(x) := max
1≤i≤m

‖ai(μ−1(x))‖rpi(μ
−1(x))−1 η(ξi(μ

−1(x))), η ∈ RX
+ , x ∈ X. (52)

According to (21) and (22), λ(ξj(μ−1(x))) ≤ λ(x) I-(a.e.) in X for j = 1, . . . ,m. Therefore, if for
some n ∈ N,

(Λnδ)(x) ≤ λ(x)nδ(x), I − (a.e.) in X, (53)

then (since Λ is I−nondecreasing), again by (21) and (22),

(Λn+1δ)(x) = Λ(Λnδ)(x)

≤ max
1≤i≤m

‖ai(μ−1(x))‖rpi(μ
−1(x))−1 λ(ξi(μ

−1(x)))nδ(ξi(μ
−1(x)))

≤ max
1≤i≤m

‖ai(x)‖rpi(x)−1 λ(x)nδ(x) = λ(x)n+1δ(x)

I−(a.e.) in X, which yields that (53) holds for all n ∈ N. Hence, in view of (23),

σ0(x) := sup
j≥0

(Λjδ)(x) = δ(x) I − (a.e.) in X,

and therefore
lim

n→∞(Λnσ0)(x) = lim
n→∞(Λnδ)(x) = 0 I − (a.e.) in X.
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Now, it is enough to define T by (49) (with p0(x) ≡ 0) and argue analogously as in the proof
of Theorem 2. Indeed, assuming that the inequalities in (23) are fulfilled for x ∈ X \ I, with some
I ∈ I, we have

‖(T u)(x)‖ =
∥∥∥ m∑

i=0

ai(μ
−1(x)) u(ξi(μ

−1(x)))pi(μ
−1(x))

∥∥∥
≤ max{a0(μ−1(x)), λ(μ−1(x)) · r} ≤ r, x ∈ X \ μ(I),

and ‖(T u)(x)‖ = 0 ≤ r for x ∈ μ(I); consequently T (Y X) ⊂ Y X . Next, according to (50),

‖(T u)(x)− (T v)(x)‖≤ max
1≤i≤m

‖ai(μ−1(x))‖
∥∥u(ξi(μ−1(x)))− v(ξi(μ

−1(x)))
∥∥ rpi(μ

−1(x))−1

=(Λ|u, v|)(x)

for u, v ∈ Y X and x ∈ X. This means that T restricted to Y X is Λ-contractive I−(a.e.).
Defining the function f̃ ∈ Y X as in the previous proof, we get

d
(
(T f̃)(x), f̃(x)

)
=

∥∥∥f̃(x)− (T f̃)(x)
∥∥∥ ≤ δ(μ−1(x)) ≤ δ(x) I − (a.e.) in X.

Finally, we use Theorem 14 with ε = δ and f replaced by f̃ . This completes the proof. �
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