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We discuss a free boundary problem for a reaction–diffusion equation with Dirichlet 
boundary conditions on both fixed and free boundaries of a one-dimensional interval. 
The problem was proposed by Du and Lin (2010) to model the spreading of an 
invasive or new species by putting Neumann boundary condition on the fixed 
boundary. Asymptotic properties of spreading solutions for such problems have 
been investigated in detail by Du and Lou (2015) and Du, Matsuzawa and Zhou 
(2014). The authors (2011) studied a free boundary problem with Dirichlet boundary 
condition. In this paper we will derive sharp asymptotic properties of spreading 
solutions to the free boundary problem in the Dirichlet case under general conditions 
on f . It will be shown that the spreading speed is asymptotically constant and 
determined by a semi-wave problem and that the solution converges to a semi-wave 
near the spreading front as t → ∞ provided that the semi-wave problem has a 
unique solution.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We discuss the following free boundary problem for a reaction–diffusion equation:

(FBP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − duxx = f(u), t > 0, 0 < x < h(t),
u(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −μux(t, h(t)), t > 0,
h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

where μ, h0, d are given positive numbers, initial data (u0, h0) satisfies
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u0 ∈ C[0, h0] ∩ C2(0, h0), u0(0) = u0(h0) = 0 and u0(x) > 0 in (0, h0) (1.1)

and nonlinear function f meets

(A.1) f ∈ C1[0, ∞), f(0) = f(1) = 0, f ′(1) < 0, f(u) < 0 for u > 1.

This type of a free boundary problem was proposed by Du–Lin [1] to model the spreading of an invasive or 
new species by putting Neumann condition on fixed boundary x = 0. See also Shigesada–Kawasaki [11] and 
Skellam [12] for the biological background of invasion models. After the appearance of [1], a lot of researchers 
have discussed such free boundary problems (see [2], [3], [4], [5], [6], [7], [8], [9] and the references therein). 
In particular, asymptotic properties of spreading solutions have been studied in great detail by Du–Lou [2]
and Du–Matsuzawa–Zhou [3] in the case where both ends of the interval are moving boundaries determined 
by free boundary conditions of Stefan type.

In this paper we discuss the case where the habitat of a species is a one-dimensional interval and one 
end of the interval is a fixed boundary, whereas the other end is a moving boundary determined by Stefan 
condition h′(t) = −μux(t, h(t)). Homogeneous Dirichlet boundary conditions are imposed at the both ends 
of the interval. Biologically, this situation implies that the species cannot move across the fixed boundary 
and, therefore, it moves toward the moving boundary in order to get a new habitat. Denoting such an 
interval by [0, h(t)] we consider the free boundary problem of the form (FBP). Under assumptions (1.1) and 
(A.1) we can show the following theorem on the existence and uniqueness of a global solution for (FBP).

Theorem 1. Let f satisfy (A.1). Then for every initial data (u0, h0) satisfying (1.1) there exists a unique 
global solution (u, h) of (FBP) such that

0 < u(t, x) ≤ C1 and 0 < h′(t) ≤ μC2 for t > 0, 0 < x < h(t), (1.2)

where C1 and C2 are positive constants depending only on ‖u0‖C[0,h0] and ‖u0‖C1[0,h0], respectively. More-
over, it holds that

ux(t, x) < 0 (1.3)

for all (t, x) satisfying t > 0 and max{h0, h(t)/2} ≤ x ≤ h(t).

One can refer to Kaneko–Yamada [6, Theorem 2.7] and Kaneko–Oeda–Yamada [5, Theorem 1.1] for the 
proof of Theorem 1 except for (1.3). For the proof of this decreasing property of u, see Lemma A.1 in 
Appendix.

Since the global existence of a unique solution to (FBP) has been established, the next stage is to study 
its asymptotic behavior as t → ∞. It should be noted here that there are a pretty number of works for 
(FBP) and related problems. For instance, if f is of monostable type: f satisfies

(A.1) and f(u) > 0 for u ∈ (0, 1),

then it is well known that the spreading–vanishing dichotomy result holds true (see [6]). Hence any solution 
of (FBP) satisfies either spreading:

lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v∗(x) locally uniformly in [0,∞), (1.4)

where v∗(x) is a unique solution of
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(SP)

⎧⎨
⎩dvxx + f(v) = 0, v > 0 for 0 < x < ∞,

v(0) = 0, lim
x→∞

v(x) = 1,

or vanishing:

lim
t→∞

h(t) < ∞ and lim
t→∞

‖u(t, ·)‖C(0,h(t)) = 0.

In the spreading case the local uniform convergence means the convergence in any compact subset of [0, ∞). 
When spreading occurs, however, it holds that limt→∞ h(t) = ∞, and [0, h(t)] ⊃ I for large t if I is a 
compact set. Hence the convergence property (1.4) does not give satisfactory information on the profile of 
the solution u(t, x) near the spreading front x = h(t).

Our main interest is to get better understanding on the large-time behavior of spreading solution (solution 
satisfying (1.4) as t → ∞) (u, h) of (FBP) under general conditions on f . In addition to (A.1), we assume

(A.2) F (1) > 0, F (1) > F (u∗) for any u∗ ∈ [0, 1) satisfying f(u∗) = 0 if it exists,

where F (u) =
∫ u

0 f(s) ds. Owing to (A.2), the phase plane analysis enables us to show that (SP) has a 
unique solution v∗(x) (see Lemma 1). Then it is easy to prove that (FBP) admits a spreading solution 
satisfying (1.4) if h0 and u0 are suitably large (cf. [6]).

In the present paper, we will mainly investigate spreading solutions of (FBP); so that the solution (u, h)
satisfies (1.4). Our purpose is to derive precise information on the asymptotic profiles of (u(t, x), h(t)) and, 
in particular, sharp estimates of u(t, x) near the free boundary x = h(t) when t is sufficiently large.

Here we should recall important works of Du–Lou [2] and Du–Matsuzawa–Zhou [3]. They discussed 
asymptotic behaviors of the global solution of the following free boundary problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt − dwxx = f(w), t > 0, 0 < x < s(t),
wx(t, 0) = 0, w(t, s(t)) = 0, t > 0,
s′(t) = −μwx(t, s(t)), t > 0,
s(0) = s0, w(0, x) = w0(x), 0 ≤ x ≤ s0.

(1.5)

In the above problem the Neumann boundary condition at x = 0 takes the place of the Dirichlet boundary 
condition in (FBP). For (1.5), it was shown that the asymptotic profiles of global solutions are closely 
related with the following semi-wave problem:

(SWP)

⎧⎨
⎩dq′′ − cq′ + f(q) = 0, q(z) > 0 for z > 0,
q(0) = 0, μq′(0) = c, lim

z→∞
q(z) = 1.

Du–Lou [2] have discussed (1.5) when f satisfies the typical monostable, bistable or combustion condition 
in addition to (A.1). These conditions on f assure the existence of a unique solution (q(z), c) = (q∗(z), c∗)
of (SWP) (q∗ is called semi-wave). Let (w(t, x), s(t)) be any spreading solution of (1.5) with initial data 
(w0, s0). Then it is known that the solution satisfies

lim
t→∞

s(t)
t

= c∗ (1.6)

and limt→∞ w(t, x) = 1 locally uniformly in [0, ∞). Furthermore, a sharper estimate of the solution 
(w(t, x), s(t)) has been derived by Du–Matsuzawa–Zhou [3] with use of (q∗(z), c∗) as follows: for any spread-
ing solution (w(t, x), s(t)) of (1.5), there exists a constant ŝ ∈ R such that
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lim
t→∞

{s(t) − c∗t− ŝ} = 0, lim
t→∞

s′(t) = c∗ (1.7)

and

lim
t→∞

sup
0≤x≤s(t)

|w(t, x) − q∗(s(t) − x)| = 0. (1.8)

See also the work of Liu–Lou [9], where similar asymptotic results were obtained for (1.5) by putting Robin 
boundary condition at x = 0 in place of the Neumann condition.

In what follows, we will study whether any spreading solution (u(t, x), h(t)) of (FBP) satisfies analogous 
asymptotic estimates such as (1.6)–(1.8) or not. Furthermore we are intensely interested in what kind of 
influences are given by the Dirichlet boundary condition at x = 0 on the asymptotic behavior of the solution. 
We finally put the following assumption on f :

(A.3) (SWP) has a unique solution (q(z), c) = (q∗(z), c∗).

Functions that fulfill (A.3) include various types of nonlinearities such as monostable, bistable and combus-
tion types that were discussed in e.g. [2], [3], [6] and [9]. It is known that Holling’s type III nonlinearity 
also satisfies (A.3) (see also Kawai–Yamada [7]).

Our first result is given by the following theorem which corresponds to (1.6) for any spreading solution 
of (1.5).

Theorem 2. Assume (A.1), (A.2) and (A.3). Let (u, h) be any solution of (FBP) satisfying (1.4). Then

lim
t→∞

h(t)
t

= c∗,

where c∗ is a positive number in (A.3).

This result implies that h(t) = c∗t +o(t) as t → ∞. We can also give a sharper estimate for h(t) although 
its proof requires a lengthy argument.

Theorem 3. Assume (A.1), (A.2) and (A.3). Let (u, h) be any solution of (FBP) satisfying (1.4) and let 
(q∗(z), c∗) be a unique solution of (SWP). Then there exists a constant Ĥ ∈ R such that

lim
t→∞

(h(t) − c∗t) = Ĥ and lim
t→∞

h′(t) = c∗.

Moreover it holds that

lim
t→∞

sup
h(t)/2≤x≤h(t)

|u(t, x) − q∗(h(t) − x)| = 0.

Remark 1. Theorem 3 implies that the semi-wave (q∗, c∗) is very important in the estimate of any spreading 
solution in the range h(t)/2 ≤ x ≤ h(t) for sufficiently large t. Therefore, the Dirichlet boundary condition 
at x = 0 does not give any serious influence on asymptotic behaviors of h(t) and u(t, x) in a large region 
around the spreading front x = h(t). This is the same as in the case where Robin boundary condition is 
imposed at the fixed boundary ([9]).

We can prove, in a different way from previous works, a key lemma (Lemma 2) for Theorem 3. Our 
method is to employ the representation of a stationary solution to get an estimate at a moving point x = ct

for c > 0.
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This paper is organized as follows: in Section 2 we give some properties on the stationary problem and 
the semi-wave problem and prepare a comparison principle; Section 3 is devoted to the proofs of the main 
theorems.

2. Preliminary results

2.1. Stationary problem (SP)

The existence of a positive solution to (SP) follows from Lemma 1.

Lemma 1. Assume that f satisfies (A.1) and (A.2). Then (SP) has a unique solution v∗.

Proof. Let v(x; p) be a solution of the following initial value problem

{
dvxx + f(v) = 0 for x ≥ 0,
v(0) = 0, vx(0) = p > 0.

(2.1)

Then it is easy to see that v(x; p) satisfies

d

2vx(x; p)2 + F (v(x; p)) = dp2

2 , (2.2)

where F (v) is defined in (A.2). In vvx-plane, v(x; p) corresponds to an orbit starting from (v, vx) = (0, p). 
By (A.1) and (A.2), there exists a unique number p∗ > 0 such that d(p∗)2/2 = F (1). This fact implies 
the existence of a unique orbit which connects (0, p∗) and (1, 0) in vvx-plane. Clearly, v(x; p∗) is a unique 
solution to (SP). �
2.2. Semi-wave problem (SWP)

Here we will briefly explain how to solve (SWP). We follow the argument of Du and Lou [2] and consider 
the following problem instead of (SWP):

⎧⎨
⎩dq′′ − cq′ + f(q) = 0, q(z) > 0 for z > 0,
q(0) = 0, lim

z→∞
q(z) = 1

(2.3)

for any given c ≥ 0. It is effective to employ the phase plane method to approach (2.3). We introduce a new 
variable p = q′ and rewrite the first equation of (2.3) as follows:

⎧⎨
⎩
q′ = p,

p′ = 1
d
(cp− f(q)).

(2.4)

Note that a solution of (2.3) corresponds to a trajectory starting from a suitable point (q, p) = (0, ω) on 
p-axis and arriving at (q, p) = (1, 0) in qp-plane. If such a trajectory (q(z), p(z)) satisfies p(z) > 0 for all 
z ≥ 0, then one can express the trajectory as p = p(q) for q ∈ [0, 1). It satisfies

⎧⎪⎨
⎪⎩

dp

dq
= 1

d

(
c− f(q)

p

)
for 0 ≤ q < 1,

p(0) = ω, p(1) = 0
(2.5)
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with some ω > 0. By virtue of f ′(1) < 0, (q, p) = (1, 0) is a saddle point for (2.5); therefore, there exist 
two trajectories around (1, 0) for q < 1; one approaching (1, 0) and the other leaving (1, 0). We will take a 
trajectory approaching (1, 0) from q < 1. Denote this trajectory by p = p(q; c) for each c ≥ 0. It is possible 
to show that q(z; c) satisfies

lim
q→1

dp

dq
(q; c) =

c−
√

c2 − 4df ′(1)
2d < 0.

If c = 0, then assumption (A.2) assures that p(q; 0) exists for all q ∈ [0, 1) and p(0; 0) > 0. Therefore we see 
that, if c > 0 is small, then p(q(z); c) exists for all z ≥ 0 and p(0; c) > 0. Here we should recall the result 
of Du and Lou [2, Lemma 6.1], which asserts that c → p(q; c) is strictly decreasing as long as it exists. So 
define

c0 = sup{ξ > 0 | p(q; c) > 0 for q ∈ [0, 1) and c ∈ [0, ξ]}.

Then for each c ∈ [0, c0), there exists a unique trajectory connecting (q, p) = (0, ω) with ω > 0 and 
(q, p) = (1, 0). This trajectory corresponds to a solution (q(z), p(z)) = (qc(z), pc(z)) of (2.3) and satisfies

p(0; c) = q′c(0) = lim
z→0

q′c(z).

Therefore, if we want to look for a solution to (SWP), we only have to find c satisfying

μp(0; c) = c. (2.6)

In (2.6) μp(0; c) is strictly decreasing for c ∈ [0, c0] and the right-hand side is strictly increasing for c ≥ 0. 
Thus the solution of (2.6) is unique if it exists. Our assumption (A.3) implies that (2.6) has a unique solution 
c = c∗; so that the solution q∗ of (SWP) is given by

q∗(z) = qc∗(z).

2.3. Comparison principle

In the study of asymptotic behaviors of global solutions to (FBP), the comparison theorem plays a very 
important role (for the proof see [6, Theorem 2.2]).

Theorem 4. Assume (A.1) and let d, μ and T be positive numbers. Let (u, h) satisfy
⎧⎪⎪⎨
⎪⎪⎩
ut ≥ duxx + f(u), (t, x) ∈ Ω,

u(t, 0) ≥ 0, u(t, h(t)) = 0, t ∈ (0, T ],

h
′(t) ≥ −μux(t, h(t)), t ∈ (0, T ],

(2.7)

where Ω = {(t, x) ∈ R2 | 0 < x < h(t), 0 < t ≤ T}. Moreover, let (u, h) satisfy (2.7) with “≥” and “Ω” 
replaced by “≤” and “Ω = {(t, x) ∈ R2 | 0 < x < h(t), 0 < t ≤ T}”, respectively. If h(0) ≤ h(0) and 
u(0, x) ≤ u(0, x) in [0, h(0)], then it holds that

h(t) ≤ h(t) for t ∈ [0, T ], u(t, x) ≤ u(t, x) for (t, x) ∈ Ω.

Remark 2. When (u, h) satisfies (2.7), h(0) ≥ h0 and u(0, x) ≥ u0(x) in [0, h0], such a pair (u, h) is called 
an upper solution of (FBP) for 0 ≤ t ≤ T . A lower solution is defined when (u, h) in Theorem 4 meets 
h(0) ≤ h0 and u(0, x) ≤ u0(x) in [0, h(0)].
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3. Proofs of main theorems

3.1. Proof of Theorem 2

Let (u0, h0) satisfy (1.1). We take a function û0(x) satisfying û0 ∈ C[0, h0] ∩ C2(0, h0),

û′
0(0) = û0(h0) = 0 and û0(x) ≥ u0(x), û0(x) > 0 in [0, h0).

Let (w, s) be the solution of (1.5) with initial data (w0, s0) replaced by (û0, h0). By the strong maximum 
principle w(t, x) > 0 for t > 0 and 0 ≤ x < s(t); so that w(t, 0) > 0 = u(t, 0) for t > 0. Theorem 4 implies

s(t) > h(t) and w(t, x) > u(t, x) for t > 0, 0 < x < h(t). (3.1)

Recall that (u, h) is a spreading solution of (FBP). Hence (3.1) assures that (w, s) is also a spreading solution 
of (1.5), which satisfies

lim
t→∞

s(t) = ∞ and lim
t→∞

w(t, x) = 1 locally uniformly in [0,∞).

When f satisfies (A.1), (A.2) and (A.3), the argument used in the proof of [2, Theorem 1.10] is valid to 
derive (1.6). Thus we see

lim sup
t→∞

h(t)
t

≤ lim
t→∞

s(t)
t

= c∗, (3.2)

where c∗ is the positive constant in (A.3).
In what follows, we will show

lim inf
t→∞

h(t)
t

≥ c∗. (3.3)

Take any c ∈ (0, c∗) such that c is sufficiently close to c∗. We now consider the following problem to construct 
a lower solution to (FBP):

{
dq′′ − cq′ + f(q) = 0,
q(0) = 0, q′(0) = c∗/μ.

(3.4)

Let q = qc(z) be the solution of (3.4). In qp-plane of §2.2, this solution corresponds to a trajectory of (2.4)
starting from (q, p) = (0, c∗/μ) on p-axis. By the phase plane analysis, we can show that this trajectory hits 
q-axis at q = Qc ∈ (0, 1) because c is smaller than c∗ and sufficiently close to c∗. This fact implies that there 
exists a unique number zc > 0 such that

q′c(z) > 0 for z ∈ [0, zc), q′c(zc) = 0 and qc(zc) = Qc.

We may consider that Qc is very close to 1 by making c sufficiently close to c∗. We now use the notation 
in §2.1. In vvx-plane, we choose a trajectory (v(x; p), vx(x; p)) corresponding to (2.1) such that the trajectory 
passes through (v, vx) = (Qc, 0). Since v(x; p) must satisfy (2.2), we get

p = pc :=
√

2F (Qc)
d

.

Let v = vc(x) be the solution of (2.1) with vx(0) = pc. Then there exists a unique number xc > 0 such that

v′c(x) > 0 for x ∈ (0, xc), v′c(xc) = 0 and vc(xc) = Qc.
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We are ready to construct a lower solution to (FBP). Define u(t, x) and h(t) by

h(t) = ct + xc + zc, u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
qc(h(t) − x), h(t) − zc ≤ x ≤ h(t),
Qc, xc < x < h(t) − zc,

vc(x), 0 ≤ x ≤ xc.

We will show that (u(t, x), h(t)) is a lower solution to (FBP). For x ∈ (0, xc) ∪ (h(t) − zc, h(t)), u(t, x)
satisfies

ut − duxx = f(u).

It holds for x ∈ (xc, h(t) − zc) that

ut − duxx = 0 ≤ f(u) = f(Qc)

because, when c(< c∗) is close to c∗, Qc is close to 1 and f(Qc) > 0 by (A.1). Moreover, it is easy to show 
that

h′(t) = c ≤ c∗ = −μux(t, h(t)) = μq′c(0) for t > 0,

u(t, 0) = 0, u(t, h(t)) = 0 for t > 0.

Here observe that the solution v∗ of (SP) satisfies

v∗(x) > vc(x) for x ∈ (0, xc)

by the phase plane analysis. Therefore, since limt→∞ u(t, x) = v∗(x) locally uniformly in [0, ∞), there exists 
a constant T0 = T0(c) such that

h(T0) ≥ h(0) = xc + zc, u(T0, x) ≥ u(0, x) for 0 ≤ x ≤ h(0).

Then Theorem 4 assures

h(t) ≤ h(t + T0) for t > 0, u(t, x) ≤ u(t + T0, x) for t > 0 and 0 < x < h(t). (3.5)

Hence

lim
t→∞

h(t)
t

≥ lim
t→∞

h(t− T0)
t

= lim
t→∞

c(t− T0) + xc + zc
t

= c.

Since c is an arbitrary number such that c∗ − c > 0 is sufficiently small, we get (3.3). Thus the proof is 
complete. �
Remark 3. In Liu–Lou [8], the same result as Theorem 2 was given without proof for (FBP) with the 
Dirichlet condition replaced by Robin condition when f is the typical monostable or combustion type.

3.2. Proof of Theorem 3

Since f ′(1) < 0, there exist ρ > 0 and η > 0 such that

f(u) ≥ ρ(1 − u) for 1 − η < u < 1. (3.6)

We will prove Theorem 3 by using a series of lemmas.
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Lemma 2. Let (u, h) be any solution of (FBP) satisfying (1.4). Let c be any positive number such that 
c∗ − c > 0 is sufficiently small. Then there exist positive numbers δ, M and T depending on c such that

u(t, ct) ≥ 1 −Me−δt for t ≥ T. (3.7)

Proof. Define u and Qc as in the proof of Theorem 2. For any c ∈ (0, c∗) such that c is sufficiently close 
to c∗, it follows from (3.5) that

u(t + T0, x) ≥ u(t, x) = Qc for t ≥ 0, xc ≤ x ≤ xc + ct. (3.8)

We make c sufficiently close to c∗ (if necessary) so that Qc ≥ 1 − η. Take any 0 < α < 1 and choose a 
sufficiently large T1 such that αcT1 > xc.

For any fixed T ≥ T1 consider the following initial boundary value problem:
⎧⎪⎪⎨
⎪⎪⎩

Ψt = dΨxx + ρ(1 − Ψ), t > 0, αcT < x < cT,

Ψ(t, αcT ) = Ψ(t, cT ) = Qc, t > 0,
Ψ(0, x) = Qc, αcT ≤ x ≤ cT.

(3.9)

Here it should be noted from (3.8) that

u(t + T + T0, x) ≥ u(t + T, x) = Qc for t ≥ 0, αcT ≤ x ≤ cT.

Hence

u(t + T + T0, x) ≥ Qc = Ψ(t, x) for (t, x) ∈ Γα,c,T ,

where

Γα,c,T = {(0, x) | αcT ≤ x ≤ cT} ∪ {(t, αcT ) | t ≥ 0} ∪ {(t, cT ) | t ≥ 0}.

Since Qc < 1, the standard comparison theorem for (3.9) (cf. Protter–Weinberger [10], Smoller [13]) gives

1 − η ≤ Qc ≤ Ψ(t, x) ≤ 1 for t ≥ 0, αcT ≤ x ≤ cT.

Moreover it follows from (3.6) that

f(Ψ(t, x)) ≥ ρ(1 − Ψ(t, x)) for t ≥ 0, αcT ≤ x ≤ cT.

Therefore, applying the comparison theorem to (3.9) again, one can see

u(t + T + T0, x) ≥ Ψ(t, x) for t ≥ 0, αcT ≤ x ≤ cT. (3.10)

As the second step we will give an estimate for Ψ from below. For this purpose, it should be noted that 
Ψ satisfies

lim
t→∞

Ψ(t, x) = ζ(x) uniformly for x ∈ [αcT, cT ],

where ζ is a solution of
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{
dζxx + ρ(1 − ζ) = 0, αcT < x < cT,

ζ(αcT ) = ζ(cT ) = Qc.

Here ζ is expressed as

ζ(x) = 1 − 1 −Qc

1 + A1−α
{A−αe

√
ρ/dx + Ae−

√
ρ/dx} ∈ (Qc, 1) (3.11)

with A = e
√

ρ/dcT . If we define w(t, x) = ζ(x) − Ψ(t, x), then w meets

⎧⎪⎪⎨
⎪⎪⎩
wt = dwxx − ρw, t > 0, αcT < x < cT,

w(t, αcT ) = w(t, cT ) = 0, t > 0,
w(0, x) = ζ(x) −Qc > 0, αcT ≤ x ≤ cT.

It is easy to see

0 < w(t, x) = ζ(x) − Ψ(t, x) ≤ (1 −Qc)e−ρt for t ≥ 0, αcT < x < cT.

Hence it follows from (3.10) that

u(t + T + T0, x) ≥ Ψ(t, x) ≥ ζ(x) − (1 −Qc)e−ρt for t > 0, αcT ≤ x ≤ cT. (3.12)

Setting x = (1 + α)cT/2 in (3.11), we deduce from A−αe
√

ρ/dx + Ae−
√
ρ/dx = 2A(1−α)/2 that

ζ
(1 + α

2 cT
)

= 1 − 2(1 −Qc)
1 + A1−α

A
1−α

2

≥ 1 − 2(1 −Qc)e−(1−α)
√
ρ/dcT/2.

This estimate together with (3.12) implies

u
(
t + T,

1 + α

2 cT
)
≥ ζ

(1 + α

2 cT
)
− (1 −Qc)e−ρ(t−T0)

≥ 1 − 2(1 −Qc)e−(1−α)
√

ρ/dcT/2 − (1 −Qc)e−ρ(t−T0)

for t ≥ T0. We set t = εT for any ε > 0 in the above estimate (take T large enough to satisfy εT ≥ T0); so 
that

u

(
(1 + ε)T, 1 + α

2 cT

)
≥ 1 − (1 −Qc)

{
2e−(1−α)

√
ρ/dcT/2 + eρT0e−ρεT

}

≥ 1 − M

2 (e−(1−α)
√

ρ/dcT/2 + e−ρεT )
(3.13)

with M = 2(1 −Qc) max{2, eρT0}. We again set t = (1 +ε)T in (3.13) with T satisfying T ≥ T1 and εT ≥ T0; 
then we get

u

(
t,

(1 + α)c
2(1 + ε) t

)
≥ 1 − M

2 (e−(1−α)
√
ρ/dct/{2(1+ε)} + e−ρεt/(1+ε)) (3.14)

for t ≥ max{(1 + ε)T1, {(1 + ε)/ε}T0}.
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Let c ∈ (0, c∗) be any number such that c is sufficiently close to c∗. Then one can choose α ∈ (0, 1), ε > 0
and c̃ ∈ (c, c∗) satisfying

c = (1 + α)c̃
2(1 + ε)

(Indeed both ε and 1 − α must be sufficiently small to achieve c̃ < c∗.) Then (3.14) is valid with c replaced 
by c̃. Therefore, putting

δ = min
{

(1 − α)c̃
2(1 + ε)

√
ρ

d
,

ρε

1 + ε

}

we deduce

u(t, ct) ≥ 1 −Me−δt for t ≥ max
{

(1 + ε)T1,
1 + ε

ε
T0

}
.

Thus the proof is complete. �
Remark 4. In Lemma 2 it can be seen from its proof that one can choose δ satisfying δ ∈ (0, ρ) such that 
u(t, ct) ≥ 1 −Me−δt for large t, where ρ is a positive constant in (3.6).

We can also extend Lemma 2 to the following lemma.

Lemma 3. Let (u, h) be any solution of (FBP) satisfying (1.4). Let c ∈ (0, c∗) be any number such that c is 
sufficiently close to c∗. Then there exists a number T > 0 such that

u(t, x) ≥ 1 −Me−δt for t ≥ T and h(t)
2 ≤ x ≤ ct,

where M and δ are the positive constants given in Lemma 2.

Proof. Since c is sufficiently close to c∗ (e.g. c > 2c∗/3) and limt→∞ h(t)/t = c∗ by Theorem 2, we see 
h0 ≤ h(t)/2 ≤ ct for t > T with some large T > 0; and {(t, x) ∈ R

2 | t ≥ T, h(t)/2 ≤ x ≤ ct} is not an empty 
set. By Theorem 1 (or Lemma A.1 in Appendix) we find ux(t, x) < 0 for t > 0, max{h0, h(t)/2} ≤ x ≤ h(t). 
Hence

u(t, x) ≥ u(t, ct) for t > T, h(t)/2 ≤ x ≤ ct.

Note here that u(t, ct) ≥ 1 −Me−δt for t ≥ T by Lemma 2 (we choose T large if necessary). Thus we get 
the conclusion. �

We will establish the uniform boundedness of |h(t) − c∗t| to study the asymptotic behavior of h(t) − c∗t

as t → ∞.

Lemma 4. Let (u, h) be any solution of (FBP) satisfying (1.4). Then there exist two numbers H1 and H2
in R such that

H1 ≤ h(t) − c∗t ≤ H2

for all t > 0.
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Proof. Let (w, s) be the solution of (1.5) with initial data (w(0, ·), s(0)) = (û0, h0) as in the proof of 
Theorem 2. By the result of Du–Matsuzawa–Zhou [3, Proposition 3.1] to the Neumann problem, there 
exists a positive constant Ĥ such that

|s(t) − c∗t| ≤ Ĥ for all t ≥ 0.

Therefore, making use of (3.1), we see

h(t) − c∗t < s(t) − c∗t < Ĥ for all t ≥ 0. (3.15)

In what follows, we will show a lower bound of h(t) − c∗t. Take c ∈ (0, c∗) such that c is sufficiently close 
to c∗. Then it follows from Lemma 2 that (3.7) holds true for some positive constants δ, M and T . We next 
choose T ∗ ≥ T such that Me−δT∗ ≤ η/2, where η is a positive number appearing in (3.6). Let (q∗(z), c∗) be 
the solution of (SWP). Since q∗(z) is a strictly increasing function in z satisfying limz→∞ q∗(z) = 1, there 
exists a positive number z∗ satisfying q∗(z∗) = 1/2. Recalling u(T ∗, cT ∗) ≥ 1 −Me−δT∗ by (3.7), we can 
choose x∗ ∈ (0, z∗) such that

u(T ∗, cT ∗ + x) ≥ 1 −Me−δT∗

2 for all x ∈ [0, x∗].

After these preparations we define⎧⎨
⎩
h(t) = c∗(t− T ∗) + σM(e−δt − e−δT∗) + cT ∗ + x∗, t ≥ T ∗,

u(t, x) = (1 −Me−δt)q∗(h(t) − x), t ≥ T ∗, ct ≤ x ≤ h(t),
(3.16)

where σ > 0 is a parameter to be determined later. Note ct < h(t) for t ≥ T ∗ when T ∗ is sufficiently large. 
Since u satisfies (3.7) and 0 < q∗(z) < 1 for z > 0, it is easy to see

u(t, ct) = (1 −Me−δt)q∗(h(t) − ct) ≤ 1 −Me−δt ≤ u(t, ct)

and u(t, h(t)) = 0 for t ≥ T ∗. We also see that

h′(t) − (−μux(t, h(t))) = (c∗ − σδMe−δt) − μ(1 −Me−δt)(q∗)′(0)

= (c∗ − σδ)Me−δt

≤ 0

if σ satisfies σδ ≥ c∗. Moreover, it is possible to follow the arguments in the work of Du–Matsuzawa–Zhou 
[3, Lemma 3.3] to show

ut − duxx − f(u) ≤ 0 for t ≥ T ∗,
h(t)
2 ≤ x ≤ h(t).

Since limt→∞ h(t)/t = c∗, one can deduce

h(T ∗) = cT ∗ + x∗ ≤ h(T ∗)

by making T ∗ large (if necessary). Finally, if cT ∗ ≤ x ≤ cT ∗ + x∗, then

u(T ∗, x) = (1 −Me−δT∗
)q∗(h(T ∗) − x) ≤ (1 −Me−δT∗

)q∗(x∗) < 1 −Me−δT∗

2 ≤ u(T ∗, x)

(use q∗(x∗) < q∗(z∗) = 1/2).
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We are ready to apply the comparison principle between (u, h) and (u, h). Hence it is possible to prove

h(t) ≤ h(t), u(t, x) ≤ u(t, x) for t ≥ T ∗,
h(t)
2 ≤ x ≤ h(t) (3.17)

in the same way as Theorem 2. Since h(t) −c∗t is uniformly bounded for t ≥ T ∗, (3.17) implies that h(t) −c∗t

is uniformly bounded from below for all t ≥ 0. �
Lemma 5. Let (u, h) be any solution of (FBP) satisfying (1.4). Then there exists a constant H∗ ∈ R such 
that

lim
t→∞

(h(t) − c∗t) = H∗ and lim
t→∞

h′(t) = c∗.

Proof. Let H(t) := h(t) − c∗t. We first show, for any k ∈ R, H(t) − k changes its sign at most finitely 
many times. Its proof can be carried out essentially in the same way as the work of Liu–Lou [9, Lemma 6.2]
(see also [4, Proposition 3.6]) by using the zero number argument. Since H(t) is globally bounded by 
Lemma 4, there exist a sequence {tn} and a constant H∗ in R such that limn→∞ H(tn) = H∗. Let H̃ ∈ R

be any accumulating point of H(t) as t → ∞, that is, limn→∞ H(t′n) = H̃ for some sequence {t′n} ⊂ R. 
If H∗ �= H̃, then H(t) − k for min{H∗, H̃} < k < max{H∗, H̃} changes its sign infinitely many times 
because limn→∞ H(tn) = H∗ and limn→∞ H(t′n) = H̃. This is a contradiction. Therefore H̃ = H∗; and 
limt→∞ H(t) = limt→∞(h(t) − c∗t) = H∗.

We next prove limt→∞ h′(t) = c∗. Otherwise it holds for a sequence {tn} with limn→∞ tn = ∞ such that 
lim infn→∞ h′(tn) �= c∗. Let Hn(t) = H(t + tn). Then it is easy to see in the same way as [4, Lemma 3.11]
that, up to a subsequence {t̃n} ⊂ {tn} with limn→∞ t̃n = ∞,

lim
n→∞

H(t̃n + ·) = H∗ in C1+α
loc (R)

for any α ∈ (0, 1/2). Hence limn→∞ H ′(t̃n) = 0, and limn→∞ h′(t̃n) = c∗. This is a contradiction, and thus 
we obtain the conclusion. �
Proof of Theorem 3. Since we have shown Lemma 5, we only have to derive a certain kind of sharp estimate 
for u(t, x). It follows from (3.17) that

(1 −Me−δt)q∗(h(t) − x) ≤ u(t, x) for t ≥ T ∗,
h(t)
2 ≤ x ≤ h(t), (3.18)

where h(t) is defined in Lemma 4. On the other hand, making use of (3.1) and [3, Lemma 3.2], we can 
deduce

u(t, x) ≤ (1 + M ′e−δ′t)q∗(h(t) − x) for t ≥ T ∗,
h(t)
2 ≤ x ≤ h(t) (3.19)

with some positive constants M ′ and δ′ (we again take T ∗ large if necessary). In (3.19)

h(t) = c∗(t− T ∗) −M ′σ′(e−δ′t − e−δ′T∗
) + C∗

with some suitable positive numbers σ′ and C∗. Since u satisfies (3.18) and (3.19), it is sufficient to repeat 
the argument developed in the proof of [3, Theorem 1.2] (see also [4]) in order to show

lim
t→∞

sup
h(t)/2≤x≤h(t)

|u(t, x) − q∗(h(t) − x)| = 0.

The proof is complete. �
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Remark 5. Let (u, h) be any solution to (FBP) satisfying (1.4). Under the same assumptions as Theorem 3, 
it may hold that

lim
t→∞

sup
0≤x≤h(t)

|u(t, x) − min{v∗(x), q∗(h(t) − x)}| = 0,

where q∗(z) is the function in (A.3). We will discuss this matter elsewhere.

4. Concluding remarks

We can apply methods and ideas in the preceding sections to more general nonlinearity f . In [7], free 
boundary problem (1.5) has been discussed when f satisfies the following conditions:

(A.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f is of class C1[0,∞) and satisfies f(0) = f(u∗
1) = f(u∗

2) = f(u∗
3) = 0,

f ′(0) > 0, f ′(u∗
1) < 0, f ′(u∗

2) > 0, f ′(u∗
3) < 0,

u∗
3∫

u∗
1

f(u)du > 0

and f(u) �= 0 for u �= 0, u∗
1, u

∗
2, u

∗
3.

Under (A.4) it was shown that (1.5) has two types of spreading solutions (w(t, x), s(t)):

(1) small spreading; lim
t→∞

s(t) = ∞ and lim
t→∞

w(t, x) = u∗
1 uniformly in any compact set of [0, ∞),

(2) big spreading; lim
t→∞

s(t) = ∞ and lim
t→∞

w(t, x) = u∗
3 uniformly in any compact set of [0, ∞).

When we consider (FBP) under (A.4), we can prove that (FBP) also admits two types of spreading 
solutions such as

(i) small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v∗1(x) uniformly in any compact set of [0, ∞),
(ii) big spreading; lim

t→∞
h(t) = ∞ and lim

t→∞
u(t, x) = v∗3(x) uniformly in any compact set of [0, ∞).

Here v∗i (i = 1, 3) is a solution of the following stationary problem:

⎧⎨
⎩dvxx + f(v) = 0, v(x) > 0 for x > 0,
v(0) = 0, lim

x→∞
v(x) = u∗

i (i = 1, 3).
(4.1)

The existence and uniqueness of the solution v∗i satisfying (4.1) can be shown with use of the phase-plane 
analysis under (A.4). We can give some sufficient conditions for the occurrence of such small spreading and 
big spreading solutions. This result will be discussed elsewhere.

The arguments developed in the preceding sections are valid with obvious modifications for the study of 
asymptotic profiles of spreading solutions under (A.4). The corresponding semi-wave problem is given by

⎧⎨
⎩dq′′ − cq′ + f(q) = 0, q(z) > 0 for z > 0,
q(0) = 0, μq′(0) = c, lim

z→∞
q(z) = u∗

i , (i = 1, 3).
(4.2)

For (4.2) with i = 1, it was proved in [7] that there exists a unique solution (q(z), c) = (qS(z), cS). Therefore, 
we can show the following estimate similarly to Theorem 3.
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Theorem 5. Under (A.4), let (u, h) be any small spreading solution of (FBP) satisfying sup0≤x≤h(T ) u(T, x)
< u∗

2 with some T > 0. Then there exists a constant HS ∈ R such that

lim
t→∞

(h(t) − cSt) = HS and lim
t→∞

h′(t) = cS .

Moreover, it holds that

lim
t→∞

sup
h(t)/2≤x≤h(t)

|u(t, x) − qS(h(t) − x)| = 0.

The solvability of (4.2) with i = 3 is delicate and there are two cases:

(Case A) There exists a unique solution (q(z), c) = (qB(z), cB) of (4.2) with i = 3 for every μ > 0.
(Case B) There exists a positive constant μ∗ such that (4.2) with i = 3 admits a unique solution 
(q(z), c) = (qB(z), cB) for every μ ∈ (0, μ∗) and no solution for every μ ∈ [μ∗, ∞).

For the proof of this fact we can refer to [7, Theorem 4.1]. If (4.2) with i = 3 has a unique solution, then it 
is possible to prove the following theorem similarly to Theorem 5.

Theorem 6. Under (A.4), let (u, h) be any big spreading solution of (FBP) and assume that (4.2) with i = 3
has a unique solution (qB(z), cB). Then there exists a constant HB ∈ R such that

lim
t→∞

(h(t) − cBt) = HB and lim
t→∞

h′(t) = cB .

Moreover, it holds that

lim
t→∞

sup
h(t)/2≤x≤h(t)

|u(t, x) − qB(h(t) − x)| = 0.

Remark 6. In Case B, (4.2) with i = 3 has no solution if μ ≥ μ∗. Under this condition, if we repeat the 
arguments in the proof of Theorem 2, we are able to show that any big spreading solution satisfies

lim
t→∞

h(t)
t

= cS

(see the corresponding result in [7, Theorem 4.2]). We infer that such a big spreading solution u(t, x) will 
be approximated by qS(h(t) − x) near x = h(t). However, we have not succeeded yet in deriving a sharp 
estimate on such u(t, x) for large t.

Acknowledgments

This paper was partly supported by Grant for Special Research Projects (2016S-059, 2017K-177, 
2017B-127), Waseda University (Y. Kaneko) and Grant-in-Aid for Scientific Research (C) (16K05244), 
JSPS (Y. Yamada). The authors would like to thank the referee for his/her careful reading and helpful 
comments.

Appendix A

Lemma A.1. Let (u, h) be any solution of (FBP). Then it holds that

ux(t, x) < 0

for all (t, x) satisfying t > 0 and max{h0, h(t)/2} ≤ x ≤ h(t).
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Proof. We will prove this lemma by the reflection method as in [2, Lemma 2.8]. Let � be any number 
satisfying

h0 < � < lim
t→∞

h(t).

Since h(t) is strictly increasing by (1.2), there exists a unique number T� > 0 such that h(T�) = �. We define 
a set Ω� by

Ω� = {(t, x) | T� ≤ t < T ∗
� and 2�− h(t) ≤ x ≤ �}

if there exists T ∗
� such that h(T ∗

� ) = 2�, or

Ω� = {(t, x) | T� ≤ t and 2�− h(t) ≤ x ≤ �}

if h(t) < 2� for all t > 0. Note that Ω� ⊂ {(t, x) | t ≥ 0 and 0 ≤ x ≤ h(t)}; so that (t, x) ∈ Ω� implies 
h(t)/2 ≤ � ≤ h(t). Consider w(t, x) defined by

w(t, x) = u(t, x) − u(t, 2�− x) for (t, x) ∈ Ω�.

Clearly, w satisfies

wt = dwxx + a(t, x)w for (t, x) ∈ Ω�,

where a(t, x) is a continuous function given by

a(t, x) =
1∫

0

f ′(θu(t, x) + (1 − θ)u(t, 2�− x))dθ.

On the lateral boundary of Ω�, w(t, �) = 0 and

w(t, 2�− h(t)) = u(t, 2�− h(t)) − u(t, h(t)) = u(t, 2�− h(t)) > 0.

Therefore, it follows from the strong maximum principle (see [10] or [13]) that w(t, x) > 0 in IntΩ�. This 
fact together with Hopf’s boundary lemma implies wx(t, �) = 2ux(t, �) < 0. Since � is any number satisfying 
max{h0, h(t)/2} ≤ � ≤ h(t) for each t > 0, one can obtain the conclusion. �
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