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We suggest a natural approach that leads to a modification of classical quasispecies 
models and incorporates the possibility of population extinction in addition to 
growth. The resulting modified models are called open. Their essential properties, 
regarding in particular equilibrium behavior, are investigated both analytically and 
numerically. The hallmarks of the quasispecies dynamics, viz. the heterogeneous 
quasispecies distribution itself and the error threshold phenomenon, can be observed 
in our models, along with extinction. In order to demonstrate the flexibility of the 
introduced framework, we study the inverse problem of fitness allocation under the 
biologically motivated criterion of steady-state fitness maximization. Having in mind 
the complexity of numerical investigation of high-dimensional quasispecies problems 
and the fact that the actual number of genotypes or alleles involved in a studied 
process can be extremely large, we also build continuous-time distributed open 
quasispecies models. The obtained results may serve as an initial step to developing 
mathematical models that involve directed therapy against various pathogens.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical modeling has long been a key theoretical tool connecting various pictorial and verbal 
models of RNA virus evolution, establishment, and extinction, as well as in vitro and in vivo experiments 
aimed to understand and potentially fight this rich group of human pathogens [22]. Arguably, the onset 
of this specific modeling, which was done originally in terms of self-replicating polynucleotide sequences to 
study the problem of the origin of life, can be traced back to the founding papers by M. Eigen et al. [24,
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26–29], as well as by J.F. Crow and M. Kimura [18,19,34]. They proposed so-called quasispecies models, 
which were later connected directly to RNA virus evolution [21]; see [1,23] for a more recent account.

For such quasispecies models, two key phenomena were observed. The first one was the highly hetero-
geneous cloud of mutants of the most fit (or master) sequence at the selection-mutation equilibrium. This 
cloud was called the quasispecies, hence the name of the model. The second phenomenon was the so-called 
error threshold. It can be described as the critical mutation rate (or probability, depending on the settings of 
a particular model) that divides the selective phase of the virus evolution, i.e., the dominance of the master 
sequence in the population, from the random phase, where the distribution of various genotypes becomes 
essentially uniform.

A great deal of mathematical investigation was devoted to study exact properties of the quasispecies 
and error threshold; see, e.g., the review in [6]. In a nutshell, the exact details of the structure of the 
mutation-selection equilibrium and the precise position (if it exists at all) of the error threshold depend 
in a subtle way on the implemented fitness landscape. They are in general far from the oversimplified and 
widely referred formula that the error threshold is typically given by the selective advantage of the master 
sequence over the sequence length; see, e.g., [32,42,48] for specific examples.

From a more practical point of view, the error threshold concept led to the idea of lethal mutagenesis, i.e., 
the process of virus extinction induced by elevated mutation rates [25], and eventually to first mutagenetic 
experiments [14]. The undeniable influence of the error threshold phenomena on the idea of lethal mutagen-
esis notwithstanding, there existed an internal contradiction between these two concepts from the modeling 
point of view. The fact is that the quasispecies models were formulated as systems of ordinary differential 
equations (ODEs) describing the distribution of the relative frequencies of the master sequence and its 
various mutants, but not their population sizes (or densities with respect to a certain external measure). It 
was therefore simply meaningless to discuss possible extinction within the framework of these models [8,49]. 
In [8], it was reasonably noticed that the process of the loss of the master sequence in the population (the 
error threshold) should in general be distinguished from the actual extinction of a whole virus population, 
and the original quasispecies models would have to be modified to incorporate the possibility of population 
extinction. The paper [8] was the first to suggest such a modification. Under a number of simplifying as-
sumptions (e.g., the multiplicativity of the fitness landscape, no back or compensatory mutations, etc.), the 
following simple mathematical condition for population extinction was obtained: the product of the absolute 
fitness of the master sequence and the average biological fitness should be less than one; see also [46].

Other examples of quasispecies models including the possibilities of lethal mutations and population 
extinction were given in [16,36,45]. They were reviewed and put in a general context in [46]. Among other 
things, the analysis (analytical and/or numerical) of these models showed, quite naturally, that taking into 
account one or another more realistic assumption would lead to corrections of the original extinction criterion 
obtained in [8]. Moreover, analytical results are usually possible only under some significant simplifications 
regarding the fitness and mutational landscapes.

The main goal of the present text is to develop a relatively simple but yet general and flexible modeling 
framework incorporating growth and mortality characteristics, as well as to investigate its basic properties. 
Due to the possibility of population extinction, our models can be called open, in contrast to the classical 
quasispecies models (formulated in terms of relative frequencies) which can be called closed. Our approach 
differs from those presented in the aforementioned works [8,16,36,45,46], since we do not start with any 
radical simplifying assumptions, e.g., we do not fix the fitness or mutational landscapes. Our requirement 
is to stay connected with the classical quasispecies models as close as reasonably possible. Among other 
things, such a requirement potentially yields the opportunity to support our study with a number of existing 
mathematical techniques for the classical quasispecies models; see, e.g., [12,15,42–44].

In order to demonstrate the flexibility of our framework in case of ODE-based dynamics, we also study 
the inverse problem of fitness allocation under the biologically motivated criterion of steady-state fitness 
maximization.
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Furthermore, having in mind the complexity of numerical investigation of high-dimensional quasispecies 
problems and the fact that the actual number of genotypes or alleles involved in a studied process can 
be extremely large, we propose continuous-time distributed open quasispecies models with growth and 
mortality. Note that the first particular distributed version of a classical quasispecies model was in fact 
introduced in [18,34]. It was formulated as an integro-differential equation with respect to the sought-after 
time-varying probability density describing the relative frequencies of considered genotypes. A rigorous 
mathematical investigation of a class of such distributed models was provided in [9–13]. The dynamics in 
our distributed formulation is not restricted to the probability density constraint and takes growth and 
mortality characteristics into account.

It is also relevant to point out that a number of other open distributed models were studied in the 
context of Adaptive Dynamics [38,39]. For example, the paper [39] considered an open distributed integro-
differential model with integral terms describing mutations and competition. Under certain assumptions, it 
was proved that, for the mutation rate parameter tending to zero, the solution of the Cauchy problem for 
the integro-differential dynamic equation in rescaled time should converge in an appropriate L∞-norm to 
an evolutionary stable distribution for the model without mutations. Furthermore, the paper [38] investi-
gated open distributed models with a specific nonlinear mortality term that included a survival threshold 
parameter, became dominant for sufficiently small distribution values, and had a very small relative impact 
for sufficiently large distribution values. Regarding the competition and mutation terms in [38], the former 
was taken in an integral form, while two cases for the latter were separately considered, namely diffusion 
(Laplacian) and integral mutation terms. The long-time behavior of the solutions for the mutation rate 
parameter tending to zero was demonstrated with particular examples.

In comparison, the current work develops ODE-based and distributed open quasispecies models and 
studies the properties of the corresponding steady states as well as the steady-state fitness maximization 
problem. In particular, the mutation rates are not supposed to tend to zero, and we are interested in 
the error threshold or extinction phenomena appearing with the increase of the mutation rate parameter. 
Moreover, similarly to the open replicator models proposed in [4,37], we incorporate linear mortality terms 
(in contrast to the nonlinear mortality term from [38] with a much sharper behavior), and also a nonlinear 
growth saturation term.

Despite the mostly mathematical content of this work, it has to be emphasized that the general method-
ology leading to our approach can be applied to a variety of different biological systems, including not only 
viruses but also bacteria, cancer cells, etc. Instead of descriptions of particular genotypes, more aggregated 
quantities may in principle be treated in quasispecies models. In particular, we keep in mind future applica-
tions of the proposed framework to developing mathematical models that involve directed therapy against 
various pathogens, such as infections or cancer [35,41,50], which will be considered elsewhere.

The rest of the paper is organized as follows. In Section 2, we construct a class of ODE-based open 
quasispecies models and establish its essential properties. Section 3 investigates the corresponding steady-
state fitness maximization problem. Sections 2 and 3 also contain some related numerical simulation results. 
Section 4 is devoted to a class of continuous-time distributed open quasispecies models. A summarizing 
discussion of possible future developments is given in Section 5.

2. ODE-based open quasispecies models

2.1. Classical Eigen and Crow–Kimura quasispecies models

To make the text self-containing, we start with formulating the classical ODE-based quasispecies models.
The classical Eigen quasispecies model [26,27] is formulated via the system of ordinary differential equa-

tions
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ṗ(t) = KM p(t) − f [p(t)] p(t), t � 0, (1)

where the following notations are used:

• t � 0 is a time variable;
• p(t) = (p1(t), p2(t), . . . , pn(t))� ∈ [0, +∞)n×1 is the vector of the relative (normalized) time-varying 

frequencies of n considered genotypes (or allelic effects) labeled by 1, 2, . . . , n, 
∑n

i=1 pi(t) = 1 for all 
t � 0;

• K = {kij}ni,j = 1 ∈ [0, 1]n×n is the mutation matrix, where kij is the probability of the reproduction 
event for which an individual of genotype j produces an individual of genotype i, so that

n∑
i=1

kij = 1, j = 1, n; (2)

• M = diag [m1, m2, . . . , mn] ∈ Rn×n is the diagonal matrix whose diagonal elements form the fitness 
landscape describing the relationship between the genotypes and reproductive success;

• f [p(t)] =
∑n

i=1 mi pi(t) is the mean population fitness.

The Crow–Kimura quasispecies model [19] relies on the assumptions that the birth events are error-free 
and the mutations occur during the life time of the studied structures, i.e., the birth events and mutations 
are separated on the time scale. The corresponding dynamical system is written as

ṗ(t) =
(
M + M̂

)
p(t) − f [p(t)] p(t), t � 0, (3)

where M̂ = {μij}ni,j = 1 ∈ [0, +∞)n×n, μij denotes the rate of mutation of genotype j into genotype i,

μjj = −
∑

i ∈ {1,2,...,n} \ {j}
μij , (4)

and other notations are as in (1). The permutation invariant Crow–Kimura model [5,42] considers N +
1 classes of genotypes and is obtained from (3) by replacing n with N + 1 and introducing the tridiagonal 
matrix

M̂ = μQ, μ > 0, Q ∈ R(N+1) × (N+1),

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−N 1 0 0 . . . . . . 0 0
N −N 2 0 . . . . . . 0 0
0 N − 1 −N 3 . . . . . . 0 0
0 0 N − 2 −N . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . −N N − 1 0
0 0 . . . . . . . . . 2 −N N
0 0 . . . . . . . . . 0 1 −N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(5)

By using the properties (2), (4) as well as the definitions of M and f , one can easily verify that, for a 
solution of the system (1) or (3), the condition 

∑n
i=1 pi(0) = 1 implies 

∑n
i=1 pi(t) = 1 for all t > 0.

The models (1) and (3) are stated for closed (isolated) systems of populations, such that their interactions 
with the environment and surrounding populations of other kinds are negligible with respect to the studied 
processes. The death rates are either absent or implicitly incorporated in the fitness landscape. Since the 
state variables are interpreted as relative frequencies and the state trajectories do not leave the standard 
simplex, growth and mortality are essentially not considered.
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2.2. Open quasispecies models

From the perspective of mathematical modeling of therapy processes against infections or cancer [35,
41,50], it is relevant to investigate how various quasispecies related to certain pathogens or diseased cells 
reproduce, mutate, die, and resist to targeted attacks from therapeutic agents. For that purpose, it is 
reasonable to build open quasispecies models whose state variables are interpreted not as relative frequencies, 
but as densities with respect to a certain external measure, so that their sum does not have to be invariant, 
and one can take growth and mortality properties into account. Before developing complicated models that 
involve the dynamics of a therapeutic agent and its influence on the dynamics of studied quasispecies, it is 
useful first to treat the simpler case when the death rates of the quasispecies are constant and the growth 
terms include only constant coefficients and a saturation factor depending on the total population size. This 
corresponds to the situation when the concentration of a therapeutic agent is assumed to be nearly constant 
within the observed time interval and can therefore be excluded from the state variables. Our work focuses 
namely on such kinds of open quasispecies models with growth and mortality (see also the discussion in the 
introduction).

Let us write both systems (1) and (3) in the common form

ṗ(t) = Gp(t) − f [p(t)] p(t), t � 0, (6)

with G = {gij}ni,j = 1 ∈ Rn×n satisfying

n∑
i=1

gij = mj , j = 1, n, (7)

gij � 0 for i �= j, i = 1, n, j = 1, n. (8)

One has G = KM for (1) and G = M + M̂ for (3).
Note that a solution of (6) with 

∑n
i=1 pi(0) = 1 can be represented as

p(t) = 1∑n
i=1 ri(t)

r(t) ∀t � 0,

where

r(t) = (r1(t), r2(t), . . . , rn(t))� = c exp

⎧⎨
⎩

t∫
0

f [p(τ)] dτ

⎫⎬
⎭ p(t)

∀t � 0

is the unique solution of

ṙ(t) = Gr(t), t � 0, (9)

r(0) = c p(0),

with an arbitrary constant c ∈ R \{0}, i.e., the components of r may be understood as some size or density 
variables whose normalization leads to the relative frequencies constituting p (a similar fact was originally 
noticed in [47]).

We hence proceed from the system (9) and incorporate growth and mortality characteristics in it. The 
following notations are adopted:
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• t � 0 is a time variable;
• u(t) = (u1(t), u2(t), . . . , un(t))� ∈ [0, +∞)n×1 is the vector of the densities of n considered genotypes 

(or allelic effects) with respect to a certain external measure;
• m = (m1, m2, . . . , mn)� ∈ Rn×1 is the corresponding fitness landscape, M = diag m ∈ Rn×n;
• d = (d1, d2, . . . , dn)� ∈ [0, +∞)n×1 is the vector of the corresponding death rates, D = diag d ∈

[0, +∞)n×n;
• the growth and mutation properties are described by a matrix G ∈ Rn×n satisfying (7), (8) as well as 

by a growth saturation term ϕ (
∑n

i=1 ui(t)) depending on the total population size 
∑n

i=1 ui(t), where 
ϕ : R → [0, +∞) is an appropriate function.

Thus, we arrive at the autonomous system

u̇(t) = ϕ

(
n∑

i=1
ui(t)

)
Gu(t) − Du(t), t � 0. (10)

A similar way of introducing a growth saturation term was implemented in [4,37] as applied to open 
replicator systems.

The origin u = 0 is a trivial steady state of (10). Set the initial condition for (10) as

u(0) = u0 =
(
u0

1, u
0
2, . . . , u

0
n

)� ∈ [0,+∞)n×1. (11)

By F = (F1, F2, . . . , Fn)� : Rn×1 → Rn×1, denote the function in the right-hand side of (10):

Fi(u) = ϕ

⎛
⎝ n∑

j=1
uj

⎞
⎠ n∑

j=1
gijuj − diui

∀ u = (u1, u2, . . . , un)� ∈ Rn×1, i = 1, n.

(12)

If ϕ is differentiable, the related Jacobian matrix takes the form

DF (u) =
{
∂Fi(u)
∂uj

}n

i,j = 1
,

∂Fi(u)
∂uj

=

⎧⎪⎪⎨
⎪⎪⎩
ϕ′

(
n∑

ν=1
uν

)
n∑

ν=1
giνuν + ϕ

(
n∑

ν=1
uν

)
gii − di, i = j,

ϕ′
(

n∑
ν=1

uν

)
n∑

ν=1
giνuν + ϕ

(
n∑

ν=1
uν

)
gij , i �= j,

∀ u = (u1, u2, . . . , un)� ∈ Rn×1, i = 1, n, j = 1, n.

(13)

Assumption 2.1. m, M , d, D, and G are as given above in this subsection ((7) and (8) hold in particular). 
ϕ : R → [0, +∞) is a nonnegative continuously differentiable function such that the functions [0, +∞) �
s �−→ s ϕ(s) and [0, +∞) � s �−→ s ϕ′(s) are bounded.

In particular, the conditions imposed on the growth saturation function ϕ help to establish the existence 
and uniqueness of the solutions of the Cauchy problems (10), (11) (Theorem 2.2), as well as the biologically 
reasonable boundedness of the total population size along these solutions (Theorem 2.5).

Theorem 2.2. Let Assumption 2.1 hold. Then the nonnegative orthant [0, +∞)n×1 is positively invariant 
with respect to the system (10) (i.e., any state trajectory of (10) starting in this orthant stays there further 



I. Yegorov et al. / J. Math. Anal. Appl. 481 (2020) 123477 7
up to the right end of the largest time interval of definition). Moreover, for any initial state (11), there 
exists a unique solution of (10) that is defined for all t � 0.

Theorem 2.2 is proved in Appendix.

Remark 2.3. A particular admissible choice of the growth saturation function ϕ is

ϕ(s) = e−γs ∀s ∈ R, γ = const > 0. (14)

The case when ϕ(s) = α e−γs for all s ∈ R and α, γ are positive constants is trivially reduced to (14)
by substituting ϕ/α, αm, αG with ϕ, m, G, respectively. Note that such an exponential growth saturation 
term was previously used in open replicator models [4,37]. �

The next assumption is needed in particular to ensure the invertibility of the mortality matrix D as well 
as the boundedness of the total population size function

s(t) =
n∑

i=1
ui(t) ∀t � 0 (15)

along the solution of (10), (11).

Assumption 2.4. dmin = mini = 1,n di > 0.

Assumption 2.4 yields that

D−1 = diag
[
d−1
1 , d−1

2 , . . . , d−1
n

]
. (16)

Theorem 2.5. Under Assumptions 2.1 and 2.4, the total population size function (15) is bounded along the 
solution of (10), (11).

Theorem 2.5 is proved in Appendix.

2.3. Steady-state analysis

In this subsection, we characterize a nontrivial steady state of the system (10) with growth and mortality 
under some new conditions in addition to Assumptions 2.1 and 2.4.

Assumption 2.6. The function ϕ is positive and strictly decreasing on [0, +∞), and lϕ = lims→ +∞ ϕ(s) � 0.

Remark 2.7. Assumption 2.6 implies the existence of the strictly decreasing inverse function ϕ−1 : (lϕ, ϕ(0)]
→ [0, +∞). If ϕ takes the form (14), one has

ϕ(0) = 1, lϕ = 0, ϕ−1(ρ) = 1
γ

ln 1
ρ

� 0 ∀ρ ∈ (0, 1],

and Assumption 2.6 is fulfilled. �
Recall also that the diagonal mortality matrix D admits the diagonal inverse (16) in line with Assump-

tion 2.4.
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A nontrivial steady state u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)� ∈ [0, +∞)n×1 of the system (10) satisfies

D−1Gu∗ = 1
ϕ(s∗) u

∗, s∗ =
n∑

i=1
u∗
i > 0. (17)

We therefore arrive at the problem of finding a positive real eigenvalue λ∗ of the matrix D−1G with a related 
eigenvector u∗ = (u∗

1, u
∗
2, . . . , u

∗
n)� ∈ [0, +∞)n×1 such that

ϕ(s∗) = 1
λ∗ ∈ (lϕ, ϕ(0)), s∗ =

n∑
i=1

u∗
i = ϕ−1

(
1
λ∗

)
> 0. (18)

For such λ∗ and u∗, the relations Gu∗ = λ∗Du∗ and (7) lead to

λ∗ =
∑n

i=1 miu
∗
i∑n

i=1 diu
∗
i

. (19)

In the presence of mortality, it is reasonable to update the fitness definition for taking into account that 
an increase in the death rates negatively affects the population, as well as for maintaining a convenient 
representation of the steady-state fitness in terms of an appropriate eigenvalue similarly to the classical 
quasispecies models (for the latter, such a representation is discussed, e.g., in [12, §IV.3], [5, §2], [42, §1, 
§2], and [6, §1]).

Definition 2.8. The population fitness for the modified quasispecies models described by the system (10) is 
given by

f̃ [u] =

⎧⎪⎨
⎪⎩

0,
∑n

i=1 ui = 0,
f [u]∑n
i=1 diui

=
∑n

i=1 miui∑n
i=1 diui

,
∑n

i=1 ui > 0,

∀ u = (u1, u2, . . . , un)� ∈ [0,+∞)n×1.

(20)

Hence, the relation (19) means that

λ∗ = f̃ [u∗]. (21)

One more assumption is required for investigating the eigenvalue problem for the matrix D−1G. The 
definitions and properties of essentially nonnegative matrices, dominant eigenvalues, and irreducible matrices 
have to be recalled (see, e.g., [33, §I.7]).

Assumption 2.9. The matrix G is irreducible.

Remark 2.10. The matrix G is essentially nonnegative according to (8). Assumptions 2.4, 2.9 and the 
relation (16) imply that the matrix D−1G is also essentially nonnegative and irreducible (see [33, §I.7.4]). �
Remark 2.11. For the matrix G = KM in the Eigen model (1), Assumption 2.9 holds if, e.g., mi, i =
1, n, and all elements of K are positive (this sufficient condition can be relaxed in certain cases). For the 
matrix G = M + M̂ in the Crow–Kimura model (3), Assumption 2.9 holds if and only if M̂ is irreducible 
(M̂ is a priori essentially nonnegative, since M is diagonal and G = M + M̂ fulfills (8)). In case of the 
permutation invariant Crow–Kimura model specified by (5), M̂ = μQ is indeed irreducible, because Q is 
irreducible. The latter property can be verified with the help of [33, §I.7.4] and [31, Fact 2 in §9.2] (the 
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digraph based criterion of irreducibility for square matrices with nonnegative elements remains valid for 
essentially nonnegative matrices). �
Theorem 2.12. Under Assumptions 2.1, 2.4, and 2.9, the following properties hold:

• the matrix D−1G has a dominant eigenvalue λ∗, which is real and greater than the real part of any other 
eigenvalue of D−1G;

• the eigenvalue λ∗ is simple (i.e., has algebraic multiplicity one) and admits an eigenvector all of whose 
components are positive;

• there are no other eigenvalues of D−1G admitting eigenvectors all of whose components are nonnegative.

Proof. It suffices to use Remark 2.10 and [33, Theorem I.7.10]. �
Theorem 2.13. Let Assumptions 2.1, 2.4, 2.6, and 2.9 hold. Then a nonzero steady state u∗ =
(u∗

1, u
∗
2, . . . , u

∗
n)� ∈ [0, +∞)n×1 of the system (10) exists if and only if the dominant eigenvalue λ∗ of 

the matrix D−1G satisfies

λ∗ > 0, 1
λ∗ ∈ (lϕ, ϕ(0)). (22)

Moreover, if (22) holds, this nontrivial steady state is uniquely determined as the eigenvector of D−1G

corresponding to λ∗ and such that all of its components are positive and their sum equals ϕ−1(1/λ∗):

s∗ =
n∑

i=1
u∗
i = ϕ−1

(
1
λ∗

)
. (23)

Proof. It suffices to use Theorem 2.12 as well as the relations (17) and (18). �
Remark 2.14. If ϕ is selected according to (14), the relations (22) and (23) transform into

λ∗ > 1, s∗ =
n∑

i=1
u∗
i = 1

γ
ln λ∗ (24)

(recall Remark 2.7). �
By using the well-known sufficient conditions for stability and instability from the first approximation 

(see, e.g., [30, Theorems 5.1 and 5.2 in Chapter 2]), it is easy to establish the following result.

Theorem 2.15. Let Assumptions 2.1, 2.4, 2.6, and 2.9 hold, and let u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)� ∈ [0, +∞)n×1

be a nonzero steady state of the system (10). Suppose also that the growth saturation function ϕ is twice 
differentiable at the point s∗ =

∑n
i=1 u

∗
i . Consider the Jacobian matrix function DF determined by (13). 

At the steady state u∗, its elements can be represented as

∂Fi(u∗)
∂uj

=
{

ϕ′(s∗)
ϕ(s∗) diu

∗
i + ϕ(s∗) gii − di, i = j,

ϕ′(s∗)
ϕ(s∗) diu

∗
i + ϕ(s∗) gij , i �= j,

i = 1, n, j = 1, n.

(25)

If the real parts of all eigenvalues of DF (u∗) are negative, then the steady state u∗ is asymptotically stable. 
If at least one eigenvalue of DF (u∗) has positive real part, then u∗ is unstable.
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Remark 2.16. Recall the boundedness of the total population size along state trajectories as mentioned in 
Theorem 2.5. If a state trajectory is not attracted by the nontrivial steady state with positive components 
(see Theorem 2.13), the trivial steady state at the origin may be approached. The latter case means the 
extinction of the whole considered quasispecies population and is possible if all of the death rates are 
sufficiently large.

Note that the Jacobian matrix DF (0) at the origin equals ϕ(0) G − D. An interesting open problem is 
finding out sufficient conditions for the following dichotomic property which seems natural: either (i) the 
trivial steady state at the origin is asymptotically stable globally in the nonnegative orthant while the 
nonzero steady state u∗ ∈ [0, +∞)n×1 does not exist, or (ii) the trivial steady state is unstable while 
the nontrivial steady state u∗ exists and is asymptotically stable globally in the nonnegative orthant with 
excluded origin. �
2.4. Numerical simulations

The numerical simulation results in this subsection demonstrate the possibility of two scenarios for our 
open models. Namely, with increasing a certain indicative parameter, the error threshold is observed when 
the population does not extinct, or, alternatively, the extinction already occurs prior to the error threshold. 
In the second case, the error threshold is understood nominally.

For simplicity, we adopt the exponential form (14) of the growth saturation function ϕ and consider 
the dynamical system (10) with the permutation invariant Crow–Kimura formalism such that n = N + 1, 
G = M + M̂ , and M̂ is given by (5). The selected form of ϕ allows for using the simplifications mentioned 
in Remarks 2.7 and 2.14.

We take

γ = 1, N = 50,

m = (10, 1, 1, . . . , 1)� ∈ (0,+∞)51×1, M = diagm,

d = (Δ, 0.5, 0.5, . . . , 0.5)� ∈ (0,+∞)51×1, D = diag d,

(26)

while the mutation rate parameter μ (see (5)) and the death rate Δ for the genotypes of the zero class are 
not fixed, so that the key quantities λ∗ and u∗ become functions of μ and Δ.

Fig. 1 illustrates the situation when, with the increase of the mutation rate μ, the population clearly 
goes through the error threshold with no extinction. It is also demonstrated that, as the death rate Δ of 
the zero class grows, the error threshold occurs for lower μ. The graphs of the maximum over the real 
parts of the eigenvalues of DF (u∗) yield asymptotic stability of u∗ for all observed values of μ except for 
the critical value of μ specifying the error threshold. However, it is natural to expect the stability for this 
critical μ as well. Besides, extensive numerical simulations allow for conjecturing that the existence of the 
nontrivial steady state u∗ would imply its asymptotic stability globally in the nonnegative orthant with 
excluded origin (recall Remark 2.16).

Fig. 2 shows that the death rate Δ can also be considered as a bifurcation parameter whose changes 
eventually lead to the error threshold.

We now change the death rate vector to

d = (Δ, 2, 2, . . . , 2)� ∈ (0,+∞)51×1 (27)

(i.e., the death rates of all classes except for the zero class are increased from 0.5 to 2), while all 
other parameters in (26) remain the same. Fig. 3 illustrates that the error threshold nominally ap-
pears already after the extinction threshold λ∗ = 1 and hence has almost no effect on the dynam-
ics. The extinction takes place when 0 < λ∗ � 1; nonpositive values of λ∗ are not observed. Note 
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Fig. 1. Numerical simulation results in Subsection 2.4 for the parameter values (26). The top left subfigure illustrates the dependence 
of the steady-state population fitness f̃ [u∗] = λ∗ on the mutation rate parameter μ; here Δ = 1, 2, 3 for the curves from top to 
bottom, respectively. The right subfigures show the dependence of the components of the stationary quasispecies distribution u∗

on μ, the top right subfigure corresponds to Δ = 1, the bottom right subfigure relates to Δ = 3, and the error threshold with no 
extinction can be seen in both of them. Moreover, they demonstrate that, as the death rate Δ of the zero class grows, the error 
threshold occurs for lower μ. Finally, the bottom left subfigure indicates how the maximum over the real parts of the eigenvalues 
of the Jacobian matrix DF (u∗) depends on μ; here Δ = 1, 2, 3 for the curves from bottom to top, respectively. For the bottom left 
subfigure, Theorem 2.15 allows asymptotic stability of u∗ to be concluded for all observed values of μ except for the critical value 
of μ specifying the error threshold. It is also natural to expect the stability for this critical μ, even though Theorem 2.15 cannot 
be applied in case of the vanishing maximal real part.

Fig. 2. Numerical simulation results in Subsection 2.4 for the parameter values (26) and fixed μ = 0.05. Dependence of the 
components of the stationary quasispecies distribution u∗ on the death rate parameter Δ.

that, according to Theorem 2.13 and Remark 2.14, the nontrivial steady state u∗ exists if and only if 
λ∗ > 1. For 0 < λ∗ � 1, the right-hand side of the normalization condition 

∑n
u∗
i = ln(λ∗)/γ
i=1
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Fig. 3. Numerical simulation results in Subsection 2.4 for the death rates (27) and all other parameters given by (26). The top left 
subfigure illustrates the dependence of the steady-state population fitness f̃ [u∗] = λ∗ on the mutation rate parameter μ, as well 
as the critical value λ∗ = 1 (due to Theorem 2.13 and Remark 2.14, the nontrivial steady-state quasispecies distribution exists if 
and only if λ∗ > 1); here Δ = 1, 2, 3 and λ∗ = 1 for the curves from top to bottom, respectively. The top right subfigure shows the 
dependence of the components of u∗ on μ for the fixed Δ = 1. The extinction occurs when 0 < λ∗ � 1; nonpositive values of λ∗

are not observed. For 0 < λ∗ � 1, the normalization condition in (24) leads to a negative sum of the components of u∗, so u∗ has 
a nominal meaning. The extinction threshold λ∗ = 1 appears prior to the nominal error threshold. Finally, the bottom subfigure 
indicates how the maximum over the real parts of the eigenvalues of the Jacobian matrix DF (u∗) depends on μ; here Δ = 1, 2, 3
for the curves from bottom to top, respectively.

(see (24)) becomes negative, and the nontrivial steady state does not exist, so we understand u∗ nomi-
nally.

The presented numerical simulation results indicate that even the simplified permutation invariant Crow–
Kimura model in our open setting possesses a rich dynamical behavior with different bifurcation scenarios.

3. Steady-state fitness maximization

3.1. Theoretical analysis

Similarly to the discussion in [3, Introduction], we adopt the hypotheses that evolutionary adaptation 
of the fitness landscape of a quasispecies population is significantly slower than the internal dynamics of 
the corresponding state variables (in our case, this dynamics is governed by the system (10)), and that 
changes in the fitness landscape are aimed at eventually maximizing the population fitness (specified by 
Definition 2.8 in our case) under some constraints. Based on these hypotheses as well as on the relations (20), 
(21) and Theorem 2.13, we arrive at the problem of maximizing the population fitness

∑n
i=1 mi u

∗
i [m]∑n ∗ = λ∗[m]
i=1 di ui [m]
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at the nonzero steady state u∗[m] = (u∗
1[m], u∗

2[m], . . . , u∗
n[m])� ∈ [0, +∞)n×1 of (10) over fitness 

landscapes m = (m1, m2, . . . , mn)� ∈ Rn×1 subject to the constraints

m ∈ Π, (28)

λ∗[m] > 0, 1
λ∗[m] ∈ (lϕ, ϕ(0)), (29)

where Π is a bounded subset of Rn×1, and the death rates di, i = 1, n, are fixed for simplicity.
As was mentioned in the introduction, we try to keep the connection with the classical quasispecies 

models as close as reasonably possible. For our open quasispecies models, it is therefore useful to consider 
first the simplified case when mutations affect the fitness landscape (and, consequently, the growth rates), 
but not the death rates. Modeling the influence of mutations also on the death rates is a possible subject 
of future research.

Besides, it is useful to note the paper [7] that contains a relevant discussion on the applicability of the 
fitness maximization principle, though as applied to classical replicator systems.

As was discussed in Remark 2.16, the nontrivial steady state may be unstable for some admissible fitness 
landscapes (when the growth terms are overridden by the mortality terms). However, one would expect that, 
if any optimal steady state is unstable, all other admissible steady states will also be unstable, although a 
rigorous derivation of sufficient conditions for this property remains an open problem. Note also that, in 
case lϕ = 0, the constraint (29) is simplified to

λ∗[m] >
1

ϕ(0) . (30)

For example, if ϕ is given by (14), then (29) transforms into λ∗[m] > 1 (see Remark 2.7).
Thus, the problem of maximizing the dominant eigenvalue λ∗[m] of the matrix D−1 · G[m] (see Theo-

rem 2.13), i.e.,

λ∗[m] −→ max
m ∈ Π

, (31)

plays a central role.

Remark 3.1. For the classical quasispecies models described by the system (6), one has to consider the 
dominant eigenvalue of the matrix G, and, therefore, the subsequent investigation regarding the optimization 
problem (31) will also be valid in the classical case after the formal replacement of D with the identity matrix 
of size n × n. �
Remark 3.2. If λ∗[m] is defined for all m ∈ Π, then this is a continuous function of m ∈ Π due to the 
well-known fact that the eigenvalues of a real or complex square matrix continuously depend on its entries 
(see, e.g., [51, Theorem 2.11]). �

An important case is when (31) becomes a convex optimization problem.

Assumption 3.3. Π is a convex compact subset of Rn×1.

Theorem 3.4. Let Assumptions 2.1, 2.4, 2.6, 2.9, and 3.3 hold, and let the matrix G have the Crow–Kimura 
form G = M + M̂ , where M = diagm, while M̂ does not depend on m. Then the function

Rn×1 � m �−→ λ∗[m] ∈ R

is convex.
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Proof. It suffices to use the result of [17] saying that the dominant eigenvalue of an essentially nonnegative 
matrix is convex if considered as a function of the diagonal elements of this matrix. �
Remark 3.5. If G has the Eigen form G = KM , where M = diagm, while K satisfies (2) and does not 
depend on m, then the result of [17] cannot be applied directly. In this case, obtaining sufficient conditions 
for the convexity of the dominant eigenvalue λ∗[m] of D−1 · G[m] with respect to m remains an open 
problem. �

We now assume that the considered system satisfies this convexity property on the fitness landscape 
constraint set Π.

Assumption 3.6. The matrix D−1 ·G[m] admits the dominant eigenvalue λ∗[m] ∈ R for any m ∈ Π, and the 
function

Π � m �−→ λ∗[m] ∈ R (32)

is convex.

Recall that a point x of a convex set C ⊆ Rn is called an extreme point of C if and only if there is no 
way to express x as a convex combination αy + (1 − α)z with y ∈ C, z ∈ C, and α ∈ (0, 1), except by 
putting y = z = x (see, e.g., [40, §18]).

Theorem 3.7. Let Assumptions 2.1, 2.4, 2.6, 2.9, 3.3, and 3.6 hold. Then the function (32) is continuous on 
Π and attains its maximum over Π, and any related maximizer is an extreme point of Π.

Proof. It suffices to take Remark 3.2, Assumption 3.3, and [40, Corollary 32.3.1] into account. �
Corollary 3.8. If the conditions of Theorem 3.7 hold and, moreover, Π is a compact convex polytope, then 
any maximizer in the problem (31) is a vertex of Π.

3.2. Numerical simulations

The numerical simulation results in this subsection are purely illustrative and demonstrate a typical 
behavior of the maximal steady-state population fitness with the increase of a mutation rate or a death 
rate.

We adopt the exponential form (14) of the growth saturation function ϕ and consider the dynamical 
system (10) with the following symmetric Crow–Kimura formalism [2,7]:

• n = 2N genotypes are considered, they are labeled by 0, 1, . . . , n −1 and associated to the N -dimensional 
binary representations (sequences) of the corresponding numbers;

• G = M + M̂ , M = diagm, M̂ = {m̂ij}ni,j = 1,

m̂i+1, j+1 =

⎧⎪⎪⎨
⎪⎪⎩
μ, Hij = 1,
0, Hij > 1,
−Nμ, Hij = 0 (i = j),

i = 0, n− 1, j = 0, n− 1,

(33)

where μ > 0 is a mutation rate parameter and Hij denotes the Hamming distance between sequences i

and j (Hij = 0 only if i = j).
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The irreducibility of such a mutation matrix M̂ can be verified via the same reasonings as in the end of 
Remark 2.11 for the permutation invariant Crow–Kimura model. Hence, Theorems 3.4, 3.7 and Corollary 3.8
can be applied, and the steady-state fitness maximization problem for fitness landscapes constrained by a 
compact convex polytope Π reduces to sorting through the vertices of Π.

Here we do not use the permutation invariant Crow–Kimura formalism (see (5)) because of its high 
heterogeneity such that many of the original 2N binary sequences are concentrated in the middle of the 
ordered group of the N + 1 equivalence classes. Thus, for attenuating the related heterogeneity in the 
steady-state fitness profile, one typically has to select a rather specific structure of the death rate vec-
tor.

For simplicity, we consider the low-dimensional case

N = 3, n = 2N = 8. (34)

Moreover, we take

γ = 1 (35)

as in (26). The components of the death rate vector d are independently and randomly generated from the 
uniform distribution on (0, 1), and they are also arranged in ascending order:

d = (0.099122, 0.158373, 0.445851, 0.453362,

0.484529, 0.488275, 0.580878, 0.990911)� ∈ (0, 1)8×1,

D = diag d.

(36)

The constraint set Π is chosen as the following simplex with center at the point (0.5, 0.5, . . . , 0.5)� ∈ Rn×1:

Π =
{
m = (m1,m2, . . . ,mn)� : mi = 0.5 + ξi,

ξi � 0, i = 1, n,
n∑

j=1
ξj = 2

⎫⎬
⎭ .

(37)

There are n = 8 vertices which we label by 1, 2, . . . , n: for every i ∈ {1, 2, . . . , n}, the i-th coordinate of 
vertex i is 2.5, while all other coordinates of vertex i are equal to 0.5.

Fig. 4 indicates how the steady-state fitnesses at vertices 1, 2, 3 depend on the mutation rate parameter μ. 
The maximal steady-state fitness in the problem (31) is achieved at vertex 1. This is not surprising, since the 
components of the death rate vector (36) are written in ascending order. Furthermore, when μ is sufficiently 
large, the difference between the steady-state fitnesses at the vertices of Π (not only 1–3, but also 4–8) 
becomes negligible.

Next, we fix μ and let the first component of the death rate vector be a variable Δ:

μ = 0.1,

d = (Δ, 0.158373, 0.445851, 0.453362,

0.484529, 0.488275, 0.580878, 0.990911)� ∈ (0,+∞)8×1.

(38)

Fig. 5 illustrates how the steady-state fitnesses at vertices 1 and 2 depend on the death rate d1 = Δ of 
genotype 0 (our notation is such that, for every i ∈ {1, 2, . . . , n}, the i-th component of d is the death 
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Fig. 4. Numerical simulation results in Subsection 3.2 for the parameter values (33)–(37). The curves from top to bottom correspond 
to the steady-state population fitnesses f̃ [u∗] = λ∗ at the first, second, and third vertices (denoted by v1, v2, v3) of the simplex (37), 
respectively. The figure shows the dependence of these fitnesses on the mutation rate parameter μ. The maximum in the problem (31)
is achieved at the first vertex, which seems natural, since the minimal component of the death rate vector (36) is the first one. For 
sufficiently large μ, the difference between the steady-state fitnesses at the vertices of Π becomes negligible.

Fig. 5. Numerical simulation results in Subsection 3.2 for the parameter values (33)–(35), (37), (38). The curves from top to 
bottom correspond to the steady-state population fitnesses f̃ [u∗] = λ∗ at the first and second vertices (denoted by v1, v2) of the 
simplex (37), respectively. The figure shows the dependence of these fitnesses on the death rate d1 = Δ. The maximum in the 
problem (31) is achieved at the first vertex if Δ � d2 = 0.158373 and at the second vertex if Δ � d2.

rate of genotype i − 1). The maximal steady-state fitness in the problem (31) is achieved at vertex 1 if 
Δ � d2 = 0.158373 and at vertex 2 if Δ � d2.

4. Continuous-time distributed open quasispecies models

4.1. Constructing the dynamical equation

Since the actual number of genotypes or alleles involved in a studied process can be extremely large (even 
though a significant fraction of them may have small effects), distributed (continuum-of-alleles) quasispecies 
models are of particular interest (see, e.g., [12, Introduction to Chapter IV]). For the classical Eigen and 
Crow–Kimura models, distributed extensions in the form of an integro-differential equation with respect to a 
sought-after time-varying probability density were rigorously investigated in [9–11,13] and [12, Chapter IV], 
while the first particular distributed model of this kind was proposed in [18,34]. Bürger’s formalism treats 
the distributed Eigen and Crow–Kimura settings together and allows to establish sufficient conditions for the 
existence and uniqueness of an equilibrium probability density with its positivity and asymptotic stability 
(see [10, §3, §4] and [12, §IV.3]).

Typical (although not the most general) integro-differential equations describing the Eigen and Crow–
Kimura dynamics can be written as
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∂p(x, t)
∂t

=
∫
Ω

K(x, y)m(y) p(y, t) dy − f [p(·, t)] p(x, t),

x ∈ Ω, t � 0,

(39)

and

∂p(x, t)
∂t

= m(x) p(x, t) +
∫
Ω

K(x, y)μ(y) p(y, t) dy

− μ(x) p(x, t) − f [p(·, t)] p(x, t),
x ∈ Ω, t � 0,

(40)

respectively, where the following notations are used:

• t � 0 is a time variable;
• the considered genotypes (or allelic effects) are represented as points of a finite-dimensional region Ω;
• p : Ω × [0, +∞) → [0, +∞) is the function describing the relative frequencies of the genotypes and 

normalized so that

∫
Ω

p(x, t) dx = 1 ∀t � 0; (41)

• Ω � x �−→ K(x, y) ∈ [0, +∞) is the probability density related to reproduction events such that an 
individual of genotype y ∈ Ω produces an individual of genotype x ∈ Ω, i.e., K : Ω2 → [0, +∞) is a 
distributed analog of the mutation matrix, and

∫
Ω

K(x, y) dx = 1 ∀y ∈ Ω; (42)

• m : Ω → R is the distributed fitness landscape;
• f [p(·, t)] =

∫
Ω m(x) p(x, t) dx is the mean population fitness;

• μ : Ω → [0, +∞) is the mutation rate function.

For simplicity, we impose some more specific conditions than in [10, §3, §4] and [12, §IV.3]. In particular, 
it is reasonable to consider a bounded region Ω from a computational perspective.

Assumption 4.1. Ω is a bounded open domain in Rκ or the closure of such a domain, κ ∈ N, the functions 
K : Ω2 → [0, +∞), m : Ω → R, and μ : Ω → [0, +∞) are bounded, and (42) holds.

One can consider (39) and (40) as differential equations whose state space is the Banach space

V = L1(Ω;R) (43)

of all Lebesgue measurable functions v : Ω → R for which the Lebesgue integral 
∫
Ω |v(x)| dx exists and is 

finite (the theory of differential equations in Banach spaces is introduced, e.g., in [20]).
The relations p(x, t) � 0 and (41) are preserved along the solutions of (39) and (40).
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Both equations (39) and (40) can be written in the common form

∂p(x, t)
∂t

=
∫
Ω

G(x, y) p(y, t) dy + b(x) p(x, t) − f [p(·, t)] p(x, t),

x ∈ Ω, t � 0,

(44)

with the functions G : Ω2 → R and b : Ω → R given by

G(x, y) = K(x, y)m(y) and b(x) = 0

for the Eigen model (39),
(45)

or

G(x, y) = K(x, y)μ(y) and b(x) = m(x) − μ(x)

for the Crow–Kimura model (40).
(46)

Note that a solution of (44) with 
∫
Ω p(x, 0) dx = 1 can be represented as

p(x, t) = r(x, t)∫
Ω r(y, t) dy

∀x ∈ Ω ∀t � 0,

where

r(x, t) = c exp

⎧⎨
⎩

t∫
0

f [p(·, τ)] dτ

⎫⎬
⎭ p(x, t) ∀x ∈ Ω ∀t � 0

is the unique solution of

∂r(x, t)
∂t

=
∫
Ω

G(x, y) r(y, t) dy + b(x) r(x, t), x ∈ Ω, t � 0, (47)

r(x, 0) = c p(x, 0), x ∈ Ω,

with an arbitrary constant c ∈ R \ {0}, i.e., the values of r may be interpreted as some quantities whose 
normalization leads to the values of the time-varying probability density p.

We therefore proceed from the system (47) and incorporate growth and mortality characteristics in it 
(recall similar considerations in Subsection 2.2). Let u : Ω × [0, +∞) → [0, +∞) be a function specifying 
the sought-after dynamical quantities associated with the considered genotypes. Introduce also the death 
rate function d : Ω → [0, +∞) and the growth saturation term ϕ 

(∫
Ω u(x, t) dx

)
.

Assumption 4.2. d : Ω → [0, +∞) is bounded, ϕ : R → [0, +∞) fulfills the same properties as mentioned in 
Assumption 2.1, G : Ω2 → R and b : Ω → R are defined by either (45) or (46), and, moreover,

G(x, y) � 0 ∀x ∈ Ω ∀y ∈ Ω.
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Thus, we arrive at the integro-differential equation

∂u(x, t)
∂t

= ϕ

⎛
⎝∫

Ω

u(y, t) dy

⎞
⎠

⎛
⎝∫

Ω

G(x, y)u(y, t) dy + b(x)u(x, t)

⎞
⎠

− d(x)u(x, t),

x ∈ Ω, t � 0.

(48)

Consider it as a differential equation with the state space (43), and set the initial condition as

u(·, 0) = u0(·) ∈ V+, (49)

where

V+ = {v ∈ V : v(x) � 0 for almost all x ∈ Ω

with respect to Lebesgue measure in Rκ ⊃ Ω}.
(50)

The zero element in V is a trivial steady state of (48).
For any real Banach spaces W1 and W2, let L(W1, W2) denote the set of all bounded linear operators 

acting from W1 to W2.
It is convenient to rewrite the right-hand side of (48) by means of the following operator notation:

G ∈ L(V, V ), ψ ∈ L(V,R),

B ∈ L(V, V ), D ∈ L(V, V ), F ∈ L(V, V ),

G[v](x) =
∫
Ω

G(x, y) v(y) dy, ψ[v] =
∫
Ω

v(y) dy,

B[v](x) = b(x) v(x), D[v](x) = d(x) v(x),

F [v](x) = ϕ(ψ[v]) (G[v](x) + B[v](x)) − D[v](x)

∀x ∈ Ω ∀v ∈ V.

(51)

Theorem 4.3. Under Assumptions 4.1 and 4.2, the Fréchet derivative (Jacobian operator) DF : V →
L(V, V ) of the right-hand side operator F is represented as

DF [v] = ϕ(ψ[v]) (G + B) − D + Ev ∀v ∈ V, (52)

where Ev ∈ L(V, V ) is defined by

Ev[h] = ϕ′(ψ[v]) ψ[h] (G[v] + B[v]) ∀h ∈ V (53)

for any v ∈ V .

Theorem 4.4. Let Assumptions 4.1 and 4.2 hold. Then the subset V+ of the state space V is positively 
invariant with respect to the dynamical system (48). Moreover, for any initial state (49), there exists a 
unique solution of (48) that is defined for all t � 0.

Theorems 4.3 and 4.4 are proved in Appendix.
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The next condition is imposed in particular to guarantee the boundedness of the total population size 
function

s(t) =
∫
Ω

u(x, t) dx ∀t � 0 (54)

along the solution of (48), (49).

Assumption 4.5. There exists a constant dlow > 0 such that d(x) � dlow for all x ∈ Ω.

Theorem 4.6. Under Assumptions 4.1, 4.2, and 4.5, the total population size function (54) is bounded along 
the solution of (48), (49).

Theorem 4.6 can be proved similarly to Theorem 2.5. Compared to the proof of the latter (given in 
Appendix), sums over indices 1, 2, . . . , n should now be replaced with integrals over Ω, while mmax and dmin
should be replaced with ess supx ∈ Ω m(x) and dlow, respectively.

4.2. Steady-state analysis

For investigating a nontrivial steady state of the integro-differential equation (48), additional conditions 
have to be adopted.

Assumption 4.7. The following properties hold:

1) the function ϕ satisfies the same conditions as mentioned in Assumption 2.6;
2) for every measurable set Ω1 ⊂ Ω such that the Lebesgue measures of both Ω1 and Ω \ Ω1 are positive,

one has
∫

Ω \ Ω1

∫
Ω1

G(x, y)
d(x) dx dy > 0;

3) in the Eigen case (45), there exists a subset Ω̂ ⊆ Ω of positive Lebesgue measure and a constant ĉ > 0
such that

G(x, y)
d(x) � ĉ ∀ (x, y) ∈ Ω̂2; (55)

4) in the Crow–Kimura case (46), there exists a subset Ω̂ ⊆ Ω of positive Lebesgue measure and a con-
stant ĉ > 0 such that (55) holds together with

η = ess sup
x ∈ Ω

m(x) − μ(x)
d(x) = ess sup

x ∈ Ω̂

m(x) − μ(x)
d(x)

and

ĉ

∫
Ω̂

dx
η − m(x) − μ(x)

d(x)

> 1, (56)

where divergence of the integral is allowed.
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Remark 4.8. Let Assumptions 4.1, 4.2, and 4.5 hold. Then Item 2 of Assumption 4.7 holds if, e.g., G is 
positive on Ω2. Item 2 means that the compact operator G1 ∈ L(V, V ) given by

G1 = D−1G,

G1[v](x) = 1
d(x)

∫
Ω

G(x, y) v(y) dy ∀x ∈ Ω ∀v ∈ V
(57)

is irreducible (see [10, Proposition 3.1]). Regarding Item 4, the integral in (56) diverges if, e.g., there exist 
a point x̂ ∈ Ω̂ and a constant c1 > 0 such that

m(x) − μ(x)
d(x) � η − c1 ‖x− x̂‖ ∀x ∈ Ω̂. �

A nontrivial steady state u∗ ∈ V+ of the integro-differential equation (48) satisfies

G1[u∗] + B1[u∗] = 1
ϕ(s∗) u

∗, s∗ =
∫
Ω

u∗(x) dx > 0, (58)

where the operator notations (57) and

B1 = D−1B,

B1[v](x) = b(x)
d(x) v(x) ∀x ∈ Ω ∀v ∈ V

(59)

are used. We hence arrive at the problem of finding a positive real eigenvalue λ∗ of the operator G1 +B1 =
D−1(G + B) with a related eigenfunction u∗ ∈ V+ such that

ϕ(s∗) = 1
λ∗ ∈ (lϕ, ϕ(0)), s∗ =

∫
Ω

u∗(x) dx = ϕ−1
(

1
λ∗

)
> 0 (60)

(recall similar reasonings in Subsection 2.3 with the formulas (17) and (18)). For such λ∗ and u∗, the 
relations G[u∗] = λ∗ D[u∗] and (42), (45), (46), (51) lead to

λ∗ =
∫
Ω m(x)u∗(x) dx∫
Ω d(x)u∗(x) dx

(61)

(recall also (19)).
Similarly to Definition 2.8, we specify the fitness function as follows.

Definition 4.9. The population fitness for the modified distributed quasispecies models described by the 
integro-differential equation (48) is given by

f̃ [v] =

⎧⎨
⎩0,

∫
Ω v(x) dx = 0,

f [v]∫
Ω d(x) v(x) dx =

∫
Ω m(x) v(x) dx∫
Ω d(x) v(x) dx ,

∫
Ω v(x) dx > 0,

∀v ∈ V+.

(62)

The relation (61) therefore means that

λ∗ = f̃ [u∗]. (63)
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Theorem 4.10. Under Assumptions 4.1, 4.2, 4.5, and 4.7, the following properties hold:

• the operator G1 + B1 = D−1(G + B) has a dominant eigenvalue λ∗, which is real and greater than the 
real part of any other spectral point of G1 + B1;

• the eigenvalue λ∗ is simple and admits a positive eigenfunction;
• there are no other eigenvalues of G1 + B1 admitting nonnegative eigenfunctions.

Theorem 4.10 is proved in Appendix.

Theorem 4.11. Let Assumptions 4.1, 4.2, 4.5, and 4.7 hold. Then a steady state u∗ ∈ V+ of the integro-
differential equation (48) with s∗ =

∫
Ω u∗(x) dx > 0 exists if and only if the dominant eigenvalue λ∗ of the 

operator G1 + B1 satisfies

λ∗ > 0, 1
λ∗ ∈ (lϕ, ϕ(0)). (64)

Moreover, if (64) holds, this steady state is uniquely determined as the positive eigenfunction of G1 + B1
corresponding to λ∗ and normalized so that

s∗ =
∫
Ω

u∗(x) dx = ϕ−1
(

1
λ∗

)
. (65)

Proof. It suffices to use Theorem 4.10 as well as the relations (58) and (60). �
Note the similarity between Theorems 4.10, 4.11 and 2.12, 2.13, respectively.

Remark 4.12. If ϕ is given by (14), the relations (64) and (65) transform into

λ∗ > 1, s∗ =
∫
Ω

u∗(x) dx = 1
γ

ln λ∗ (66)

(recall Remark 2.14). �
Next, let us provide sufficient conditions for stability and instability of the nontrivial steady state u∗ of 

(48). By using the general results mentioned in [20, §VII.2.4], one obtains the following theorem.

Theorem 4.13. Let Assumptions 4.1, 4.2, 4.5, and 4.7 hold, and let u∗ ∈ V+ satisfy s∗ =
∫
Ω u∗(x) dx > 0 and 

be a steady state of the integro-differential equation (48). Suppose also that the growth saturation function ϕ

is twice differentiable at the point s∗. Consider the Jacobian operator DF determined by (52) and (53). The 
auxiliary operator Eu∗ for the steady state u∗ is simplified to

Eu∗ [h] = ϕ′(ψ[u∗])
ϕ(ψ[u∗]) ψ[h] D[u∗] ∀h ∈ V. (67)

If the real parts of all spectral points of DF [u∗] are negative, then the steady state u∗ is asymptotically stable. 
If at least one spectral point of DF [u∗] has positive real part, then u∗ is unstable.

Remark 4.14. If ϕ is selected in line with (14), the relation (67) transforms into

Eu∗ [h] = −γ ψ[h] D[u∗] ∀h ∈ V. �
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Remark 4.15. Recall the boundedness of the total population size along state trajectories as mentioned in 
Theorem 4.6. If a state trajectory is not attracted by the positive steady state, the zero steady state may 
be approached. The latter case means the extinction of the whole considered quasispecies population and 
is possible when ess infx ∈ Ω d(x) is sufficiently large (see also Remark 2.16). �

The challenging practical problems of obtaining the dominant eigenvalue λ∗ and the positive eigenfunc-
tion u∗ of the operator G1 +B1 and verifying stability or instability of the steady state u∗ via Theorem 4.13
(so that one has to characterize the spectrum of DF [u∗]) are possible subjects of future research. Their 
principal issue is that eigenvalue problems for noncompact and non-self-adjoint compact operators are 
involved. In general, the compact integral operator G1 is non-self-adjoint (due to its nonsymmetric ker-
nel), the operator G1 + B1 is compact in the Eigen case (45) (when B1 vanishes) but noncompact in 
the Crow–Kimura case (46), and DF [u∗] is noncompact in both of these cases (since D is noncompact). 
After an efficient approach to treating such problems is developed (at least for a particular nontrivial sub-
class of the distributed quasispecies models), it will be reasonable to investigate the infinite-dimensional 
problems of maximizing the steady-state fitness over fitness landscape functions that satisfy appropriate 
constraints.

5. Conclusion

In this work, we developed a general approach to the construction of open quasispecies models incorporat-
ing growth and mortality characteristics. We proposed open modifications of the Eigen and Crow–Kimura 
quasispecies models in both ODE-based and distributed (continuum-of-alleles) settings. The distributed 
formulations built on integro-differential equations and were motivated by the complexity of numerical 
analysis of quasispecies systems with large numbers of ODEs, as well as by the fact that the actual number 
of genotypes or alleles involved in a studied process could indeed be extremely large. Essential properties of 
the open quasispecies models, regarding in particular steady states, were investigated.

We also explained a motivation for steady-state fitness maximization problems and studied them in case of 
ODE-based quasispecies dynamics. It was in particular established that, for the ODE-based Crow–Kimura 
models (both open and closed), such a problem leads to convex optimization and allows for an efficient 
numerical implementation. For the Eigen models, it remains an open question whether a similar reduction 
to convex optimization can in general be carried out.

Another open problem for our models is verification of the following natural conjecture under the already 
adopted and possibly some additional assumptions: either (i) the trivial zero steady state is asymptotically 
stable globally in the nonnegative subspace while the nontrivial nonnegative steady state does not exist, or 
(ii) the trivial steady state is unstable while the nontrivial steady state exists and is asymptotically stable 
globally in the nonnegative subspace with excluded zero.

As was demonstrated in our numerical simulation results, the ODE-based open quasispecies models 
enable at least the following two nontrivial bifurcation scenarios with the increase of a specific parameter 
(such as a mutation rate or a death rate): (i) the error threshold is observed when the population does not 
extinct, or (ii) the extinction already takes place prior to the nominally interpreted error threshold.

Our mathematical constructions for the distributed open quasispecies models serve just as the first step in 
this research direction. Further developments require the design of an efficient practical approach to treating 
the related eigenvalue problems and verifying stability or instability of the nontrivial nonnegative steady 
states. A major difficulty in these problems is that one has to deal with noncompact and non-self-adjoint 
compact operators. After the corresponding challenges are overcome at least for a particular reasonable 
subclass of the distributed open quasispecies models, it will be relevant to consider the infinite-dimensional 
problem of steady-state fitness maximization.
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As was also noted above, a promising research area where our framework may eventually be used is 
modeling the dynamics of various quasispecies related to certain pathogens or diseased cells under targeted 
attacks from therapeutic agents [35,41,50].
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Appendix A

Proof of Theorem 2.2. Consider a solution of (10), (11) defined on a time interval [0, t1) with t1 ∈ [0, +∞) ∪
{+∞}. For all t ∈ [0, t1) and i = 1, n, this solution satisfies

u̇i(t) = ϕ

⎛
⎝ n∑

j=1
uj(t)

⎞
⎠ n∑

j=1
gij uj(t) − di ui(t),

d
dt

⎛
⎝ui(t) exp

⎧⎨
⎩−gii

t∫
0

ϕ

⎛
⎝ n∑

j=1
uj(τ)

⎞
⎠ dτ + dit

⎫⎬
⎭
⎞
⎠

= exp

⎧⎨
⎩−gii

t∫
0

ϕ

⎛
⎝ n∑

j=1
uj(τ)

⎞
⎠ dτ + dit

⎫⎬
⎭

· ϕ

⎛
⎝ n∑

j=1
uj(t)

⎞
⎠ n∑

j=1,
j �=i

gij uj(t).

(A.1)

From the relations (8), (11), (A.1) and nonnegativity of ϕ, one concludes that

d
dt

⎛
⎝ui(t) exp

⎧⎨
⎩−gii

t∫
0

ϕ

⎛
⎝ n∑

j=1
uj(τ)

⎞
⎠ dτ + dit

⎫⎬
⎭
⎞
⎠ � 0

and ui(t) � 0 for all t ∈ [0, t1) and i = 1, n, which leads to the first statement of the theorem.
In order to verify the second statement, it remains to note that the properties of ϕ given in Assumption 2.1

imply the boundedness of the elements of the Jacobian matrix (13) on [0, +∞)n×1. �
Proof of Theorem 2.5. Consider a solution of (10), (11) and the function (15). By virtue of Theorem 2.2, 
one has

ui(t) � 0, i = 1, n, s(t) � 0 ∀t � 0. (A.2)

Denote mmax = maxi = 1,n mi. Due to the relations (7), (10), (A.2), and nonnegativity of ϕ, one obtains

ṡ(t) = ϕ(s(t))
n∑

j=1
mj uj(t) −

n∑
i=1

di ui(t)

� mmax s(t)ϕ(s(t)) − dmin s(t)

∀t � 0.
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Furthermore, Assumption 2.1 yields that

0 � c = sup
ξ ∈ [0,+∞)

{ξ ϕ(ξ)} < +∞.

Hence,

ṡ(t) � c |mmax| − dmin s(t) ∀t � 0. (A.3)

From the relations (A.2), (A.3) and Assumption 2.4, one concludes that s is bounded on the whole time 
interval [0, +∞). �
Proof of Theorem 4.3. Let v ∈ V and h ∈ V . Note that

ϕ(ψ[v + h]) = ϕ(ψ[v] + ψ[h])

= ϕ(ψ[v]) + ϕ′(ψ[v])ψ[h] + o1(h),
(A.4)

where o1 : V → V is such that lim‖w‖V ↘ 0 (‖o1(w)‖V / ‖w‖V ) = 0. After substituting (A.4) into

F [v + h] = ϕ(ψ[v + h]) (G[v + h] + B[v + h]) − D[v + h]

= ϕ(ψ[v + h]) (G[v] + B[v] + G[h] + B[h]) − D[v] − D[h],

one obtains

F [v + h] = F [v] + ϕ(ψ[v]) (G[h] + B[h])

+ ϕ′(ψ[v]) ψ[h] (G[v] + B[v]) − D[h] + o2(h)

with o2 : V → V satisfying lim‖w‖V ↘ 0 (‖o2(w)‖V / ‖w‖V ) = 0. For completing the proof, it remains to use 
the definition of the Fréchet derivative. �
Proof of Theorem 4.4. In order to obtain the first statement of the theorem, note that the equation (48)
can be transformed into

∂

∂t

⎛
⎝u(x, t) exp

⎧⎨
⎩−b(x)

t∫
0

ϕ

⎛
⎝∫

Ω

u(y, τ) dy

⎞
⎠ dτ + d(x) t

⎫⎬
⎭
⎞
⎠

= exp

⎧⎨
⎩−b(x)

t∫
0

ϕ

⎛
⎝∫

Ω

u(y, τ) dy

⎞
⎠ dτ + d(x) t

⎫⎬
⎭

· ϕ

⎛
⎝∫

Ω

u(y, t) dy

⎞
⎠ ∫

Ω

G(x, y)u(y, t) dy

for all x ∈ Ω and for all t on a time interval [0, t1) where a considered solution exists (this transformation 
still makes sense when (48) is understood as a differential equation with the state space V ), and that the 
functions ϕ, G are nonnegative (due to Assumption 4.2).

The second statement is established with the help of the following arguments:

1) V+ is positively invariant with respect to the dynamical system (48) as verified above, and it is not 
difficult to prove that V+ is also a closed convex subset of V = L1(Ω; R);



26 I. Yegorov et al. / J. Math. Anal. Appl. 481 (2020) 123477
2) the boundedness of the linear operators G, B, D (ensured by Assumptions 4.1, 4.2) and the adopted 
properties of ϕ (see Assumption 2.1 mentioned in Assumption 4.2) imply the uniform boundedness of 
‖DF [v]‖L(V,V ) for v ∈ V+;

3) Item 2 and [20, Remark I.9.2] yield that the right-hand side operator F is Lipschitz continuous on V+;
4) due to Items 1 and 3, the reasonings in the proof of [20, Theorem VII.1.2] (relying on the contraction 

principle in [20, Theorem I.9.1]) can be applied in order to obtain the sought-after existence result.

It has to be emphasized that the choice of the state space V = L1(Ω; R) plays a crucial role for deriving 
the property in Item 2 (from (51), one can see that ψ[v] = ‖v‖V for v ∈ V+). �
Proof of Theorem 4.10. One in fact arrives at the problem of finding a real dominant eigenvalue of G1 +B1
with a nonnegative eigenfunction when investigating a nontrivial steady state of the integro-differential 
equation

∂p(x, t)
∂t

= G1[p(·, t)](x) + B1[p(·, t)](x)

− p(x, t)
∫
Ω

(G1[p(·, t)](y) + B1[p(·, t)](y)) dy,

x ∈ Ω, t � 0,

with respect to a dynamical probability density p(·, t) satisfying 
∫
Ω p(x, t) dx = 1 for all t � 0. This equation 

can be rewritten as

∂p(x, t)
∂t

= G1[p(·, t)](x) + B̃1[p(·, t)](x)

− p(x, t)
∫
Ω

(G1[p(·, t)](y) + B̃1[p(·, t)](y)) dy,

x ∈ Ω, t � 0,

where

B̃1[p(·, t)](x) = B1[p(·, t)](x) −
(

ess sup
y ∈ Ω

b(y)
d(y)

)
p(x, t)

=
(
b(x)
d(x) − ess sup

y ∈ Ω

b(y)
d(y)

)
p(x, t)

∀x ∈ Ω ∀t � 0

(recall that, according to (45) and (46), one has b(x) = 0 in the Eigen case and b(x) = m(x) − μ(x) in 
the Crow–Kimura case). Such a type of integro-differential equations was studied in [10]. It then remains 
to use the results of [10, §3] and to take into account that [10, Proposition 3.4] can be refined as was 
mentioned in the end of [12, §IV.3] (Items 3 and 4 of Assumption 4.7 play a significant role for applying 
that refinement). �
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