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We consider a class of generalized convex functions, which are defined according 
to a pair of quasi-arithmetic means and called (Mφ, Mψ)-convex functions, and 
establish various Fejér type inequalities for such a function class. These inequalities 
not merely provide a natural and intrinsic characterization of the (Mφ, Mψ)-convex 
functions, but actually offer a generalization and refinement of the most part of the 
concrete Hermite-Hadamard and Fejér type inequalities obtained in earlier studies 
for different kinds of convexity and fractional integrals. Applications to inequalities 
involving the gamma function and special means are also included.
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1. Introduction

Recall that the Hermite-Hadamard inequality, which was first noticed by Hermite [18] in 1883 and 
rediscovered ten years later by Hadamard [16], gives us a lower and an upper estimations for the integral 
mean value of any convex function on a closed interval, involving the midpoint and the endpoints of the 
domain. More precisely, if f : [a, b] → R is convex, then

f

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)
2 . (1.1)
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Quite interesting, this double inequality is not merely a consequence of convexity, but also characterizes it; 
that is, every continuous function satisfies either its left- or right-side on any subinterval of the domain, 
then the function is convex (see [40, Theorem 1]).

The Hermite-Hadamard inequality has evoked the interest of many mathematicians and becomes an 
important cornerstone in mathematical analysis and optimization. Many classical results related to this 
inequality can be found in the monograph of Pečarić, Proschan and Tong [35]. Especially, in the last 
two decades it has received much attention. There is, in fact, a growing literature providing new proofs, 
extensions and considering its refinements, generalizations, numerous interpolations and applications in the 
theory of special means. The monograph of Dragomir and Pearce [13] gives a comprehensive review of this 
literature.

Observe that most of the works dealing with the Hermite-Hadamard inequality have been obtained by 
studying a specific kind of convexity (see, for example, [5,9–12,14,15,17,20,22,29,30,33,34,42–47]) or/and 
utilizing certain fractional integrals (see, for instance, [2,6,8,21,23,25,26,36,39]). This observation, when 
looked at from a more general point of view, leads to a new generalization that includes a wide class of 
known results as special cases. For this purpose, we need to consider a class of generalized convex functions 
which, in particular, recover the ones used in earlier studies, and at the same time, offer an effective method 
to deal with generalized fractional integrals.

Notice that the first and last terms in (1.1) can be written as

f

(
a + b

2

)
= f(A(a, b)) and f(a) + f(b)

2 = A(f(a), f(b)),

where A(a, b) stands for the arithmetic mean of a and b. Then (1.1) is an interpolating inequality for

f(A(a, b)) ≤ A(f(a), f(b)),

which is used to define the midpoint, or Jensen’s, convex functions. Therefore, to generalize the concept of 
convexity, it is natural to replace the arithmetic means, A, in the above inequality by a pair of more general 
means. The quasi-arithmetic means defined below seem to be the best adapted to our goal.

Let I ⊂ R be an open interval and φ : I → R be a continuous and strictly monotonic function. The 
quasi-arithmetic mean of a ∈ I and b ∈ I with weight α ∈ [0, 1] is denoted by Mφ(a, b; α) and is defined by

Mφ(a, b;α) = φ−1 (αφ(a) + (1 − α)φ(b))

(see, for instance, [7, Chapter IV]). By monotonicity, it follows that

min{a, b} ≤ Mφ(a, b;α) ≤ max{a, b}.

We make the convention to omit the weight α when α = 1/2; that is,

Mφ(a, b) = Mφ(a, b; 1/2).

We emphasize that if I ⊂ (0, ∞), then the quasi-arithmetic means Mφ(a, b) include the power means of 
order p ∈ R, which correspond to the choice

φ(x) =
{
xp if p �= 0,
ln x if p = 0.

The most used in applications are the power means of order 1, 0 and −1, usually known as the arithmetic, 
geometric and harmonic means, respectively.
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Here and subsequently, I and J denote open intervals in the real line R, φ : I → R and ψ : J → R are 
continuous and strictly monotonic functions. With the quasi-arithmetic means Mφ and Mψ in hand, we are 
now in a position to generalize the notion of convexity. According to Aumann [4] (see also [32]), a function 
f : I → J is said to be (Mφ, Mψ)-convex if it verifies the following analogue of Jensen’s inequality:

f(Mφ(a, b;α)) ≤ Mψ(f(a), f(b);α) (1.2)

for all a, b ∈ I and α ∈ [0, 1]. Especially, we say that f is Mψ-convex if it satisfies (1.2) with φ(x) = x. If 
inequality (1.2) works in the opposite way, f is called (Mφ, Mψ)-concave. It is worth pointing out that the 
(Mφ, Mψ)-convex functions cover a very large variety of functions playing an important role in mathematics 
such as

• the usual convex functions if we take φ(x) = x and ψ(x) = x,
• the log-convex functions if we choose φ(x) = x and ψ(x) = ln x,
• the r-convex functions if we take φ(x) = x and

ψ(x) =
{
xr if r �= 0,
ln x if r = 0,

• the harmonically convex functions if we choose φ(x) = 1/x and ψ(x) = x,
• the harmonically log-convex functions if we take φ(x) = 1/x and ψ(x) = ln x,
• the harmonically r-convex functions if we take φ(x) = 1/x and

ψ(x) =
{
xr if r �= 0,
ln x if r = 0,

• the p-convex functions if we take φ(x) = xp and ψ(x) = x, and
• the multiplicatively convex functions if we take φ(x) = ln x and ψ(x) = ln x.

Next, we propose an effective procedure to establish Hermite-Hadamard’s inequalities for generalized 
fractional integrals. Recall that a weighted version of (1.1) was developed by Fejér [14], who showed that if 
f : [a, b] → R is convex and g : [a, b] → [0, ∞) is integrable, with 

∫ b

a
g(x)dx > 0, and symmetric to (a + b)/2, 

i.e., g(x) = g(a + b − x) for all x ∈ [a, b], then

f

(
a + b

2

)
≤
∫ b

a
f(x)g(x)dx∫ b

a
g(x)dx

≤ f(a) + f(b)
2 . (1.3)

It should be suggested that if g(x) = [(b − x)ν−1 + (x − a)ν−1]/Γ(ν), with ν > 0, then (1.3) yields the 
following Hermite-Hadamard inequalities for the Riemann-Liouville fractional integrals due to Sarikaya et 
al. [39, Theorem 2]:

f

(
a + b

2

)
≤ Γ(ν + 1)

2(b− a)ν
[
Iν
a+[f ](b) + Iν

b−[f ](a)
]
≤ f(a) + f(b)

2 ,

where

Iν
a+[f ](x) := 1

Γ(ν)

x∫
(x− y)ν−1f(y)dy, x > a,
a
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and

Iν
b−[f ](x) := 1

Γ(ν)

b∫
x

(y − x)ν−1f(y)dy, x < b.

In this way one may develop further inequalities for various generalized fractional integrals.
Accordingly, the aim of the present paper is to deal with interpolating inequalities of Fejér type for (1.2), 

which not only provide a natural and intrinsic characterization of the (Mφ, Mψ)-convex functions, but also 
agree with a wide class of known inequalities of Hermite-Hadamard and Fejér type for different kinds of 
convexity and fractional integrals existing in the literature as special cases. As applications, we establish 
some inequalities involving the gamma function and special means and apply them to deduce two well-
known asymptotic formulas for the gamma function and a refinement of Young’s inequality. The concepts 
and techniques of this paper may stimulate further research in this fascinating area.

2. Fejér type inequalities for (Mφ, Mψ)-convex functions

In what follows, let f : I → J be (Mφ, Mψ)-convex, a, b ∈ I with a < b, α ∈ (0, 1), and let w1, w2 :
[0, 1] → [0, ∞) be integrable, with 

∫ s

0 w1(t)dt > 0 and 
∫ 1
s
w2(t)dt > 0 for all s ∈ (0, 1). For simplicity of 

notation, we will write L(t) = Mφ(a, Mφ(a, b; α); t) and R(t) = Mφ(b, Mφ(a, b; α); t) for t ∈ [0, 1].

Theorem 2.1. Let F , G : [0, 1] → R be defined by

F(t) = Mψ(f ◦ L(t), f ◦ R(t);α) and G(t) = Mψ(F(1),F(0); t),

respectively.

1. The functions F and G are Mψ-convex, increasing on [0, 1], and

F(0) = G(0) = f(Mφ(a, b;α)),

F(t) ≤ G(t), t ∈ (0, 1),

F(1) = G(1) = Mψ(f(a), f(b);α).

(2.1)

2. For s ∈ (0, 1], define

I1(s) = ψ−1

(∫ s

0 ψ ◦ F(t)w1(t)dt∫ s

0 w1(t)dt

)
and β1(s) =

∫ s

0 tw1(t)dt∫ s

0 w1(t)dt
.

Then F ◦ β1, I1, and G ◦ β1 increase on (0, 1] and satisfy

lim
s→0+

F ◦ β1(s) = lim
s→0+

I1(s) = lim
s→0+

G ◦ β1(s) = f(Mφ(a, b;α)),

F ◦ β1(s) ≤ I1(s) ≤ G ◦ β1(s) ≤ F(s), s ∈ (0, 1].
(2.2)

3. For s ∈ [0, 1), define

I2(s) = ψ−1

(∫ 1
s
ψ ◦ F(t)w2(t)dt∫ 1

s
w2(t)dt

)
and β2(s) =

∫ 1
s
tw2(t)dt∫ 1

s
w2(t)dt

.

Then F ◦ β2, I2, and G ◦ β2 increase on [0, 1) and satisfy
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G(s) ≤ F ◦ β2(s) ≤ I2(s) ≤ G ◦ β2(s), s ∈ [0, 1),

lim
s→1−

F ◦ β2(s) = lim
s→1−

I2(s) = lim
s→1−

G ◦ β2(s) = Mψ(f(a), f(b);α).
(2.3)

If, in addition, w1 = w2, then I1(1) = I2(0).

Before proving the theorem, let us mention three lemmas that will be imperative to the proof of our main 
result.

The first lemma, called Aczél correspondence principle [1] (see also [32, Lemma A.2.2]), reduces the 
(Mφ, Mψ)-convexity to the usual convexity of a function derived via a change of variable and a change of 
function.

Lemma 2.2 (Aczél correspondence principle). If ψ is increasing on J , then f is (Mφ, Mψ)-convex on I if 
and only if ψ ◦ f ◦ φ−1 is convex on φ(I). If ψ is decreasing on J , then f is (Mφ, Mψ)-convex on I if and 
only if ψ ◦ f ◦ φ−1 is concave on φ(I).

The following lemma provides a useful inequality related to convex functions, which generalizes the result 
of Hwang, Tseng and Yang given in [19, Lemma].

Lemma 2.3. Let H : [A, B] ⊂ R → R be a convex function and let β ∈ [0, 1]. Then for any C, D ∈ [A, B], 
with βA + (1 − β)B = βC + (1 − β)D, one has

βH(C) + (1 − β)H(D) ≤ βH(A) + (1 − β)H(B). (2.4)

Proof. If A = B, then there is nothing to prove. Otherwise, write

C = B − C

B −A
A + C −A

B −A
B and D = B −D

B −A
A + D −A

B −A
B.

Using the assumption βA + (1 − β)B = βC + (1 − β)D, we get

β
B − C

B −A
+ (1 − β)B −D

B −A
= β and β

C −A

B −A
+ (1 − β)D −A

B −A
= 1 − β.

Together with the convexity of H, we obtain

βH(C) + (1 − β)H(D) ≤ β

[
B − C

B −A
H(A) + C −A

B −A
H(B)

]
+ (1 − β)

[
B −D

B −A
H(A) + D −A

B −A
H(B)

]

= βH(A) + (1 − β)H(B),

which is the desired conclusion. �
Lemma 2.4. Let P : [0, 1] → R be continuous and increasing.

1. For s ∈ (0, 1], define

P1(s) =
∫ s

0 P (t)w1(t)dt∫ s

0 w1(t)dt
.

Then P1 is increasing on (0, 1], with

lim P1(s) = P (0) ≤ P1(s) ≤ P (s), s ∈ (0, 1]. (2.5)

s→0+
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2. Similarly, for s ∈ [0, 1), define

P2(s) =
∫ 1
s
P (t)w2(t)dt∫ 1
s
w2(t)dt

.

Then P2 is increasing on [0, 1), with

P (s) ≤ P2(s) ≤ P (1) = lim
s→1−

P2(s), s ∈ [0, 1).

The principal significance of the lemma is that it allows one to establish various weighted interpolating 
inequalities for a continuous and monotonic function.

Proof. We give only the proof for the first assertion of the lemma, as the proof of the other one is similar. 
To show P1 is increasing on (0, 1], suppose that 0 < s1 < s2 ≤ 1. Since P is increasing and w1 is nonnegative 
on [0, 1], it follows that

s1∫
0

P (u)w1(u)du ≤ P (s1)
s1∫
0

w1(u)du (2.6)

and

P (s1)
s2∫

s1

w1(v)dv ≤
s2∫

s1

P (v)w1(v)dv. (2.7)

Multiplying (2.6) by 
∫ s2
s1

w1(v)dv ≥ 0 and using (2.7) leads to

s1∫
0

P (u)w1(u)du
s2∫

s1

w1(v)dv ≤
s2∫

s1

P (v)w1(v)dv
s1∫
0

w1(u)du. (2.8)

Since

s2∫
s1

w1(v)dv =
s2∫
0

w1(t)dt−
s1∫
0

w1(u)du

and

s2∫
s1

P (v)w1(v)dv =
s2∫
0

P (t)w1(t)dt−
s1∫
0

P (u)w1(u)du,

it follows from (2.8) that

s1∫
0

P (u)w1(u)du
s2∫
0

w1(t)dt ≤
s2∫
0

P (t)w1(t)dt
s1∫
0

w1(u)du. (2.9)

Dividing (2.9) by (
∫ s2 w1(t)dt)(

∫ s1 w1(u)du) > 0, we obtain
0 0
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P1(s1) ≤ P1(s2),

which implies that P1 is increasing on (0, 1] as required.
We now show (2.5). Since P is increasing on [0, 1], it follows that

P (0) ≤ P1(s) ≤ P (s), s ∈ (0, 1].

The continuity of P thus yields

lim
s→0+

P1(s) = P (0),

which completes the proof. �
We are now in a position to prove the theorem.

Proof of Theorem 2.1. Since ψ is strictly monotonic, we need to examine two possibilities of ψ. Assume 
first that ψ is strictly increasing on J . But then, because ψ is also continuous on J , ψ−1 is continuous and 
strictly increasing on ψ(J). Furthermore, by Aczél correspondence principle, ψ ◦ f ◦ φ−1 is convex on φ(I).

1. To show F is Mψ-convex on [0, 1], it suffices to show that ψ ◦ F is convex on [0, 1]. We have

ψ ◦ F(t) = αψ ◦ f ◦ φ−1(A(t)) + (1 − α)ψ ◦ f ◦ φ−1(B(t)),

where

A(t) := tφ(a) + (1 − t)(αφ(a) + (1 − α)φ(b)) (2.10)

and

B(t) := tφ(b) + (1 − t)(αφ(a) + (1 − α)φ(b)). (2.11)

Since ψ ◦ f ◦ φ−1 is convex on φ([a, b]), A(t) and B(t) are linear on [0, 1], it follows that ψ ◦ F is convex 
on [0, 1] as claimed. The Mψ-convexity of G on [0, 1] immediately follows from the definition of G.
Next, it is easily seen that

F(0) = G(0) = f(Mφ(a, b;α)),

F(1) = G(1) = Mψ(f(a), f(b);α).

Now, by the convexity of ψ ◦ f ◦ φ−1,

ψ ◦ f ◦ φ−1(A(t)) ≤ tψ ◦ f(a) + (1 − t)ψ ◦ f(Mφ(a, b;α))

and

ψ ◦ f ◦ φ−1(B(t)) ≤ tψ ◦ f(b) + (1 − t)ψ ◦ f(Mφ(a, b;α)).

We thus get

ψ ◦ F(t) ≤ tψ(Mψ(f(a), f(b);α)) + (1 − t)ψ ◦ f(Mφ(a, b;α)) = ψ ◦ G(t)
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and, because ψ−1 is increasing on ψ(J),

F(t) ≤ G(t), t ∈ [0, 1],

whence (2.1) is verified.
We proceed to show that F is increasing. To this end, suppose that 0 < t < r ≤ 1. By the (Mφ, Mψ)-
convexity of f ,

F(t) = Mψ(f(L(t)), f(R(t));α) ≥ f(Mφ(L(t),R(t);α)) = F(0),

which yields

ψ ◦ F(t) ≥ ψ ◦ F(0).

Together with the convexity of ψ ◦ F , this gives

ψ ◦ F(r) − ψ ◦ F(t)
r − t

≥ ψ ◦ F(t) − ψ ◦ F(0)
t− 0 ≥ 0,

which implies that ψ ◦ F is increasing on [0, 1]. Since ψ−1 is increasing on ψ(J), we conclude that F is 
increasing on [0, 1] as desired. Since

ψ ◦ G(t) = t[ψ(Mψ(f(a), f(b);α)) − ψ ◦ f(Mφ(a, b;α))] + ψ ◦ f(Mφ(a, b;α))

and

ψ(Mψ(f(a), f(b);α)) − ψ ◦ f(Mφ(a, b;α)) ≥ 0,

it follows that ψ ◦ G, and so does G, increases on [0, 1].
2. Applying Lemma 2.4 for P = ψ ◦ F , we conclude that ψ ◦ I1 is increasing on (0, 1], with

lim
s→0+

ψ ◦ I1(s) = ψ ◦ F(0) = ψ ◦ f(Mφ(a, b;α)).

Since ψ−1 is continuous and strictly increasing on ψ(J), it follows that I1 is increasing on (0, 1] and

lim
s→0+

I1(s) = f(Mφ(a, b;α)).

Again, by Lemma 2.4, β1 is increasing on (0, 1], with

lim
s→0+

β1(s) = 0 ≤ β1(s) ≤ s, s ∈ (0, 1].

Thus, the first part of the theorem asserts that F ◦ β1 and G ◦ β1 are well-defined, increasing on (0, 1]
and

lim
s→0+

F ◦ β1(s) = lim
s→0+

G ◦ β1(s) = f(Mφ(a, b;α)).

Our next goal is to show the inequalities in (2.2). Fix s ∈ (0, 1]. Applying Jensen’s inequality (see, for 
example, [35, Chapter 2]) to the convex function ψ ◦F on the interval [0, s] with respect to the measure 
w1(t)dt, we obtain
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ψ ◦ F
(∫ s

0 tw1(t)dt∫ s

0 w1(t)dt

)
≤
∫ s

0 ψ ◦ F(t)w1(t)dt∫ s

0 w1(t)dt
,

which yields

F ◦ β1(s) ≤ I1(s).

From what has already been proved, it follows that
∫ s

0 ψ ◦ F(t)w1(t)dt∫ s

0 w1(t)dt
≤
∫ s

0 ψ ◦ G(t)w1(t)dt∫ s

0 w1(t)dt
= ψ ◦ G ◦ β1(s),

which, as the function ψ−1 is increasing, implies

I1(s) ≤ G ◦ β1(s).

It remains to show

G ◦ β1(s) ≤ F(s).

We utilize Lemma 2.3, with H = ψ ◦ f ◦ φ−1, A = min{A(s), B(s)}, B = max{A(s), B(s)}, C =
min{A(β1(s)), B(β1(s))}, D = max{A(β1(s)), B(β1(s))}, and

β =
{
α if A(s) ≤ B(s),
1 − α if A(s) > B(s),

where A(·) and B(·) are as in (2.10) and (2.11), respectively. To do this, we need to ensure that 
C, D ∈ [A, B], with βA + (1 − β)B = βC + (1 − β)D. But this immediately follows from the fact that

βA + (1 − β)B = βC + (1 − β)D = αφ(a) + (1 − α)φ(b)

and

B −A = s|φ(b) − φ(a)| ≥ β1(s)|φ(b) − φ(a)| = D − C.

A computation shows that

ψ ◦ G ◦ β1(s) = βH(C) + (1 − β)H(D)

and

ψ ◦ F(s) = βH(A) + (1 − β)H(B).

On account of (2.4), we have

ψ ◦ G ◦ β1(s) ≤ ψ ◦ F(s),

which establishes the desired inequality.
3. We proceed similarly as in the proof of part 2, with β1 and (0, s], respectively, replaced by β2 and 

[s, 1), we can assert that F ◦ β2, I2, and G ◦ β2 increase on [0, 1) and (2.3) follows. If w1 = w2, then 
I1(1) = I2(0), which is clear from the definitions of I1 and I2.
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Finally, the same proof remains valid for the case when ψ is decreasing. �
It is interesting to note that Theorem 2.1 is not merely a consequence of (Mφ, Mψ)-convexity, but actually 

characterizes it. More precisely, we propose the following corollary whose proof is adapted from Theorem 2.1, 
Aczél correspondence principle, Jensen’s criterion of convexity [32, Theorem 1.1.8], and characterizations of 
convexity via Hermite-Hadamard’s inequality [40, Theorem 1].

Corollary 2.5. Given a continuous function f : I → J , the following assertions are equivalent:

(1) The function f is (Mφ, Mψ)-convex;
(2) For all elements a < b of I, the function F , with α = 1/2, is increasing on [0, 1];
(3) For all elements a < b of I, the function I1, with α = 1/2 and w1 = 1, is increasing on (0, 1];
(4) For all elements a < b of I, it holds that

f(Mφ(a, b)) ≤ ψ−1

⎛
⎝ 1
φ(b) − φ(a)

b∫
a

ψ ◦ f(x)dφ(x)

⎞
⎠ ;

(5) For all elements a < b of I, the function I2, with α = 1/2 and w2 = 1, is increasing on [0, 1);
(6) For all elements a < b of I, it holds that

ψ−1

⎛
⎝ 1
φ(b) − φ(a)

b∫
a

ψ ◦ f(x)dφ(x)

⎞
⎠ ≤ Mψ(f(a), f(b));

(7) For all elements a < b of I, the function G, with α = 1/2, is increasing on [0, 1].

Proof. By Theorem 2.1, the implications (1) ⇒ (2) ⇒ (3) ⇒ (4), (1) ⇒ (5) ⇒ (6), and (1) ⇒ (7) hold. It 
remains to show (4) ⇒ (1), (6) ⇒ (1), and (7) ⇒ (1). Without loss of generality, we may assume that ψ is 
increasing on J . By Aczél correspondence principle, it suffices to show ψ ◦f ◦φ−1 is convex on φ(I) provided 
that one of the conditions (4), (6), and (7) occurs. Since φ is continuous and strictly monotonic on I, φ−1 is 
continuous and strictly monotonic on φ(I). Now, the continuity of ψ, f , and φ−1 implies that of ψ ◦ f ◦φ−1. 
Clearly, (7) asserts that ψ◦f ◦φ−1 is midpoint convex on φ(I). By Jensen’s criterion of convexity, ψ◦f ◦φ−1

is convex on φ(I). Finally, the conditions (4) and (6) show that the Hermite-Hadamard inequality verifies 
for the continuous function ψ ◦ f ◦ φ−1 on φ(I). Therefore, it follows from [40, Theorem 1] that ψ ◦ f ◦ φ−1

is convex on φ(I), which completes the proof. �
Let us now mention another important consequence of Theorem 2.1. It should be pointed out that a 

variety of Fejér type inequalities for (Mφ, Mψ)-convex functions can be produced by choosing various 
weights, w1 and w2. For instance, let us choose

wj(t) = (1 − α)gj ◦ L(t) + αgj ◦ R(t), t ∈ [0, 1],

where gj : [a, b] → [0, ∞), for j = 1, 2, are given to satisfy

1 − α

α
g1 ◦ L(t) = α

1 − α
g1 ◦ R(t), t ∈ [0, s] (2.12)

and

1 − α
g2 ◦ L(t) = α

g2 ◦ R(t), t ∈ [s, 1]. (2.13)

α 1 − α
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Notice that if α = 1/2 and φ(x) = x, then the assumptions (2.12) and (2.13) reduce to the ones that g1 and 
g2 are symmetric to (a + b)/2.

A computation, using (2.12) and L(0) = R(0), forces

s∫
0

w1(t)dt = (1 − α)
s∫

0

g1 ◦ L(t)dt + α

s∫
0

g1 ◦ R(t)dt

= 1
φ(b) − φ(a)

R(s)∫
L(s)

g1(x)dφ(x),

s∫
0

ψ ◦ F(t)w1(t)dt = (1 − α)
s∫

0

ψ ◦ f ◦ L(t)g1 ◦ L(t)dt + α

s∫
0

ψ ◦ f ◦ R(t)g1 ◦ R(t)dt

= 1
φ(b) − φ(a)

R(s)∫
L(s)

ψ ◦ f(x)g1(x)dφ(x),

and hence

I1(s) = ψ−1

⎛
⎝
∫R(s)
L(s) ψ ◦ f(x)g1(x)dφ(x)∫R(s)

L(s) g1(x)dφ(x)

⎞
⎠ .

Similarly, by (2.13), L(1) = a, and R(1) = b,

I2(s) = ψ−1

⎛
⎝
∫ L(s)
a

ψ ◦ f(x)g2(x)dφ(x) +
∫ b

R(s) ψ ◦ f(x)g2(x)dφ(x)∫ L(s)
a

g2(x)dφ(x) +
∫ b

R(s) g2(x)dφ(x)

⎞
⎠ .

Together with the aid of Theorem 2.1, we establish the following corollary.

Corollary 2.6. Suppose that g1, g2 : [a, b] → [0, ∞) are integrable, with 
∫ s

0 g1◦L(t)dt > 0 and 
∫ 1
s
g2◦R(t)dt > 0

for all s ∈ (0, 1), and satisfy (2.12) and (2.13). Then, for s ∈ (0, 1),

f(Mφ(a, b;α)) ≤ F
(∫ s

0 tg1 ◦ L(t)dt∫ s

0 g1 ◦ L(t)dt

)
≤ ψ−1

⎛
⎝
∫R(s)
L(s) ψ ◦ f(x)g1(x)dφ(x)∫R(s)

L(s) g1(x)dφ(x)

⎞
⎠

≤ G
(∫ s

0 tg1 ◦ L(t)dt∫ s

0 g1 ◦ L(t)dt

)
≤ F(s) ≤ G(s) ≤ F

(∫ 1
s
tg2 ◦ L(t)dt∫ 1

s
g2 ◦ L(t)dt

)

≤ ψ−1

⎛
⎝
∫ L(s)
a

ψ ◦ f(x)g2(x)dφ(x) +
∫ b

R(s) ψ ◦ f(x)g2(x)dφ(x)∫ L(s)
a

g2(x)dφ(x) +
∫ b

R(s) g2(x)dφ(x)

⎞
⎠

≤ G
(∫ 1

s
tg2 ◦ L(t)dt∫ 1

s
g2 ◦ L(t)dt

)
≤ Mψ(f(a), f(b);α).

(2.14)

Remark 2.7. It turns out that a great deal of existing inequalities of Hermite-Hadamard and Fejér type for 
different kinds of convexity can be deduced from Corollary 2.6.
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1. Let us first consider φ(x) = x and ψ(x) = x. If α = 1/2 and g1 = g2 = 1, then (2.14) implies

f

(
a + b

2

)
≤ 1

2

[
f

(
5a + 3b

8

)
+ f

(
3a + 5b

8

)]
≤ 2

b− a

(a+3b)/4∫
(3a+b)/4

f(x)dx

≤ 1
4

[
f(a) + f(b)

2

]
+ 3

4f
(
a + b

2

)
≤ 1

2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]

≤ 1
b− a

b∫
a

f(x)dx ≤ 1
2

[
f(a) + f(b)

2 + f

(
a + b

2

)]
≤ f(a) + f(b)

2 ,

which offers a refinement of (1.1) and the ones due to Hammer [17], Dragomir, Milošević and Sándor 
[11]. In the meanwhile, the general form (2.14) extends, generalizes and refines (1.3) and many known 
inequalities obtained by Brenner and Alzer [5], Dragomir [10], Lupaş [30], Tseng, Hwang and Dragomir 
[42,43], Vasić and Lacković [44,45], Yang and Hong [46], Yang and Tseng [47].

2. Moreover, if we choose φ(x) = x and

ψ(x) =
{
xr if r �= 0,
ln x if r = 0,

then inequalities in (2.14) recover Hermite-Hadamard type inequalities for log-convex functions estab-
lished by Dragomir and Mond [12] as well as for r-convex functions given by Gill, Pearce and Pečarić 
[15].

3. Next, if φ(x) = xp with p �= 0 and ψ(x) = x, then (2.14) derives various inequalities of Hermite-
Hadamard and Fejér type for not only harmonically convex functions obtained by Chen and Wu [9], 
İşcan [20], but also p-convex functions proved by İşcan [22], Kunt and İşcan [29].

4. Finally, if we choose φ(x) = 1/x and

ψ(x) =
{
xr if r �= 0,
ln x if r = 0,

then (2.14) offers a refinement of the inequalities due to Noor, Noor and Awan applied to harmonically 
log-convex functions [33] and harmonically r-convex functions [34].

The important point to note here is that for a suitable choice of the weights, g1 and g2, Corollary 2.6
provides a wide class of Fejér type inequalities for (Mφ, Mψ)-convex functions utilizing various integral 
operators and fractional integrals. For this purpose, let us consider a kernel, say K : φ(I) × φ(I) → [0, ∞), 
and define

Kφ
a+[f ](x) :=

x∫
a

K(φ(x), φ(y))f(y)dφ(y), x > a, (2.15)

and

Kφ
b−[f ](x) :=

b∫
x

K(φ(x), φ(y))f(y)dφ(y), x < b (2.16)

as long as the integrals exist and are finite.
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Remark 2.8. We emphasize that our definition agrees with many known fractional integrals existing in the 
literature as special cases.

1. Let us first consider

K(u, v) = 1
Γ(ν) |u− v|ν−1, u, v ∈ φ(I),

where ν > 0. Then integral operators (2.15) and (2.16) become the fractional integrals of a function 
with respect to another function known from [28]:

Iν,φ
a+ [f ](x) := 1

Γ(ν)

x∫
a

|φ(x) − φ(y)|ν−1f(y)dφ(y), x > a,

and

Iν,φ
b− [f ](x) := 1

Γ(ν)

b∫
x

|φ(x) − φ(y)|ν−1f(y)dφ(y), x < b.

These operators include the Riemann-Liouville [38], Hadamard [38], and Katugampola [27] fractional 
integrals, which correspond to the choice φ(x) = x, φ(x) = ln x, and φ(x) = xρ/ρ with ρ > 0, respec-
tively.

2. Next, if φ(x) = x and

K(x, y) = 1
ν

exp
(
−1 − ν

ν
|x− y|

)
, x, y ∈ [a, b],

with 0 < ν < 1, we obtain the following fractional integrals due to Ahmad et al. [2]:

J ν
a+[f ](x) := 1

ν

x∫
a

exp
(
−1 − ν

ν
(x− y)

)
f(y)dy, x > a,

and

J ν
b−[f ](x) := 1

ν

b∫
x

exp
(
−1 − ν

ν
(y − x)

)
f(y)dy, x < b.

3. We now consider φ(x) = x and

K(x, y) = 1
Γ(ν) |x− y|ν−1 lnμ δ

|x− y| , x, y ∈ [a, b],

where ν > 0, μ ≥ 0, and δ > b −a. Then (2.15) and (2.16) reduce to the operators with power-logarithmic 
kernels given in [38]:

Iν,μ
a+ [f ](x) := 1

Γ(ν)

x∫
a

(x− y)ν−1 lnμ

(
δ

x− y

)
f(y)dy, x > a,

and
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Iν,μ
b− [f ](x) := 1

Γ(ν)

b∫
x

(y − x)ν−1 lnμ

(
δ

y − x

)
f(y)dy, x < b.

4. Finally, let us take φ(x) = x for x ∈ [0, 1], and let ν > 0. If we choose

K(x, y) = F

(
|x− y|

ν

)
, x, y ∈ [0, 1],

where

F (z) :=

⎛
⎝ ∞∫

0

zt−1

Γ(t) dt

⎞
⎠ e−z, z > 0,

we recapture the fractional integrals of type (I) given in [24]:

Hν
0 [f ](x) :=

x∫
0

F

(
x− y

ν

)
f(y)dy, x ∈ [0, 1],

and

Hν
1 [f ](x) :=

1∫
x

F

(
y − x

ν

)
f(y)dy, x ∈ [0, 1].

Instead, if we choose

K(x, y) = 1
ν
E1

(
|x− y|

ν

)
, x, y ∈ [0, 1],

where

E1(z) :=
∞∫
z

e−t

t
dt, z > 0,

we deduce the fractional integrals of type (II) given in [24]:

Sν
0 [f ](x) := 1

ν

x∫
0

E1

(
x− y

ν

)
f(y)dy, x ∈ [0, 1],

and

Sν
1 [f ](x) := 1

ν

1∫
x

E1

(
y − x

ν

)
f(y)dy, x ∈ [0, 1].

For a deeper discussion of these and more general operators we refer the reader to [2], [24], [27], [28], and 
[38].
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In Corollary 2.6, for each s ∈ [0, 1], let us choose

g1(x) = [K(φ ◦ R(s), φ(x)) + K(φ ◦ L(s), φ(x))]h1(x), x ∈ [L(s),R(s)]

and

g2(x) =
{
K(φ ◦ L(s), φ(x))h2(x) if x ∈ [a,L(s)],
K(φ ◦ R(s), φ(x))h2(x) if x ∈ [R(s), b],

where hj : [a, b] → [0, ∞), for j = 1, 2, are given in such a way that the assumptions (2.12) and (2.13) are 
guaranteed, i.e.,

1 − α

α
[K(φ ◦ R(s), φ ◦ L(t)) + K(φ ◦ L(s), φ ◦ L(t))]h1 ◦ L(t)

= α

1 − α
[K(φ ◦ R(s), φ ◦ R(t)) + K(φ ◦ L(s), φ ◦ R(t))]h1 ◦ R(t), t ∈ [0, s],

(2.17)

and

1 − α

α
K(φ ◦ L(s), φ ◦ L(t))h2 ◦ L(t)

= α

1 − α
K(φ ◦ R(s), φ ◦ R(t))h2 ◦ R(t), t ∈ [s, 1].

(2.18)

In order to simplify these assumptions, it is necessary to put some restrictions on α and K. Let us first take 
α = 1/2 and investigate a class of kernels, K, of the form

K(u, v) = k(|u− v|), u, v ∈ φ(I), (2.19)

where k : [0, ∞) → [0, ∞) is given so that the integral operators (2.15) and (2.16) are well-defined. As one 
can see that the kernels used to define the fractional integrals indicated in Remark 2.8 are all of the form 
(2.19).

We check at once that

|φ ◦ L(s) − φ ◦ L(t)| = |φ ◦ R(s) − φ ◦ R(t)| = 1
2 |s− t||φ(b) − φ(a)|

and

|φ ◦ L(s) − φ ◦ R(t)| = |φ ◦ R(s) − φ ◦ L(t)| = 1
2(s + t)|φ(b) − φ(a)|.

Consequently, (2.17) and (2.18) reduce to

h1 ◦ L(t) = h1 ◦ R(t), t ∈ [0, s]

and

h2 ◦ L(t) = h2 ◦ R(t), t ∈ [s, 1],

respectively. This enables one to take

h(x) =
{
h1(x) if x ∈ [L(s),R(s)],
h (x) otherwise.
2
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Put this way, we have

β1(s) =
Kφ

L(s)+[ϕh](R(s)) + Kφ
R(s)−[ϕh](L(s))

Kφ
L(s)+[h](R(s)) + Kφ

R(s)−[h](L(s))

and

β2(s) =
Kφ

a+[ϕh](L(s)) + Kφ
b−[ϕh](R(s))

Kφ
a+[h](L(s)) + Kφ

b−[h](R(s))
,

where

ϕ(x) :=
∣∣∣∣φ(a) + φ(b) − 2φ(x)

φ(b) − φ(a)

∣∣∣∣ , x ∈ I. (2.20)

In summary, we get the following corollary.

Corollary 2.9. Let ϕ be given by (2.20) and α = 1/2. Suppose that K : φ(I) × φ(I) → [0, ∞) is of the form 
(2.19) and h : [a, b] → [0, ∞) is integrable such that

Kφ
L(s)+[h](R(s)) + Kφ

R(s)−[h](L(s))
φ(b) − φ(a) > 0 and

Kφ
a+[h](L(s)) + Kφ

b−[h](R(s))
φ(b) − φ(a) > 0

for all s ∈ (0, 1). If

h ◦ L(t) = h ◦ R(t), t ∈ [0, 1], (2.21)

then

f(Mφ(a, b)) ≤ F
(
Kφ

L(s)+[ϕh](R(s)) + Kφ
R(s)−[ϕh](L(s))

Kφ
L(s)+[h](R(s)) + Kφ

R(s)−[h](L(s))

)

≤ ψ−1

(
Kφ

L(s)+[(ψ ◦ f)h](R(s)) + Kφ
R(s)−[(ψ ◦ f)h](L(s))

Kφ
L(s)+[h](R(s)) + Kφ

R(s)−[h](L(s))

)

≤ G
(
Kφ

L(s)+[ϕh](R(s)) + Kφ
R(s)−[ϕh](L(s))

Kφ
L(s)+[h](R(s)) + Kφ

R(s)−[h](L(s))

)
≤ F(s)

≤ G(s) ≤ F
(
Kφ

a+[ϕh](L(s)) + Kφ
b−[ϕh](R(s))

Kφ
a+[h](L(s)) + Kφ

b−[h](R(s))

)

≤ ψ−1

(
Kφ

a+[(ψ ◦ f)h](L(s)) + Kφ
b−[(ψ ◦ f)h](R(s))

Kφ
a+[h](L(s)) + Kφ

b−[h](R(s))

)

≤ Mψ(f(a), f(b)).

(2.22)

In particular, one has
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f(Mφ(a, b)) ≤ F
(
Kφ

a+[ϕh](b) + Kφ
b−[ϕh](a)

Kφ
a+[h](b) + Kφ

b−[h](a)

)

≤ ψ−1

(
Kφ

a+[(ψ ◦ f)h](b) + Kφ
b−[(ψ ◦ f)h](a)

Kφ
a+[h](b) + Kφ

b−[h](a)

)

≤ G
(
Kφ

a+[ϕh](b) + Kφ
b−[ϕh](a)

Kφ
a+[h](b) + Kφ

b−[h](a)

)
≤ Mψ(f(a), f(b))

(2.23)

and

f(Mφ(a, b)) ≤ F
(
Kφ

a+[ϕh](Mφ(a, b)) + Kφ
b−[ϕh](Mφ(a, b))

Kφ
a+[h](Mφ(a, b)) + Kφ

b−[h](Mφ(a, b))

)

≤ ψ−1

(
Kφ

a+[(ψ ◦ f)h](Mφ(a, b)) + Kφ
b−[(ψ ◦ f)h](Mφ(a, b))

Kφ
a+[h](Mφ(a, b)) + Kφ

b−[h](Mφ(a, b))

)

≤ G
(
Kφ

a+[ϕh](Mφ(a, b)) + Kφ
b−[ϕh](Mφ(a, b))

Kφ
a+[h](Mφ(a, b)) + Kφ

b−[h](Mφ(a, b))

)
≤ Mψ(f(a), f(b)).

(2.24)

Remark 2.10. Through a proper choice of the functions ψ, φ, and K such as being indicated in Remark 2.8, 
(2.23) can be regarded as a generalization and refinement of several results obtained recently by Ahmad 
et al. [2], Budak [6], Chen and Katugampola [8], İşcan [21], İşcan and Wu [23], Jleli, O’Regan and Samet 
[25], Jleli and Samet [26], Peng, Wei and Wang [36], and Sarikaya et al. [39], while (2.22) and (2.24) are 
essentially new. As an illustration of our new results, let us briefly mention a special case of (2.24) when 
ψ(x) = x, φ(x) = x, and

K(x, y) = 1
Γ(ν) |x− y|ν−1 lnμ δ

|x− y| , x, y ∈ [a, b],

where ν > 0, μ ≥ 0, and δ > b − a. Then the assumption (2.21) is nothing but the statement that h is 
symmetric to (a + b)/2. The function ϕ now becomes

ϕ(x) =
∣∣∣∣a + b− 2x

b− a

∣∣∣∣ , x ∈ [a, b],

and so

Kφ
a+[ϕh](Mφ(a, b)) + Kφ

b−[ϕh](Mφ(a, b))
Kφ

a+[h](Mφ(a, b)) + Kφ
b−[h](Mφ(a, b))

= 2ν
b− a

Iν+1,μ
a+ [h](a+b

2 )
Iν,μ
a+ [h](a+b

2 )
=: γ.

Taking into account (2.24), we obtain the following Fejér type inequalities for convex functions utilizing the 
operators with power-logarithmic kernels:

f

(
a + b

2

)
≤ 1

2

[
f

(
1 + γ

2 a + 1 − γ

2 b

)
+ f

(
1 − γ

2 a + 1 + γ

2 b

)]

≤
Iν,μ
a+ [fh](a+b

2 ) + Iν,μ
b− [fh](a+b

2 )
Iν,μ
a+ [h](a+b

2 ) + Iν,μ
b− [h](a+b

2 )

≤ γ

[
f(a) + f(b)

2

]
+ (1 − γ)f

(
a + b

2

)
≤ f(a) + f(b)

2 .

(2.25)

In particular, on taking h = 1, one has
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γ = 2δ
b− a

(
ν

ν + 1

)μ+1 Γ
(
μ + 1, (ν + 1) ln 2δ

b−a

)
Γ
(
μ + 1, ν ln 2δ

b−a

)

and

Iν,μ
a+ [1]

(
a + b

2

)
+ Iν,μ

b− [1]
(
a + b

2

)
= 2

δνΓ
(
μ + 1, ν ln 2δ

b−a

)
νμΓ(ν + 1) ,

where Γ(μ + 1, x) denotes the upper incomplete gamma function defined as

Γ(μ + 1, x) =
∞∫
x

yμe−ydy.

By letting μ = 0, then (2.25) reduces to a new Fejér type inequality for convex functions via the Riemann-
Liouville fractional integrals. Accordingly, our viewpoint sheds some new light on this field.

Remark 2.11. We have been working under the assumption that K is of the form (2.19) and α = 1/2. We 
will now show how to dispense with this assumption.

Notice first that (2.19) is assumed in order to simplify (2.17) and (2.18), so the kernel K does not 
necessarily have this property. Instead, we may assume that

K(u, φ ◦ L(t)) = K(u, φ ◦ R(t)), u ∈ φ(I), t ∈ [0, 1]. (2.26)

If, in addition, α = 1/2 and h is subject to the condition (2.21), then (2.23) and (2.24) are still true.
Next, for α ∈ (0, 1), it is required that

1 − α

α
h ◦ L(t) = α

1 − α
h ◦ R(t), t ∈ [0, 1]. (2.27)

Set

ϕα(x) :=

⎧⎨
⎩

1 − 1
1−α

φ(x)−φ(a)
φ(b)−φ(a) if x ∈ [a,Mφ(a, b;α)],

1 − 1
α

φ(b)−φ(x)
φ(b)−φ(a) if x ∈ [Mφ(a, b;α), b].

Then, under the assumptions (2.26) and (2.27), we have

f(Mφ(a, b;α)) ≤ F
(
Kφ

a+[ϕαh](b) + Kφ
b−[ϕαh](a)

Kφ
a+[h](b) + Kφ

b−[h](a)

)

≤ ψ−1

(
Kφ

a+[(ψ ◦ f)h](b) + Kφ
b−[(ψ ◦ f)h](a)

Kφ
a+[h](b) + Kφ

b−[h](a)

)

≤ G
(
Kφ

a+[ϕαh](b) + Kφ
b−[ϕαh](a)

Kφ
a+[h](b) + Kφ

b−[h](a)

)
≤ Mψ(f(a), f(b);α)

(2.28)

and
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f(Mφ(a, b;α)) ≤ F
(
Kφ

a+[ϕαh](Mφ(a, b;α)) + Kφ
b−[ϕαh](Mφ(a, b;α))

Kφ
a+[h](Mφ(a, b;α)) + Kφ

b−[h](Mφ(a, b;α))

)

≤ ψ−1

(
Kφ

a+[(ψ ◦ f)h](Mφ(a, b;α)) + Kφ
b−[(ψ ◦ f)h](Mφ(a, b;α))

Kφ
a+[h](Mφ(a, b;α)) + Kφ

b−[h](Mφ(a, b;α))

)

≤ G
(
Kφ

a+[ϕαh](Mφ(a, b;α)) + Kφ
b−[ϕαh](Mφ(a, b;α))

Kφ
a+[h](Mφ(a, b;α)) + Kφ

b−[h](Mφ(a, b;α))

)

≤ Mψ(f(a), f(b);α).

(2.29)

Instead of using the conditions (2.26) and (2.27), we also obtain (2.28) under the more general assumption 
that

1 − α

α
[K(φ(b), φ ◦ L(t)) + K(φ(a), φ ◦ L(t))]h ◦ L(t)

= α

1 − α
[K(φ(b), φ ◦ R(t)) + K(φ(a), φ ◦ R(t))]h ◦ R(t), t ∈ [0, 1].

Similarly, (2.29) is still true if it is just assumed that

1 − α

α
K(φ(Mφ(a, b;α)), φ ◦ L(t))h ◦ L(t)

= α

1 − α
K(φ(Mφ(a, b;α)), φ ◦ R(t))h ◦ R(t), t ∈ [0, 1].

Remark 2.12. All inequalities indicated hold in the reversed direction if f is (Mφ, Mψ)-concave. Moreover, 
it is possible to establish other versions of Fejér type inequalities assuming f to be Lipschitz, differentiable 
with f ′ either bounded or (Mφ, Mψ)-convex, or twice differentiable with f ′′ bounded, but we will not 
develop this point here. However, the techniques of the present paper may motivate further research in this 
fascinating area.

3. Applications to inequalities involving the gamma function and special means

In this section, we explore two more applications of the main theorem to inequalities involving the gamma 
function and special means.

We first state some inequalities involving the gamma function, Γ, defined by the integral representation

Γ(z) =
∞∫
0

yz−1e−ydy, �(z) > 0.

It is well-known that the second derivative of the function z �→ ln Γ(z) can be expressed in terms of the 
series (see, for instance, [31])

d2

dz2 ln Γ(z) = 1
z2 + 1

(z + 1)2 + 1
(z + 2)2 + · · · , z �= 0,−1,−2, ...,

so the gamma function is log-convex on (0, ∞). Fix a > 0. Applying Theorem 2.1 for f(x) = Γ(x), φ(x) = x, 
ψ(x) = ln x, b = a + 1, and α = 1/2, using Raabe’s formula [37],

a+1∫
ln Γ(x)dx = ln

√
2π + a ln a− a,
a
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we obtain the following result.

Corollary 3.1.

1. The functions

F1(t) :=

√
Γ
(
a + 1 − t

2

)
Γ
(
a + 1 + t

2

)

and

G1(t) :=
[√

Γ(a)Γ(a + 1)
]t [

Γ
(
a + 1

2

)]1−t

are log-convex and increasing on [0, 1], with

Γ
(
a + 1

2

)
≤ F1(t) ≤ G1(t) ≤

√
Γ(a)Γ(a + 1)

for all t ∈ [0, 1].
2. The function

P1(s) := exp

⎛
⎜⎝1

s

a+(1+s)/2∫
a+(1−s)/2

ln Γ(x)dx

⎞
⎟⎠

is increasing on (0, 1], with

lim
s→0+

P1(s) = Γ
(
a + 1

2

)
, P1(1) =

√
2π
(a
e

)a
,

and

F1(s/2) ≤ P1(s) ≤ G1(s/2) ≤ F1(s), s ∈ (0, 1].

3. The function

Q1(s) := exp

⎛
⎜⎝ 1

1 − s

⎡
⎢⎣

a+(1−s)/2∫
a

ln Γ(x)dx +
a+1∫

a+(1+s)/2

ln Γ(x)dx

⎤
⎥⎦
⎞
⎟⎠

is increasing on [0, 1), with

Q1(0) =
√

2π
(a
e

)a
, lim

s→1−
Q1(s) =

√
Γ(a)Γ(a + 1),

and

G1(s) ≤ F1

(
1 + s

)
≤ Q1(s) ≤ G1

(
1 + s

)
, s ∈ [0, 1).
2 2
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4. In particular,

Γ
(
a + 1

2

)
≤ F1(1/2) ≤

√
2π
(a
e

)a
≤ G1(1/2) ≤

√
Γ(a)Γ(a + 1).

Consequently,

Γ (a + 1/2)
Γ(a)a1/2 ≤

√
2πa (a/e)a

Γ(a + 1) ≤
√

Γ (a + 1/2)
Γ(a)a1/2 ≤ 1 ≤

√
Γ (a + 1/2)
Γ(a)a1/2

4

√
1 + 1

2a,

which deduces

lim
a→∞

Γ (a + 1/2)
Γ(a)a1/2 = 1

and the famous Stirling’s asymptotic formula for the gamma function

Γ(a + 1) ≈
√

2πa
(a
e

)a
as a → ∞.

Remark 3.2. As noted by Trif [41], the gamma function is also multiplicatively convex on [x0, ∞), where x0
is the unique positive solution of the equation

x
d2

dx2 ln Γ(x) + d

dx
ln Γ(x) = 0.

Accordingly, one may develop further inequalities related to the gamma function by applying Theorem 2.1
for f(x) = Γ(x), φ(x) = ln x, and ψ(x) = ln x on [a, b] ⊂ [x0, ∞).

Similar considerations may apply to other special functions provided that these functions are (Mφ, Mψ)-
convex. We refer the reader to [32, Appendix A] for various examples of such a function.

The remainder of the paper is devoted to an application to special means. Let 0 < a < b and α ∈ (0, 1). 
Recall that the weighted arithmetic, weighted geometric and logarithmic means of a and b are defined by

Aα(a, b) := αa + (1 − α)b, Gα(a, b) := aαb1−α, and L(a, b) := b− a

ln b− ln a
,

respectively. If we choose in Theorem 2.1, φ(x) = ln x, ψ(x) = x, f(x) = x for x ∈ [a, b], and w1(t) =
w2(t) = 1 for t ∈ [0, 1], we obtain the following corollary.

Corollary 3.3.

1. The functions

F2(s) := G1−s
α (a, b)Aα(as, bs) and G2(s) := As(Aα(a, b), Gα(a, b))

are convex and increasing on [0, 1], with

F2(0) = G2(0) = Gα(a, b) and F2(1) = G2(1) = Aα(a, b).

2. The functions

P2(s) := Aα(L(asG1−s
α (a, b), Gα(a, b)), L(bsG1−s

α (a, b), Gα(a, b)))
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and

Q2(s) := Aα(L(a, asG1−s
α (a, b)), L(b, bsG1−s

α (a, b)))

are increasing on [0, 1], with

P2(0) = Gα(a, b), P2(1) = Q2(0), and Q2(1) = Aα(a, b).

3. Furthermore, for each s ∈ [0, 1], we have

Gα(a, b) ≤ F2(s/2) ≤ P2(s) ≤ G2(s/2) ≤ F2(s) ≤ G2(s)

≤ F2

(
1 + s

2

)
≤ Q2(s) ≤ G2

(
1 + s

2

)
≤ Aα(a, b).

(3.1)

Remark 3.4. Notice that (3.1) provides a refinement of the well-known Young inequality, which is equivalent 
to Gα(a, b) ≤ Aα(a, b). Likewise, one can derive a refinement of the inequality Hα(a, b) ≤ Gα(a, b) by 
considering φ(x) = 1/x, ψ(x) = ln x, and f(x) = x, where Hα(a, b) is the weighted harmonic mean of a and 
b defined by

Hα(a, b) := 1
α
a + 1−α

b

.

Also, with an appropriate selection of the functions φ, ψ, and f in Theorem 2.1, it is possible to derive similar 
inequalities involving the power and generalized logarithmic means. For a deeper discussion of inequalities 
for means of two variables, we refer the reader to [3] and [13, Chapter 2].
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