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Equations of both elliptic and parabolic type featuring singular nonlinearities have 
appeared in numerous works throughout the years. In this work, we consider a time 
dependent problem featuring nonlinearities of the form u−pv−q, u−rv−s subject to 
homogeneous Dirichlet boundary conditions and prove the existence of uniformly 
bounded weak and classical solutions under appropriate conditions on p, q, r, s. 
These results can, in some ways, be seen as a generalization of the results presented 
in [9]. These results are obtained using a functional method motivated by works 
found in [8], [22], [6] etc., and the boundary behaviour of a fundamental singular 
elliptic equation described in [16].

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

In this paper, we consider a system of coupled reaction-diffusion equations taking the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = dΔu + 1
upvq ,

vt = DΔv + 1
urvs , x ∈ Ω, t > 0

u(x, 0) = u0(x) > 0,
v(x, 0) = v0(x) > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω, t > 0,

(1.1)

in a smooth, bounded domain Ω ⊂ RN , N ≥ 1. Here, the coefficients d, D > 0 are taken to be constant, 
and the exponents satisfy p, s ≥ 0, r, q > 0. The novelty of this system is the singular nature of the reaction 
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terms as x → ∂Ω. It is clear that one cannot expect a solution pair (u, v) to belong to C2(Ω) for any t > 0. 
However, if one restricts the exponents appropriately, we can obtain weaker differentiability behaviour near 
the boundary. This will be made more precise in the following discussion.

Motivation to study system (1.1) stems from the so called Lane-Emden equation, which takes the form

−Δu = up,

in a ball BR(0), R > 0, subject to homogeneous Dirichlet boundary data. Here, the exponent p denotes the 
polytropic index. Radially symmetric solutions are used to describe the structure of spherically symmetric, 
polytropic fluid. Depending on the size of the index p, one obtains different applications to various physical 
processes. Classically, in the works by Lane [20] and Fowler [13] this model was introduced as a second 
order ordinary differential equation with care given to integer values of p. Analytic solutions were derived 
for some special cases. Although negative exponents were not originally considered, negative exponents 
relate to processes where work and heat flow simultaneously in or out of the system. These cases can 
become meaningful in some special circumstances, such as plasmas studied in astrophysics [17]. Motivated 
readers are directed to [5] and [17] for details.

These works further motivated the study of the so called Lane-Emden system, taking the form

{
0 = Δu + upvq,

0 = Δv + urvs,
(1.2)

in either a bounded or unbounded domain.
In the case of a bounded domain, the authors in [18] discuss the existence and uniqueness of solutions 

when p, s ≤ 0 and r, q > 0. Furthermore, when Ω ≡ BR(0), the solutions are shown to be radially symmetric. 
In [14] and [28], some existence, nonexistence and boundary behaviour results are derived for the case when 
p, s ≤ 0, r, q < 0. It is interesting that, depending on the size and relation of the exponents p, q, r, s, one 
can show that solutions belong to C1,τ (Ω), or merely Cτ (Ω) from some τ ∈ (0, 1). In the latter case, it is 
then true that the gradient of the solution may blow up as one approaches the boundary of Ω, at least in 
the sense of L∞. This yields the existence of a classical solution belonging to C2(Ω) ∩C(Ω) which may not 
be a weak solution in the sense that it does not belong to the Sobolev space W 1,p

0 (Ω).
In the case of an unbounded domain, existence and non-existence results are obtained in the case when 

p = s = 0, r, q > 0. Whether a solution exists is formulated around whether you lie beneath or above a 
curve depending on r, q and the spatial dimension N . For example, in [24] it is shown that below the curve

{
r, q > 0 : 1

r + 1 + 1
q + 1 = 1 − 2

N − 2 · max
(

1
r + 1 ,

1
q + 1

)}
, N ≥ 3,

there are no positive supersolutions to (1.2). Based on these results and other works, it has been conjectured 
that the critical curve separating existence and nonexistence on the whole space is defined by the Sobolev 
hyperbola:

{
r, q > 0 : 1

r + 1 + 1
q + 1 = 1 − 2

N

}
.

For an extensive discussion on related results, readers are directed to [3] and the references therein.
Nonlinearities of the form up for p < 0 can also be seen as a limiting case in some models applicable 

to heterogeneous chemical catalyst kinetics of the form ut − dΔu = F (u, x). One example, the so called 
Langmuir-Hinshelwood model, has a nonlinearity of the form
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F (u) := um

(
ε + 1
ε + u

)m+k

,

for m ≥ 0, k > 0 and ε 	 1, see [1]. Another similar example features a nonlinearity of the form

F (u) := um

ε + um+k
,

which is applied to enzyme kinetics, see [2].
Nonlinearities of this form can also be applied to electrical phenomena. Suppose that Ω ⊂ RN is a region 

in space occupied by an electrical conductor. If u(x, t) denotes the temperature of a point x ∈ Ω for some 
t > 0, and if h(σ) represents the electrical resistivity, then the heat generation at any point x ∈ Ω is given 
by E2(x, t)/h(u), where E is the local voltage drop in Ω as a function of space and time. The temperature 
u then satisfies the equation cut − dΔu = E2/h(u), where c, d represent the specific heat and thermal 
conductivity of Ω, respectively. In general, h(·) is taken to be a nonnegative, increasing function of u with 
h(0) = 0. In particular, h(u) = αup for some constants α, p > 0 satisfies such a condition. Readers are 
directed to [12] from which this description was taken.

Lastly, these singular nonlinearities often appear in the study of non-Newtonian fluids. First discussed in 
works such as [15,21], developed further in [26,4] and more recently in [23,29,25], authors derive a second 
order, nonlinear boundary value problem taking the form

{
g′′(y) = −yg−1/κ(y), y ∈ (0, 1),
g′(0) = 0, g(1) = 0,

(1.3)

for κ > 0. As proposed, κ ∈ (0, 1) corresponds to non-Newtonian fluid, κ = 1 to Newtonian fluid, and 
κ > 1 to dilatant fluid. Due to the singularity at y = 0, it is convenient to study problem (1.3) subject to 
boundary conditions without singularities, namely g′(0) = 0. However, such a simplification of the problem 
is not entirely necessary, at least from a theoretical point of view.

In this work, we discuss the existence and uniform boundedness of the time dependent counterpart to 
system (1.2) in a smooth, bounded domain subject to homogeneous Dirichlet boundary data. The mathe-
matical difficulties of system (1.1) is the coupled form of the system as well as the singular nature of the 
nonlinearities as x → ∂Ω. Although the reaction terms can be seen to be quasimonotone non-increasing, 
due to the lack of growth estimates near 0, classical methods of sub/super solutions as applied to coupled 
parabolic systems are not applicable. To overcome this, we apply a functional method which allows us to 
obtain uniform bounds on the solutions to a perturbed system in relation to solutions of appropriate elliptic 
problems. For the remainder of this paper, we assume that the initial data u0(x), v0(x) ∈ C1

0 (Ω) and that 
there exists a constant ε0 > 0 so that

u0(x), v0(x) ≥ ε0φ1(x), (1.4)

where φ1(x) is the first eigenfunction of −Δ subject to homogeneous Dirichlet boundary data. Under this 
assumption, we have some control over u−1

0 , v−1
0 near the boundary, which allows us to obtain apriori 

estimates on the solution (uε, vε) to the perturbed problem, independent of the parameter ε. Taking ε → 0
up to subsequence yields the existence of a positive solution to problem (1.1). We call (u, v) a weak solution 
to problem (1.1) provided that u, v ∈ L2(0, T ; W 1,2

0 (Ω)) ∩ L∞(Ω × (0, T )),

1
upvq

,
1

urvs
∈ L1(Ω × (0, T )), (1.5)

and
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{∫
Ω u0ξdx +

∫ T

0
∫
Ω
(
uξt − d∇u∇ξ + 1

upvq ξ
)
dxdt = 0,∫

Ω v0ξdx +
∫ T

0
∫
Ω
(
vξt −D∇v∇ξ + 1

urvs ξ
)
dxdt = 0,

(1.6)

for all ξ ∈ C∞(Ω × (0, T )) with ξ(x, t) = 0 on ∂Ω × (0, T ) and ξ(x, T ) = 0 in Ω. We call (u, v) a classical 
solution to problem (1.1) if

u, v ∈ C2+θ,1+θ/2(Ω × (0, T )) ∩ C1,0(Ω × [0, T ))

for some θ ∈ (0, 1) and satisfy (1.1) pointwise. Finally, we call a solution (u, v) global if the solution (u, v)
exists for all t ∈ (0, ∞), and globally bounded if ‖u‖L∞(Ω) , ‖v‖L∞(Ω) < ∞ uniformly for all t ∈ (0, ∞).

1.2. Statement of results

The main results of this paper are the following.

Theorem 1. Suppose d = D, p, s ∈ [0, 1) and q, r ∈ (0, 1) such that p + q < 1 and r + s < 1. Then, there 
exists at least one global weak solution (u, v) to problem (1.1). Furthermore, if p + q < 1

N , u is a globally 
bounded classical solution. If r + s < 1

N , v is a globally bounded classical solution.

Theorem 2. Suppose d, D > 0, p, s ∈ [0, 1) and r, q ∈ (0, 1) such that p + q < 1/N and r + q < 1/N . Then 
there exists at least one globally bounded classical solution (u, v). Furthermore, there exists two positive 
constants δ, M such that

δφ1(x) ≤ u(x, t), v(x, t) ≤ Mφ1(x), (1.7)

for all t > 0, where φ1 is the first eigenfunction for −Δ in Ω subject to homogeneous Dirichlet boundary 
conditions (see (2.1)).

In the first result, we are able to obtain a globally bounded solution (u, v) under the assumption that 
d = D. In this case, we are able to obtain uniform (in time) bounds on the quantity φ1u

−αv−β for some 
α, β > 0 satisfying α+β ≤ 1. This allows us to then obtain uniform upper bounds on u and v, which in turn 
provide us useful estimates on the nonlinear reaction terms. This method is an adaptation and improvement 
of the methods used in [9]. In fact, Theorem 1 can be seen as a generalization of the results presented in [9]
when one takes p = s = 0 and d = D and a constant function in the numerator of the nonlinearities.

In contrast to the first case, the uniform bound on φ1u
−αv−β is not easily obtained when d 
= D. Despite 

this, we are still able to prove the existence of at least one globally bounded solution (u, v) satisfying (1.7)
by first proving the existence of a global classical solution, and then improving the bound to hold uniformly 
for all t ∈ (0, ∞).

The remainder of this paper will be organized as follows. In section 2, we present some relevant preliminary 
results necessary to prove the main results. In section 3, we assume without loss of generality that d = D = 1
and apply the functional method to obtain the existence of globally bounded solutions to system (1.1). Then, 
in section 4, we obtain time dependent bounds which allow us to prove the existence of global solutions. 
We then improve this bound to show that solutions are, in fact, globally bounded.

2. Preliminary results

Before proving the main results, we highlight some important preliminary results necessary for the sub-
sequent proofs. For the remainder of the paper, we denote by (λ1, φ1) the first eigenvalue/eigenfunction pair 
of
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{
0 = Δφ(x) + λφ(x), x ∈ Ω, 0
0 = φ(x), x ∈ ∂Ω.

(2.1)

By the smoothness of Ω, it is standard that such a pair exists with φ positive in Ω belonging to C2(Ω). 
Additionally, we have that λ1 > 0 and ∂φ1

∂n < 0 on ∂Ω, where n is the outward facing unit normal vector to 
∂Ω. Denote by ψ(x) the solution to the following problem:

{
0 = Δψ(x) + ψ−σ(x), x ∈ Ω,

0 = ψ(x), x ∈ ∂Ω,
(2.2)

for any σ ∈ (0, 1). By [11], a unique solution belonging to C2(Ω) ∩Cα(Ω) for some α ∈ (0, 1) exists, and for 
σ > −1, Gui & Lin [16] proved that ψ(x) ∈ C1,1−σ(Ω). In particular, this means that there exist constants
γ0, γ1 > 0 such that

γ0φ1(x) ≤ ψ(x) ≤ γ1φ1(x). (2.3)

This will prove useful, as we are able to relate φ1(x) to ψ(x) near the boundary by the smoothness of ∂Ω. 
Without loss of generality, we may assume that γ0 ≡ 1.

The following result is standard when applying the functional method. A proof is found in [7].

Lemma 3 (Generalized Young’s inequality). Suppose u(x), v(x), g(x) > 0. For any indices p1, q1, q2, α1, β1,

β2, θ1 satisfying θ1 < p1 < α1 (not necessarily positive), and given any constant c > 0, we have that

up1

vq1gq2
≤ c

uα1

vβ1gβ2
+ c−(p1−θ1)/(α1−p1) uθ1

vη1gη2
,

where

η1 = [q1(α1 − θ1) − β1(p1 − θ1)](α1 − p1)−1,

η2 = [q2(α1 − θ1) − β2(p1 − θ1)](α1 − p1)−1 .

Let (u, v) ∈ [C1,1(Ω × [0, T ))]2 be positive solutions in Ω satisfying

⎧⎪⎪⎨
⎪⎪⎩
ut = dΔu + F (x, t),
vt = DΔv + G(x, t), x ∈ Ω, t > 0,
u = v = 0, x ∈ ∂Ω,

(2.4)

where F, G ∈ C(Ω × [0, T ]) and d, D > 0. By Hopf’s boundary lemma, since u, v = 0 on ∂Ω, we have that 
∂v/∂n < 0 and ∂u/∂n < 0 on ∂Ω, where n is as defined previously. The first inequality considered will be 
useful in obtaining lower bounds for the solutions u and v.

Lemma 4. Let φ solve either (2.1) or (2.2) and u be a solution of (2.4). For any n > 2, we have that

d

dt

∫
Ω

φn+2

un
dx ≤ −dn

∫
Ω

φn+1

un
Δφdx− n

∫
Ω

φn+2

un+1F (x, t)dx. (2.5)

In particular, this implies that
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d

dt

∫
Ω

φn+2
1
un

dx ≤ dλ1n

∫
Ω

φn+2
1
un

dx− n

∫
Ω

φn+2
1

un+1F (x, t)dx, (2.6)

and

d

dt

∫
Ω

ψn+2

un
dx ≤ dn

∫
Ω

ψn+1−σ

un
ψdx− n

∫
Ω

ψn+2

un+1 F (x, t)dx, (2.7)

when φ = φ1 or φ = ψ, respectively.

Proof. From Lemma 2.2 in [10], one can obtain (2.7) for the case of φ = ψ. The same method allows one 
to obtain (2.5) when ψ = φ1, and (2.6) follows after substituting Δφ1, completing the proof. �

The next lemma allows one to obtain uniform in time bounds to (1.1) when the diffusion coefficients are 
the same.

Lemma 5. Let φ1 be the solution of (2.1) and u, v be solutions of (2.4) for d = D. Then, for any α, β > 0
satisfying α + β ≤ 1, it is true that

d

dt

∫
Ω

φn+2
1

uαnvβn
≤ −αn

∫
Ω

φn+2
1

uαn+1vβn
F (x, t)dx− βn

∫
Ω

φn+2
1

uαnvβn+1G(x, t)dx

+ λ1(n + 2)
∫
Ω

φn+2
1

uαnvβn
dx,

for any n > 0.

Proof. See Lemma 2.3 in [9]. �
The following lemma allows us to obtain uniform (in ε) upper bounds on the perturbed solutions to 

problem (1.1). The key is to treat the perturbed quantity u + ε separately from the solution u itself.

Lemma 6. Suppose that u is a solution of (2.4) and let ψ be the solution of (2.2). For any ε > 0, define 
wε = u + ε. Then, for any α, β ∈ (0, 1) satisfying α + β ≤ 1, we have

d

dt

∫
Ω

un

wε
αnψβn−2 dx ≤ n

∫
Ω

un−1

wε
αnψβn−2F (x, t)dx− αn

∫
Ω

un

wε
αn+1ψβn−2F (x, t)dx

− d(βn− 2)
∫
Ω

un

wε
αnψβn−1+σ

dx,

for all n > 2.

Proof. See Lemma 2.5 in [8]. A proof is also provided in the appendix of [9]. �
This final inequality is what will allow us to prove the uniform boundedness of solutions to (1.1) when 

d 
= D.



Y. Salmaniw / J. Math. Anal. Appl. 490 (2020) 124200 7
Lemma 7. Let ψ solve (2.2) for any σ ∈ (0, 1) and u be a solution of (2.4). For any n > 2, it is true that

d

dt

∫
Ω

un

ψn−2 dx ≤ n

∫
Ω

un−1

ψn−2F (x, t)dx− dn

∫
Ω

un

ψn−1+σ
dx. (2.8)

Proof. First, note that since our solutions ψ, u are smooth enough (i.e. C1(Ω)), the quantity u/ψ is well 
defined up to the boundary of Ω. Next, differentiating with respect to t and integrating by parts, we have 
that

d

dt

∫
Ω

un

ψn−2 dx = dn

∫
Ω

un−1

ψn−2 Δudx + n

∫
Ω

un−1

ψn−2F (x, t)dx

= −dn

∫
Ω

∇
(
un−1

ψn−2

)
∇udx + n

∫
Ω

un−1

ψn−2F (x, t)dx

= −dn(n− 1)
∫
Ω

un−2

ψn−2 |∇u|2 dx + dn(n− 2)
∫
Ω

un−1

ψn−1∇u∇ψdx

+ n

∫
Ω

un−1

ψn−2F (x, t)dx. (2.9)

Continuing, we use the following identity:

ψ2 |∇u|2 = |ψ∇u− u∇ψ|2 + 2uψ∇u∇ψ − u2 |∇ψ|2 . (2.10)

We then see that (2.9) can be written instead as

d

dt

∫
Ω

un

ψn−2 dx = −dn(n− 1)
∫
Ω

un−2

ψn
|ψ∇u− u∇ψ|2 dx + n

∫
Ω

un−1

ψn−2F (x, t)dx

− dn2
∫
Ω

un−1

ψn−1∇ψ∇udx + dn(n− 1)
∫
Ω

un

ψn
|∇ψ|2 dx. (2.11)

If we integrate by parts on the third term of (2.11), we find

−dn2
∫
Ω

un−1

ψn−1∇u∇ψdx = −dn

∫
Ω

∇ψ

ψn−1∇ (un) dx

= dn

∫
Ω

∇
(

∇ψ

ψn−1

)
undx

= dn

∫
Ω

un

ψn−1 Δψdx− dn(n− 1)
∫
Ω

un

ψn
|∇ψ|2 dx. (2.12)

Combining the above with (2.11) and throwing away the leading negative term gives us that

d

dt

∫
Ω

un

ψn−2 dx ≤ n

∫
Ω

un−1

ψn−2F (x, t)dx + dn

∫
Ω

un

ψn−1 Δψdx. (2.13)

Substituting Δψ completes the proof. �
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With these results we are now equipped to prove Theorem 1 and Theorem 2.

3. Proof of Theorem 1

To begin, we perturb system (1.1). By rescaling spatial variables, we may assume without loss of generality 
that d = D = 1. We then have ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu + 1
(u+ε)p(v+ε)q ,

vt = Δv + 1
(u+ε)r(v+ε)s , x ∈ Ω, t > 0,

u(x, 0) = u0(x) > 0,
v(x, 0) = v0(x) > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω, t > 0.

(3.1)

By standard theory, a classical solution exists for each ε > 0. (See [19] or [27], for example). Denote the 
solution by (uε, vε). To start, let wε = uε + ε and zε = vε + ε. Lemma 5 with u replaced by wε and v
replaced by zε gives us

d

dt

∫
Ω

φn+2

wαn
ε zβnε

dx ≤ λ1(n + 2)
∫
Ω

φn+2

wαn
ε zβnε

dx− αn

∫
Ω

φn+2

wαn+p+1
ε zβn+q

ε

dx

− βn

∫
Ω

φn+2

wαn+r
ε zβn+s+1

ε

dx . (3.2)

For any δ > 0 and n ≥ 2, we may apply Lemma 3 to the first term of (3.2) with

p1 = αn, α1 = αn + p + 1, θ1 = αn− δ(p + 1),

q1 = βn, β1 = βn + q

to obtain

λ1(n + 2)
wαn

ε zβnε

= λ1(n + 2)(w−1
ε )αn

zβnε

≤ αn
(w−1

ε )αn+p+1

zβn+q
ε

+ λ1(n + 2)
(

αn

λ1(n + 2)

)−δ (w−1
ε )αn−δ(p+1)

zβn−qδ
ε

, (3.3)

where

λ1(n + 2)
(

αn

λ1(n + 2)

)−δ

≤ λ1(n + 2)
(

2λ1

α

)δ

≡ c1(n) . (3.4)

Combining (3.3) and (3.4) with (3.2) leaves us with

d

dt

∫
Ω

φn+2

wαn
ε zβnε

dx ≤ c1(n)
∫
Ω

φn+2

w
βn−δ(p+1)
ε zβn−qδ

ε

dx

− βn

∫
Ω

φn+2

wαn+r
ε zβn+s+1

ε

dx . (3.5)
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If we apply Lemma 3 to the first term of (3.5) with

p1 = αn− δ(p + 1), α1 = αn + r, θ1 = 0,

q1 = βn− qδ, β1 = βn + s + 1

we find

c1(n)
w

αn−δ(p+1)
ε zβn−qδ

ε

= c1(n) (w−1
ε )αn−δ(p+1)

zβn−qδ
ε

≤ βn
(w−1

ε )αn+r

zβn+s+1
ε

+ c1(n)
(

βn

c1(n)

)− (αn−δ(p+1))
(r+δ(p+1)) 1

zη1
ε

, (3.6)

where

η1 = [(βn− qδ)(αn + r) − (βn + s + 1)(αn− δ(p + 1))]
r + δ(p + 1)

= [βnr − αn(s + 1) − δ(αnq − βn(p + 1) + rq − (s + 1)(p + 1))]
r + δ(p + 1) , (3.7)

and

c1(n)
(

βn

c1(n)

)− (αn−δ(p+1))
(r+δ(p+1))

≤ λ1(n + 2)
(

2λ1

α

)δ ( (2λ1)δ+1

αδβ

) (αn−δ(p+1))
(r+δ(p+1))

≡ c2(n) . (3.8)

Combining (3.6)-(3.8) with (3.5) then yields

d

dt

∫
Ω

φn+2

wαn
ε zβnε

dx ≤ c2(n)
∫
Ω

φn+2

zη1
ε

dx. (3.9)

Setting η1 = 0 and solving for δ yields

δ = n(α(s + 1) − βr)
n(β(p + 1) − αq) + (s + 1)(p + 1) − rq

. (3.10)

From this, we see that we can ensure that

α(s + 1) − βr > 0, (3.11)

β(p + 1) − αq ≥ 0, (3.12)

so that δ > 0. Define 2∗ ≡ q + r. If we choose α = r
2∗ , β = q

2∗ so that α + β = 1, we see that under the 
hypotheses of the theorem,

α(s + 1) − βr = r

2∗ (s + 1 − q) > 0,

β(p + 1) − αq = q

2∗ (p + 1 − r) > 0,
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and so (3.11), (3.12) are satisfied. Putting all of this together, (3.11) becomes

d

dt

∫
Ω

φn+2

wαn
ε zβnε

dx ≤ c2(n)
∫
Ω

φn+2dx. (3.13)

Integrating (3.13) from 0 to t, we then arrive at
∫
Ω

φn+2

wαn
ε zβnε

dx ≤ c2(n)t
∫
Ω

φn+2dx +
∫
Ω

φn+2

uαn
0 vβn0

dx.

Extracting nth roots and taking n → ∞, we obtain

φ(x)
w

r
2∗
ε (x, t)z

q
2∗
ε (x, t)

≤
∥∥∥∥∥ φ

w
r
2∗
ε z

q
2∗
ε

∥∥∥∥∥
∞

≤ max
{
m1 ‖φ‖∞ , ε−1

0
}

≡ M1 < ∞, (3.14)

where ε0 is as defined in (1.4) and

m1 =
(

(2λ1)δ+1

αδβ

) α
r+δ(p+1)

,

independent of ε and t. We now obtain upper bounds for the solution uε, independent of ε and t. Referring 
to Lemma 6, we replace u with uε and see that

d

dt

∫
Ω

un
ε

wαn
ε ψβn−2 dx ≤ n

∫
Ω

un−1
ε

wαn+p
ε zqεψβn−2

dx− αn

∫
Ω

un
ε

wαn+p+1
ε zqεψβn−2

dx

− (βn− 2)
∫
Ω

un
ε

wαn
ε ψβn−1+σ

dx . (3.15)

Note that these α, β are new parameters to be determined, independent of the previous choices r/2∗ and 
q/2∗. Now, for any δ1 > 1 we may apply Lemma 3 to first term of (3.15) with

p1 = n− 1, α1 = n, θ1 = n− δ1,

q1 = αn + p, β1 = αn + p + 1,

to find that

un−1
ε

wαn+p
ε

≤ α
un
ε

wαn+p+1
ε

+ α−(δ1−1) un−δ1
ε

wαn+p+1−δ1
ε

,

in which case (3.15) becomes

d

dt

∫
Ω

un
ε

wαn
ε ψβn−2 dx ≤ n

αδ1−1

∫
Ω

un−δ1
ε

wαn+p+1−δ1
ε zqεψβn−2

dx

− (βn− 2)
∫
Ω

un
ε

wαn
ε ψβn−1+σ

dx . (3.16)
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If we now apply the uniform bound (3.14) to (3.16), we can then remove zqε from the denominator of the 
positive term above as follows:

un−δ1
ε

wαn+p+1−δ1
ε zqεψβn−2

= un−δ1
ε

wαn+p+1−δ1−r
ε ψβn−2+2∗

(
φ

w
r
2∗
ε z

q
2∗
ε

)2∗ (
ψ

φ

)2∗

≤ γ2∗

1 M2∗

1
un−δ1
ε

wαn+p+1−r−δ1
ε ψβn−2+2∗

. (3.17)

If we pair the above with Lemma 3 with

p1 = n− δ1, α1 = n, θ1 = 0,

q1 = αn + p + 1 − r − δ1, β1 = αn,

q2 = βn− 2 + 2∗, β2 = βn− 1 + σ,

we then obtain

M2∗
1 γ2∗

1 n

αδ1−1
un−δ1
ε

wαn+p+1−r−δ1
ε ψβn−2+2∗

≤ (βn− 2) un
ε

wαn
ε ψβn−1+σ

+
(
M2∗

1 γ2∗
1 n

αδ1−1

)(
(βn− 2)αδ1−1

M2∗
1 γ2∗

1 n

)− n
δ1

+1 1
wη1

ε ψη2

≤ (βn− 2) un
ε

wαn
ε ψβn−1+σ

+ c4(n) 1
wη1

ε ψη2
, (3.18)

where

η1 = [(αn + p + 1 − r − δ1)(n) − (αn)(n− δ1)]
δ1

= n(p + 1 − r) − nδ1(1 − α)
δ1

,

η2 = [(βn− 2 + 2∗)(n) − (βn− 1 + σ)(n− δ1)]
δ1

= −n(1 + σ − 2∗ − δ1β)
δ1

− (1 − σ) , (3.19)

and

(
M2∗

1 γ2∗
1 n

αδ1−1

)(
(βn− 2)αδ1−1

M2∗
1 γ2∗

1 n

)− n
δ1

+1

≤ (βn− 2)
(

2M2∗
1 γ2∗

1
αδ1−1β

) n
δ1

≡ c4(n). (3.20)

With these computations, (3.16) then becomes

d

dt

∫
Ω

un
ε

wαn
ε ψβn−2 dx ≤ c4(n)

∫
Ω

1
wη1

ε ψη2
dx. (3.21)

Again, setting η1 = 0 we find
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δ1 = p + 1 − r

1 − α
. (3.22)

Recall that we require δ1 > 1. Given that p +1 −r > 0, δ1 > 1 for any α ∈ (r, 1). (3.21) may then be written 
as

d

dt

∫
Ω

un
ε

wαn
ε ψβn−2 dx ≤ c4(n)

∫
Ω

1
ψη2

dx. (3.23)

It is well known (see the first Lemma of section 3 in [21], for example) that the right hand side of (3.23) is 
finite if and only if η2 < 1. Notice that this follows from the inequality found in (2.3), and so the result as 
stated in [21] is true for ψ only when σ > −1. Explicitly, this means that we require

−1 <
n

δ1
(1 + σ − 2∗ − βδ1) + 1 − σ, (3.24)

but as n gets large, this can only be true if 1 + σ − 2∗ − βδ1 > 0. Recall that 2∗ = q + r < 2 and choose 
α ∈ (r, 1) with β = 1 − α. Then for σ sufficiently close to 1, 1 + σ − 2∗ > 0. It is easy to then see that

1 + σ − 2∗ − βδ1 ≥ 1 + σ − q − r − (p + 1 − r)

= σ − (p + q)

> 0,

which is true for σ sufficiently close to 1, since p + q < 1 by hypothesis. Consequently, (3.24) is true. With 
this, we may now solve (3.23) to find that

∫
Ω

un
ε

wαn
ε ψβn−2 dx ≤ c4(n)t

∫
Ω

ψ
n
δ1

(1+σ−2∗−βδ1)+1−σdx +
∫
Ω

un
0

(u0 + ε)αnψβn−2 dx

≤ c4(n)t
∫
Ω

ψ
n
δ1

(1+σ−2∗−βδ1)+1−σdx +
∫
Ω

u
n(1−α)
0
ψβn−2 dx, (3.25)

for any t > 0. Note that since u0 ∈ C1
0 (Ω) and σ ∈ (0, 1), the ratio u0/ψ is well defined up to the boundary 

∂Ω. Extracting nth roots and letting n → ∞, we arrive at

uε(x, t)
wα

ε (x, t)ψβ(x) ≤
∥∥∥∥ uε

wα
ε ψ

β

∥∥∥∥
∞

≤ max
{
m2

∥∥∥ψ(σ−p−q)/δ1
∥∥∥
∞

,

∥∥∥∥u0

ψ

∥∥∥∥
∞

}

≡ M2 < ∞, (3.26)

where

m2 =
(

2M2∗
1 γ2∗

1
αδ1−1β

) 1
δ1

,

independent of ε and t. Consequently, uε is uniformly bounded. We now state the analogous result for vε. 
Many of the technical details will be omitted as they are essentially the same as those done for uε. Notice 
that in line (3.17), we have control over a term involving w−r/2∗

ε . In the same way we removed z−q
ε for the 

equation for uε, we are able to remove w−r
ε in the equation for vε. Hence, we find that
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d

dt

∫
Ω

vnε
zαnε ψβn−2 dx ≤ c5(n)

∫
Ω

ψ
n
δ2

(σ−r−s)+1−σdx, (3.27)

where

δ2 = s + 1 − q

1 − α
,

c5(n) = (βn− 2)
(

2M2∗
1 γ2∗

1
αδ2−1β

) n
δ2

,

where we now choose α ∈ (q, 1) so that δ2 > 1. Integrating, and again using the fact that v0 ∈ C1
0 (Ω), we 

obtain ∫
Ω

vnε
zαnε ψβn−2 dx ≤ c5(n)t

∫
Ω

ψ
n
δ2

(σ−r−s)+1−σdx

+
∫
Ω

v
(1−α)n
0
ψβn

dx, (3.28)

for any t > 0. By the same reasoning, we may choose β = 1 − α and σ sufficiently close to 1 so that the 
exponent on ψ on the right hand side of (3.27) is positive. Extracting nth roots and letting n → ∞ yields

vε(x, t)
zαε (x, t)ψβ(x) ≤

∥∥∥∥ vε
zαε ψ

β

∥∥∥∥
∞

≤ max
{
m3

∥∥∥ψ(σ−r−s)/δ2
∥∥∥
∞

,

∥∥∥∥v0

ψ

∥∥∥∥
∞

}

≡ M3 < ∞, (3.29)

where

m3 =
(

2M2∗
1 γ2∗

1
αδ2−1β

) 1
δ2

.

Thus, vε is uniformly bounded.
The next step is to obtain uniform lower bounds on the solutions (uε, vε). To see this, we apply Lemma

4 with φ = φ1 and u replaced by wε to see that

d

dt

∫
Ω

φn+2
1
wn

ε

dx ≤ λ1n

∫
Ω

φn+2
1
wn

ε

dx− n

∫
Ω

φn+2
1

wn+p+1
ε zqε

dx. (3.30)

We then apply Lemma (3) to the first term of (3.30) with

p1 = n, α1 = n + p + 1, θ1 = 0,

q1 = 0, β1 = q,

to obtain

λ1(w−1
ε )n ≤ (w−1

ε )n+p+1

zqε
+ λ1

(
1
λ1

)− n
p+1 1

z
− qn

p+1
ε

.
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(3.30) then becomes

d

dt

∫
Ω

φn+2
1
wn

ε

dx ≤ nλ
n+p+1
p+1

1

∫
Ω

φn+2
1 z

nq
p+1
ε dx. (3.31)

Since zε = vε + ε is uniformly bounded in ε and t by (3.29), we may again integrate and extract nth roots 
to obtain

φ1(x)
wε(x, t)

≤
∥∥∥∥φ1

wε

∥∥∥∥
∞

≡ M4 < ∞. (3.32)

Rearranging, we see that wε ≥ φ1M
−1
4 , independent of ε and t. Repeating this process for vε gives us

φ1(x)
zε(x, t)

≤
∥∥∥∥φ1

vε

∥∥∥∥
∞

≡ M5 < ∞. (3.33)

Thus, zε(x, t) ≥ M−1
5 φ1(x), independent of ε and t.

We now use these estimates to show that the nonlinear terms of our system are uniformly bounded in 
Lk(Ω) for some k > 1. To see this, for any k1 ∈ (1, 1

p+q ) it is true that

∫
Ω

∣∣∣∣ 1
wp

εz
q
ε

∣∣∣∣
k1

dx ≤ M6

∫
Ω

φ
−k1(p+q)
1 dx

< ∞. (3.34)

Similarly, for k2 ∈ (1, 1
r+s )

∫
Ω

∣∣∣∣ 1
wr

εz
s
ε

∣∣∣∣
k2

dx ≤ M7

∫
Ω

φ
−k2(r+s)
1 dx

< ∞. (3.35)

Hence, both reaction terms belong to Lk(Ω) for some k > 1. By standard Lp-theory of parabolic equations, 
we find that (uε, vε) are uniformly bounded in [W 2,1

k1
(Ω × (0, ∞))] × [W 2,1

k2
(Ω × (0, ∞))]. Consequently, a 

subsequence (uεi , vεi) can be extracted which converges to a weak solution (u, v) of system (1.1).
Finally, if N < (p + q)−1, we can choose k1 > N so that (3.34) remains true. By the Sobolev embedding 

theorem, up to a subsequence which we denote still by ε, we have that uε → u ∈ C1+κ,(1+κ)/2(Ω × [0, T ))
as ε ↘ 0, for some κ ∈ (0, 1), for any T > 0. If we then fix Ω′ ⊂⊂ Ω and define Q′

T = Ω′ × (t∗, t∗)
for any 0 < t∗ < t∗ < ∞, it is easy to see that our nonlinear term u−pv−q ∈ Cκ,κ/2(Q′

T ) for some 
κ ∈ (0, 1). By classical theory of parabolic equations (see Theorem 8.3.7 in [27], for example), we then have 
that u ∈ C2+κ,1+κ/2(Q′

T ) for any such Q′
T , and so u ∈ C2+κ,1+κ/2(QT ). Consequently, since T > 0 was 

arbitrary, u ∈ C2+κ,1+κ/2(Ω × (0, ∞)) ∩ C1+κ,(1+κ)/2(Ω × [0, ∞)) is a classical solution to (1.1). A similar 
result holds for the solution v. This completes the proof.
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4. Proof of Theorem 2

We now prove the result stated in Theorem 2. For this proof, we are able to show an inequality of the 
form

X ≤ 1 + Xα, X ≥ 0, (4.1)

for some α ∈ (0, 1), which implies that X is bounded. More precisely, we can show that (4.1) is true for 
X =

∥∥∥ ·
ψ2

∥∥∥
L∞(QT )

. Here, · = u or v, where (u, v) is a global classical solution to (1.1) in QT = Ω × (0, T ) for 

arbitrary T > 0 and ψ2 is a solution to (2.2) for a particular choice of σ ∈ (0, 1).
First, we prove the existence of a global classical solution in QT when d 
= D. Considering the same 

perturbed system (3.1) with d 
= D, standard parabolic theory still guarantees the existence of a classical 
solution (uε, vε), for each ε > 0. Then, we notice that for any d > 0, Lemma 4 gives us

d

dt

∫
Ω

φn+2
1
wn

ε

dx ≤ λ1dn

∫
Ω

φn+2
1
wn

ε

dx− n

∫
Ω

φn+2
1

wn+p+1
ε zqε

dx (4.2)

≤ λ1dn

∫
Ω

φn+2
1
wn

ε

dx, (4.3)

and so by Gronwall’s inequality and the assumption that ε0φ(x) ≤ u0(x), we find

∫
Ω

φn+2
1
wn

ε

dx ≤ enλ1dt

∫
Ω

φn+2
1
un

0
dx

≤ ε−n
0 enλ1dt

∫
Ω

φ2
1dx, (4.4)

and so extracting nth roots yields

φ1(x) ≤ ε−1
0 eλ1dtwε(x, t), (4.5)

for all ε > 0 and any t > 0. The same procedure gives us that

φ1(x) ≤ ε−1
0 eλ1Dtzε(x, t). (4.6)

Next, by Lemma 7 with u replaced by uε we have that for any σ ∈ (0, 1),

d

dt

∫
Ω

un
ε

ψn−2 dx ≤ n

∫
Ω

un−p−1
ε

ψn−2zqε
dx− dn

∫
Ω

un
ε

ψn−1+σ
dx. (4.7)

Using (4.6) and (2.3), we estimate (4.7) as follows:

d

dt

∫
Ω

un
ε

ψn−2 dx ≤ nε−q
0 eλ1Dqt

∫
Ω

un−p−1
ε

ψn−2φq
1
dx− dn

∫
Ω

un
ε

ψn−1+σ
dx

≤ nγq
1ε

−q
0 eλ1Dqt

∫
Ω

un−p−1
ε

ψn−2+q
dx− dn

∫
Ω

un
ε

ψn−1+σ
dx. (4.8)
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We can apply Lemma 3 to the first term on the right hand side of (4.8) with

p1 = n− p− 1, q1 = n− 2 + q,

α1 = n, β1 = n− 1 + σ,

θ1 = 0,

to find that

un−p−1
ε

ψn−2+q
≤ d

γq
1ε

−q
0 eλ1Dqt

un
ε

ψn−1+σ
+
(

d

γq
1ε

−q
0 eλ1Dqt

)−(n−p−1)/(p+1) 1
ψη1

, (4.9)

where

η1 = [(n− 2 + q)n− (n− 1 + σ)(n− p− 1)]/(p + 1)

= −n(σ − p− q) + (1 − σ)
p + 1 .

Notice that we may choose σ sufficiently close to 1 so that η1 < 0. Consequently, (4.8) becomes

d

dt

∫
Ω

un
ε

ψn−2 dx ≤ nγq
1ε

−q
0 eλ1Dqt

(
γq
1e

λ1Dqt

εq0d

)(n−p−1)/(p+1) ∫
Ω

ψ−η1dx

= dn

(
γq
1e

λ1Dqt

εq0d

)n/(p+1) ∫
Ω

ψ−η1dx. (4.10)

Integrating (4.10) from 0 → t, extracting nth roots and sending n → ∞ yields

uε

ψ
≤
∥∥∥∥uε

ψ

∥∥∥∥
L∞(Ω)

≤
∥∥∥∥u0

ψ

∥∥∥∥
L∞(Ω)

+
(
γq
1e

λ1Dqt

εq0d

)1/(p+1) ∥∥∥ψ(σ−p−q)/(p+1)
∥∥∥
L∞(Ω)

. (4.11)

Hence, uε

ψ is uniformly bounded for any ε > 0 in QT , for any T > 0. The same procedure applied to vεψ also 
gives us

vε
ψ

≤
∥∥∥∥vεψ

∥∥∥∥
L∞(Ω)

≤
∥∥∥∥v0

ψ

∥∥∥∥
L∞(Ω)

+
(
γr
1e

λ1drt

εr0D

)1/(s+1) ∥∥∥ψ(σ−r−s)/(s+1)
∥∥∥
L∞(Ω)

, (4.12)

where we may again choose σ sufficiently close to 1 so that σ − r − s > 0. Hence, vεψ is uniformly bounded 
for any ε > 0 in QT , for any T > 0. Using these bounds, we can see that (3.34) and (3.35) are true in QT , 
and so we have that (uε + ε, vε + ε) and the nonlinear terms appearing in (3.1) are uniformly bounded in 
Lξ(QT ) for some ξ > 1. More precisely, by standard parabolic Lp-theory we have that (uε, vε) is uniformly 

bounded in W 2,1
ξ1

[Ω × (0, T )] ×W 2,1
ξ2

[Ω × (0, T )] for any (ξ1, ξ2) ∈
(
1, 1

p+q

)
×
(
1, 1

r+s

)
. Hence, there exists 

a subsequence such that (uε, vε) → (u, v), where (u, v) is a weak solution to our original problem. Since 
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p + q < 1
N , r+ s < 1

N , Sobolev embedding ensures that in fact (u, v) ∈
[
C1(Ω)

]2. We now show that in fact 
(u, v) are uniformly bounded for all t ∈ (0, ∞).

By Lemma 4 with φ = ψ1, we have that

d

dt

∫
Ω

ψn+2
1
un

dx ≤ dn

∫
Ω

ψn+1−σ1
1
un

dx− n

∫
Ω

ψn+2
1

un+p+1vq
dx, (4.13)

where ψ1 ∈ C2(Ω) ∩ C1(Ω) solves (2.2) for some σ1 ∈ (0, 1) to be chosen. Notice that the regularity of 
u, v, ψ1 imply that the integrals in (4.13) are well defined. Applying Lemma 3 to the first term on the right 
hand side of (4.13) with

p1 = n + 1 − σ1, q1 = n, q2 = 0,

α1 = n + 2, β1 = n + p + 1, β2 = q,

leaves us with

ψn+1−σ1
1
un

≤
(

1
d

)
ψn+2

1
un+p+1vq

+
(

1
d

)− (p1−θ1)
1+σ1 ψθ1

1
uη1vη2

, (4.14)

where

η1 = [n(n + 2 − θ1) − (n + p + 1)(n + 1 − σ1 − θ1)] /(1 + σ1),

η2 = −q(n + 1 − σ1 − θ1)/(1 + σ1).

If we set η1 = 0 and solve for θ1, we see that

0 = n(σ1 − p) − (p + 1)(1 − σ1) + θ1(p + 1)

⇐⇒ θ1 = ((p + 1)(1 − σ1) − n(σ1 − p)) /(p + 1)

= (1 − σ1) −
n(σ1 − p)
p + 1 , (4.15)

and so

η2 = −q

(
n + 1 − σ1 − (1 − σ1) + n(σ1 − p)

p + 1

)

= − qn

p + 1 .

Also note that

p1 − θ1 = n(1 + σ1)
p + 1 .

Hence, (4.13) becomes

d

dt

∫
Ω

ψn+2
1
un

dx ≤ dn

(
1
d

)−n/(p+1) ∫
Ω

vnq/(p+1)

ψ−θ1
1

dx

= d(n+p+1)/(p+1)n

∫
Ω

vnq/(p+1)

ψ−θ1
1

dx. (4.16)
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Notice that the right hand side of (4.16) is well defined whenever

nq

p + 1 + θ1 = n

p + 1 (p + q − σ1) + (1 − σ1) > 0,

which is true if we set σ1 = min{p + q, r + s} < 1. If we integrate both sides of (4.16) from 0 → t, we then 
have

∫
Ω

ψn+2
1
un

dx ≤
∫
Ω

ψn+2
1
un

0
dx + d(n+p+1)/(p+1)n

t∫
0

∫
Ω

vnq/(p+1)

ψ−θ1
1

dxdt. (4.17)

Extracting nth roots and taking n → ∞ yields

ψ1(x)
u(x, t) ≤

∥∥∥∥ψ1

u

∥∥∥∥
L∞(Ω)

≤ max

⎧⎨
⎩
∥∥∥∥ψ1

u0

∥∥∥∥
L∞(Ω)

, d1/(p+1)

∥∥∥∥∥ vq/(p+1)

ψ
(σ1−p)/(p+1)
1

∥∥∥∥∥
L∞(QT )

⎫⎬
⎭

≤ ε0 + d1/(p+1)

∥∥∥∥∥ vq/(p+1)

ψ
(σ1−p)/(p+1)
1

∥∥∥∥∥
L∞(QT )

, (4.18)

where ε0 is defined in (1.4). This implies that

∥∥∥∥ψ1

u

∥∥∥∥
L∞(QT )

≤ ε0 + d1/(p+1)

∥∥∥∥∥ vq/(p+1)

ψ
(σ1−p)/(p+1)
1

∥∥∥∥∥
L∞(QT )

. (4.19)

We now apply the same procedure for v(x, t). By Lemma 4,

d

dt

∫
Ω

ψn+2
1
vn

dx ≤ Dn

∫
Ω

ψn+1−σ1
1
vn

dx− n

∫
Ω

ψn+2
1

vn+s+1ur
dx. (4.20)

Applying Lemma 3 with

p1 = n + 1 − σ1, q1 = n, q2 = 0,

α1 = n + 2, β1 = n + s + 1, β2 = r,

we can see that

ψn+1−σ1
1
vn

≤
(

1
D

)
ψn+2

1
vn+s+1ur

+
(

1
D

)−(p1−θ1)/(1+σ1) ψθ1
1

vη1uη2
, (4.21)

where

η1 = [n(n + 2 − θ1) − (n + s + 1)(n + 1 − σ1 − θ1)] /(1 + σ1)

= [n(σ1 − s) − (s + 1)(1 − σ1 − θ1)] /(1 + σ1),

η2 = −r(1 − σ1 − θ1)/(1 + σ1).

Setting η1 = 0 and repeating the process in lines (4.15)–(4.19) one can obtain
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∥∥∥∥ψ1

v

∥∥∥∥
L∞(QT )

≤ ε0 + D1/(s+1)

∥∥∥∥∥ ur/(s+1)

ψ
(σ1−s)/(s+1)
1

∥∥∥∥∥
L∞(QT )

. (4.22)

We now obtain upper bounds for u and v. Let ψ2 ∈ C2(Ω) ∩ C1(Ω) solve (2.2) for some σ2 ∈ (0, 1) to be 
chosen. Then, by Lemma 7 we have that for any n > 2,

d

dt

∫
Ω

un

ψn−2
2

dx ≤ n

∫
Ω

un−p−1

ψn−2
2 vq

dx− dn

∫
Ω

un

ψn−1+σ2
2

dx. (4.23)

Applying Lemma 3 to the first term on the right hand side of (4.23) with

p1 = n− p− 1, q1 = n− 2, q2 = q,

α1 = n, β1 = n− 1 + σ2, β2 = 0, θ1 = 0,

gives us that

un−p−1

ψn−2
2 vq

≤ d
un

ψn−1+σ2
2

+ d−(n−p−1)/(p+1) 1
ψη1

2 vη2
,

where

η1 = [(n− 2)n− (n− 1 + σ2)(n− p− 1)] /(p + 1)

= n(p− σ2)
p + 1 − (1 − σ2),

η2 = nq

p + 1 .

Hence, (4.23) becomes

d

dt

∫
Ω

un

ψn−2
2

dx ≤ n

(
1
d

)(n−p−1)/(p+1) ∫
Ω

ψ−η1
2

vnq/(p+1) dx. (4.24)

Notice that the integral on the right hand side of (4.24) is well defined since

−η1 −
nq

p + 1 = n(σ2 − p− q)
p + 1 + (1 − σ2) > 0

if we choose σ2 = max{p +q, r+s}. Integrating (4.24) from 0 → t, extracting nth roots and sending n → ∞
then yields

u(x, t)
ψ2(x) ≤

∥∥∥∥ u

ψ2

∥∥∥∥
L∞(Ω)

≤ max

⎧⎨
⎩
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

,

(
1
d

)1/(p+1)
∥∥∥∥∥ψ

(σ2−p)/(p+1)
2
vq/(p+1)

∥∥∥∥∥
L∞(QT )

⎫⎬
⎭

≤
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

+
(

1
d

)1/(p+1)
∥∥∥∥∥ψ

(σ2−p)/(p+1)
2
vq/(p+1)

∥∥∥∥∥
L∞(QT )

, (4.25)
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for all (x, t) ∈ Ω × (0, T ). Hence,

∥∥∥∥ u

ψ2

∥∥∥∥
L∞(QT )

≤
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

+
(

1
d

)1/(p+1)
∥∥∥∥∥ψ

(σ2−p)/(p+1)
2
vq/(p+1)

∥∥∥∥∥
L∞(QT )

. (4.26)

Similarly, we have that

∥∥∥∥ v

ψ2

∥∥∥∥
L∞(QT )

≤
∥∥∥∥ v0

ψ2

∥∥∥∥
L∞(Ω)

+
(

1
D

)1/(s+1)
∥∥∥∥∥ψ

(σ2−s)/(s+1)
2
ur/(s+1)

∥∥∥∥∥
L∞(QT )

. (4.27)

We now proceed as follows: since σ1, σ2 ∈ (0, 1), by Theorem 2.1 in [16] there exist positive constants 
a1, a2 such that

a1ψ1(x) ≤ ψ2(x) ≤ a2ψ1(x), x ∈ Ω. (4.28)

We can use this fact to further estimate the bound obtained for u/ψ2 in line (4.26):

∥∥∥∥ u

ψ2

∥∥∥∥
L∞(QT )

≤
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

+
(

1
d

)1/(p+1)
∥∥∥∥∥ψ

(σ2−p)/(p+1)
2
vq/(p+1)

∥∥∥∥∥
L∞(QT )

=
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

+
(

1
d

)1/(p+1)
∥∥∥∥∥∥
(
ψ1

v

)q/(p+1)
(
ψσ2−p

2
ψq

1

)1/(p+1)
∥∥∥∥∥∥
L∞(QT )

≤
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

+ M1

∥∥∥∥ψ1

v

∥∥∥∥
q/(p+1)

L∞(QT )
, (4.29)

where

M1 =
(
aq2
d

)1/(p+1)

‖ψ2‖(σ2−p−q)/(p+1)
L∞(Ω) .

We now apply the bound obtained for ψ1/v in line (4.22) to (4.29) to see that in fact

∥∥∥∥ u

ψ2

∥∥∥∥
L∞(QT )

−
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

≤ M1

∥∥∥∥ψ1

v

∥∥∥∥
q/(p+1)

L∞(QT )

≤ M1

⎛
⎝ε0 + D1/(s+1)

∥∥∥∥∥ ur/(s+1)

ψ
(σ1−s)/(s+1)
1

∥∥∥∥∥
L∞(QT )

⎞
⎠

q/(p+1)

≤ M1

(
ε0 + D1/(s+1)

∥∥∥∥ u

ψ1

∥∥∥∥
r/(s+1)

L∞(QT )
‖ψ1‖(r+s−σ1)/(s+1)

L∞(Ω)

)q/(p+1)

≤ M1 max
{

1, ε0 + D1/(s+1)
∥∥∥∥ u

ψ1

∥∥∥∥
r/(s+1)

L∞(QT )
‖ψ1‖(r+s−σ1)/(s+1)

L∞(Ω)

}
, (4.30)

where the last inequality holds since q/(p + 1) < 1. Assuming this maximum is not 1 (otherwise we are 
done), we apply (4.28) once more to conclude that
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∥∥∥∥ u

ψ2

∥∥∥∥
L∞(QT )

≤ M2 + M3

∥∥∥∥ u

ψ1

∥∥∥∥
r/(s+1)

L∞(QT )

≤ M2 + M3a
r/(s+1)
2

∥∥∥∥ u

ψ2

∥∥∥∥
r/(s+1)

L∞(QT )
, (4.31)

where

M2 =
∥∥∥∥u0

ψ2

∥∥∥∥
L∞(Ω)

+ ε0M1, M3 = M1D
1/(s+1) ‖ψ1‖(r+s−σ1)/(s+1)

L∞(Ω) .

Consequently, since r/(s + 1) < 1, u(x, t)/ψ2(x) is uniformly bounded for all t > 0. Note that (4.31) is of 
the form described in (4.1) with the inclusion of some finite constants and α = r/(s + 1).

We may now repeat this procedure for v. From line (4.27) and (4.28) we have that

∥∥∥∥ v

ψ2

∥∥∥∥
L∞(QT )

≤
∥∥∥∥ v0

ψ2

∥∥∥∥
L∞(Ω)

+
(

1
D

)1/(s+1)
∥∥∥∥∥ψ

(σ2−s)/(s+1)
2
ur/(s+1)

∥∥∥∥∥
L∞(QT )

≤
∥∥∥∥ v0

ψ2

∥∥∥∥
L∞(Ω)

+ M4

∥∥∥∥ψ1

u

∥∥∥∥
r/(s+1)

L∞(QT )
, (4.32)

where

M4 =
(
ar2
D

)1/(s+1)

‖ψ2‖(σ2−r−s)/(s+1)
L∞(Ω)

Using the bound for ψ1/u found in line (4.19) and repeating the estimates found in line (4.30), we arrive at

∥∥∥∥ v

ψ2

∥∥∥∥
L∞(QT )

≤ M5 + M6

∥∥∥∥ v

ψ1

∥∥∥∥
q/(p+1)

L∞(QT )

≤ M5 + M6a
q/(p+1)
2

∥∥∥∥ v

ψ2

∥∥∥∥
q/(p+1)

L∞(QT )
, (4.33)

where

M5 =
∥∥∥∥ v0

ψ2

∥∥∥∥
L∞(Ω)

+ ε0M4 M6 = M3d
1/(p+1) ‖ψ1‖(p+q−σ1)/(p+1)

L∞(Ω) .

As argued previously, since q/(p +1) < 1, we conclude that v(x, t)/ψ2(x) is uniformly bounded for all t > 0.
Finally, if we refer to line (4.16), we see that ψ1(x)/u(x, t) is uniformly bounded for all t > 0 since the 

integral on the right hand side of (4.16) is uniformly bounded for all t > 0 as v/ψ1 is uniformly bounded. 
Similarly, we see that ψ1(x)/v(x, t) is uniformly bounded for all t > 0 since u/ψ1 is uniformly bounded. 
One may then simply use a bound of the form found in line (4.28) in order to compare φ1 to ψ1 and ψ2. 
This yields the final bound asserted in the statement of the theorem, completing the prof.

5. Discussion

In this paper, we have discussed the existence, regularity and boundedness of solutions to a singular 
parabolic system related to numerous biological, physical and chemical phenomena. When d = D, under 
appropriate assumptions on the exponents p, q, r, s as well as reasonable compatibility conditions on the 
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initial data u0(x), v0(x), we are able to obtain the existence of at least one globally bounded weak solution 
(u, v). Using the Sobolev embedding, we are then able to obtain higher regularity of the resultant weak 
solutions. In the case of d 
= D, under an assumption on the exponents that ensures the existence of at 
least one global classical solution (u, v), we are able to prove that in fact this solution is uniformly bounded 
from above and below by a constant multiplied by the first eigenfunction of −Δ subject to homogeneous 
Dirichlet boundary data in Ω. These results generalize previous results found in [9] in a significant way.

From these results, one can see that the functional method is a very powerful tool in proving the existence 
of solutions to parabolic systems with difficult to treat nonlinearities. Originally motivated by the techniques 
involved in the treatment of homogeneous Neumann problems as in [22] and [6], this method has since been 
adapted to treat problems featuring homogeneous Dirichlet boundary data as well. In this case, the reaction 
terms grow singular as one approaches the boundary ∂Ω. In such cases, standard methods, such as sub/super 
solutions or variational techniques, are insufficient tools to prove the existence of solutions. However, there 
are drawbacks to the methods used in this paper as well. The most noticeable drawback is the necessary use 
of Lp theory of parabolic equations paired with Sobolev embeddings. These techniques give a restriction on 
the size of the exponent(s) in that they cannot exceed N−1. In the case of elliptic equations or systems, it is 
possible to allow the exponents to leave the interval (0, 1). In these cases, solutions still exist, though they 
are no longer linear up to the boundary, e.g. u /∈ C1(Ω). However, it is possible to show that the solution 
u ∈ Cα(Ω) for some α ∈ (0, 1), and furthermore, α decreases as the exponents in the singular reaction terms 
increase. This implies that the size of the exponents on the singular terms have an intimate relation with 
the steepness of the solution near the boundary. It is interesting that in such cases, one can find a classical 
solution u ∈ C2(Ω) ∩Cα(Ω) for some α ∈ (0, 1) that is not a weak solution. It is reasonable to assume that 
similar behaviour is expected in the parabolic case, but it does not appear to be an easy generalization to 
be made concrete. To be more precise, such a generalization would require moving away from parabolic Lp

theory and the use of Sobolev embeddings.
Accordingly, future works include relaxing conditions on the exponents p, q, r, s. Such relaxations will give 

a more complete picture on the behaviour of the solutions, as well as the steep boundary layers they may 
form. Furthermore, relaxing these conditions may allow one to prove the finite blowup time of solutions, 
see the recent paper by Chen and Xu [10] for example, which may correspond to the nonexistence criteria 
described in papers such as [14]. As a final note, it is easy to see that the methods presented here can also 
include the case when functions f(x), g(x) appear in the numerator of the nonlinearities with conditions 
similar to those found in [9].
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