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We prove sufficient conditions for the boundedness and compactness of Toeplitz 
operators Ta in weighted sup-normed Banach spaces H∞

v of holomorphic functions 
defined on the open unit disc D of the complex plane; both the weights v and symbols 
a are assumed to be radial functions on D. In an earlier work by the authors it 
was shown that there exists a bounded, harmonic (thus non-radial) symbol a such 
that Ta is not bounded in any space H∞

v with an admissible weight v. Here, we 
show that a mild additional assumption on the logarithmic decay rate of a radial 
symbol a at the boundary of D guarantees the boundedness of Ta. The sufficient 
conditions for the boundedness and compactness of Ta, in a number of variations, 
are derived from the general, abstract necessary and sufficient condition recently 
found by the authors. The results apply for a large class of weights satisfying the 
so called condition (B), which includes in addition to standard weight classes also 
many rapidly decreasing weights.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and main results

In the article [2] we studied Toeplitz operators Ta with radial symbols a on the analytic function spaces 
H∞

v on the unit disc D ⊂ C, endowed with weighted sup-norms for a large class of radial weights v
satisfying the so called condition (B); this excludes the unweighted or constant weight case. In particular, 
in Theorem 3.6 of the citation (repeated in this paper in Theorem 2.1) we obtained a general sufficient and 
necessary condition for the boundedness and compactness of Ta : H∞

v → H∞
v . Also, we observed that the 

boundedness of a non-radial symbol does not necessarily imply the boundedness of the Toeplitz operator. 
In fact, Theorem 2.3 of [2] contains an example of a bounded harmonic symbol a such that Ta : H∞

v → H∞
v

is not bounded for any weight v under consideration.
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The criterion for the boundedness of the Toeplitz operator in Theorem 3.6 of [2] is quite abstract, and it 
may not be easy to verify it for concrete weights and symbols. Some examples were presented in the citation 
under quite special assumptions either on the symbol or on the weight. Here, our aim is to use Theorem 3.6 
of [2] to prove concrete sufficient conditions for the boundedness and compactness of Ta : H∞

v → H∞
v . 

These conditions are much more general than in the examples of the citation, and the sufficient conditions 
for the symbol are easy to formulate and control. In all of our results we assume that the weight v satisfies 
condition (B) of [11], see also Definition 1.1 below, and a mild technical condition (1.1). These assumptions 
hold for example for the important classes of standard, normal and exponential weights (Proposition 1.3). 
Then, in the first main result, Theorem 1.2, we show that for the boundedness of Ta : H∞

v → H∞
v it suffices 

that the symbol a is differentiable near the unit circle and lim sup a′ or − lim sup a′ is bounded from above, 
and a → 0 at a slow, logarithmic speed as r → 1. In Theorem 1.4 the decay requirements for a are replaced 
by decay conditions on a′. In the case of normal weights the smoothness requirements of the symbol can be 
relaxed, see Theorem 1.6. Finally, in Theorem 1.7 we find a stronger decay condition for a which guarantees 
the boundedness of Ta in the case of exponential weights without a smoothness assumption on a.

All of these theorems also contain the analogous statements on the compactness of the Toeplitz operator. 
The proofs of Theorems 1.2 and 1.6 will be presented in Section 3 and that of Theorem 1.7 in Section 4.

We refer to the papers [3], [4], [5], [6], [8], [9], [12], [13], [14], [15], [16], [17], [18], [20], [21], [22], [23], 
[24] for classical and recent results on the boundedness and compactness of Toeplitz operators on Bergman 
spaces

Let us turn to the exact definitions and formulation of the main results. By a weight v on the unit disc 
D we mean a continuous function with v(z) = v(|z|) for all z ∈ D, lim|z|→1 v(z) = 0 and v(r) ≥ v(s) if 
1 > s > r > 0. Put

H∞
v =

{
h : D → C : h holomorphic, ‖h‖v := sup

z∈D
|h(z)|v(|z|) < ∞

}
,

L∞
v =

{
h : D → C : h measurable , ‖h‖v := ess sup

z∈D
|h(z)|v(|z|) < ∞

}
.

Let μ be the Lebesgue area measure on D endowed with v as density, i.e. dμ(reiϕ) = v(r)rdrdϕ and denote 
the weighted Lp- and Bergman spaces by

Lp
v =

{
g : D → C : ‖g‖pp,v :=

∫
D

|f |pdμ < ∞
}

and Ap
v = {h ∈ Lp

v : h holomorphic},

where 1 ≤ p < ∞. In the unweighted case v is omitted in the notation.
Now let a ∈ L1. We define the Toeplitz operator Ta with symbol a on H∞

v by Tah = Pv(a ·h) for h ∈ H∞
v , 

where Pv : L2
v → H2

v is the orthogonal projection. Then Tah is a holomorphic function, at least if a ·h ∈ L2
v. 

The definition of the Toeplitz operator in the present setting is discussed in detail in Section 1 of [2] and 
we do not wish to repeat the details here. However, we emphasize that even if Tah is a well defined analytic 
function, is not necessarily an element of H∞

v and Ta need not be a bounded operator.
In the following we consider radial symbols a ∈ L1, i.e. functions with a(z) = a(|z|) for almost all z ∈ D. 

As for general notation, N = {1, 2, 3, . . .}, N0 = N ∪ {0}, and c, C, C ′ denote generic positive constants, 
the exact value of which may change from place to place, but does not depend on the variables, indices or 
functions in the given expressions, unless otherwise indicated. By 1A we denote the characteristic function 
of a set A, i.e. a function which equals 1 on A and 0 outside A; the domain of 1A will be clear from the 
context. For other general terminology and definitions, see [7] and [23].

We will need the following definition. Let v be a weight on D. Consider m > 0 and let rm be a point 
where the function rmv(r) attains its absolute maximum on [0, 1]. It is easy to see that rn ≥ rm if n ≥ m

and limm→∞ rm = 1.
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Definition 1.1. (i) The weight v satisfies condition (B), if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m,n > 0(
rm
rn

)m
v(rm)
v(rn) ≤ b1 and m,n, |m− n| ≥ c ⇒

(
rn
rm

)n
v(rn)
v(rm) ≤ b2,

(ii) v is called normal if

sup
n∈N

v(1 − 2−n)
v(1 − 2−n−1) < ∞ and inf

k
lim sup
n→∞

v(1 − 2−n−k)
v(1 − 2−n) < 1,

(iii) v is called an exponential weight of type (α, β) for some constants α > 0 and β > 0 if v(r) = exp(−α/(1 −
r)β) for all r.

Note that the numbers m and n in (i) need not be integers. For example all normal weights as well as 
all exponential weights satisfy (B) (see [11]). Standard weights (1 − r)α and (1 − r2)α are normal for all 
α > 0, but no exponential weight is normal: the first condition in (ii) is not satisfied. Neither is the weight 
v(r) = 1/(1 − log(1 − r)) is normal, since it decays too slowly to 0 in order to satisfy the second condition 
in (i).

We show

Theorem 1.2. Let v satisfy (B) and assume that there is some ε > 0 with

sup
n=1,2,...

∫ 1
0 rn−nε

v(r)dr∫ 1
0 rnv(r)dr

< ∞. (1.1)

Let a ∈ L1 be real valued and radial such that the restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[ with

lim sup
r→1

a′(r) < ∞ or lim inf
r→1

a′(r) > −∞. (1.2)

If

lim sup
r→1

|a(r) log(1 − r)| < ∞ (1.3)

then Ta is a bounded operator H∞
v → H∞

v .
If

lim sup
r→1

|a(r) log(1 − r)| = 0 (1.4)

then Ta is compact on H∞
v .

Of course, Theorem 1.2 can be applied to complex valued symbols a as well. Here Re a and Im a have to 
satisfy the assumptions of the theorem.

We prove Theorem 1.2 in Section 3. Condition (B) and (1.1) are satisfied for many weights, in particular 
we have

Proposition 1.3. All normal and exponential weights (see Definition 1.1) satisfy (B) and condition (1.1).
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Indeed, it was proven in [11] that normal and exponential weights satisfy (B). Condition (1.1) with ε = 1/2
follows for normal weights from Lemma 4.5. of [3]. The remaining claim in Proposition 1.3 about condition 
(1.1) for exponential weights will be proved in Section 4; see the remark after the proof of Corollary 4.2.

Examples. Assume that v is a weight satisfying (B). The symbol a(r) = 1/(1 −log(1 −r)) satisfies the second 
condition (1.2) and, of course, (1.3) so that Ta : H∞

v → H∞
v is bounded. The same is true for a(r) = (1 −r)δ

with any δ > 0, and this symbol even satisfies (1.4) so that Ta is compact on H∞
v . (1.3). Moreover,

a(r) =
{

log 2 , if 0 ≤ r ≤ 1/2,
− log r , if 1/2 < r < 1,

satisfies (1.2), (1.4) as well.

Next we present a reformulation of Theorem 1.2.

Theorem 1.4. Let v satisfy (B) and (1.1). Let a ∈ L1 be a radial symbol, and assume that a|[δ,1[ is differen-
tiable for some δ ∈]0, 1[, a′ satisfies (1.2) and, for some constant C > 0, there holds the bound

|a′(r)| ≤ C

(1 − r)
(
log(1 − r)

)2 for r ∈]δ, 1[. (1.5)

Then, Ta is a bounded operator H∞
v → H∞

v . Moreover, if

lim
r→1

|a′(r)|(1 − r)
(
log(1 − r)

)2 = 0 (1.6)

holds, then Ta is compact, if and only if limr→1 a(r) = 0.

Proof. We can assume that a is real-valued (otherwise consider Re a and Im a separately). Assume (1.5)
holds. For all r ∈]δ, 1[ we get by the change of the integration variable log(1 −s) =: x and dx/ds = −1/(1 −s)
that

1∫
r

|a′(s)|ds ≤ C

1∫
r

1
(1 − s)

(
log(1 − s)

)2 ds = C

log(1−r)∫
−∞

1
x2 dx = C

| log(1 − r)| . (1.7)

Thus, we can extend a as a continuous function to ]δ, 1] by defining

a(1) =
1∫

δ

a′(s)ds + a(δ)
(

= lim
r→1

a(r)
)
,

and by (1.7) we obtain for all r ∈]δ, 1[

|a(r) − a(1)| =
∣∣∣

1∫
r

a′(s)ds
∣∣∣ ≤ C

| log(1 − r)| . (1.8)

This means, the function a − a(1) satisfies (1.3) so that the Toeplitz operator Ta−a(1) is bounded. Since 
Ta(1) is a multiple of the identity, Ta = Ta−a(1) + Ta(1) is bounded.

If (1.6) holds, then we can repeat the calculation (1.7)–(1.8) so that the constant C is replaced by a 
positive function C(r) with C(r) → 0 as r → 1. Then, we see from the analogue of (1.8) that the function 
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a − a(1) even satisfies (1.4); hence the operator Ta−a(1) is compact, and if in addition a(1) = 0 then also 
Ta is compact. If limr→1 a(r) = a(1) 
= 0, then Ta is a compact perturbation of a non-zero multiple of the 
identity which is not compact. �

All examples presented after Proposition 1.3 also satisfy the assumptions of Theorem 1.4.
The sufficient condition for the boundedness can be put into the following, very simple form. This should 

be compared with corresponding results for non-radial symbols in [3]: we proved that for holomorphic f on 
D, the operator Tf is bounded, if and only f is bounded while there are bounded harmonic g on D where 
Tg is unbounded on H∞

v .

Corollary 1.5. If the symbol a is radial and continuously differentiable on [0, 1], then Ta : H∞
v → H∞

v is 
bounded.

For normal weights we can relax the assumptions on a of Theorem 1.2 considerably.

Theorem 1.6. Let v be a normal weight. If a ∈ L1 is radial and satisfies (1.3) then Ta is a bounded operator 
H∞

v → H∞
v .

If a satisfies (1.4) then Ta is compact on H∞
v .

We prove Theorem 1.6 in Section 3. There is a variant of Theorem 1.2 for exponential weights, too, 
without the restrictive smoothness requirements on a.

Theorem 1.7. Let v be an exponential weight of type (α, β). Assume that a ∈ L1 is radial and

lim sup
r→1

|a(r)|(1 − r)−1/2−β/4 < ∞. (1.9)

Then, Ta is a bounded operator H∞
v → H∞

v .
If

lim sup
r→1

|a(r)|(1 − r)−1/2−β/4 = 0 (1.10)

then Ta is compact on H∞
v .

We prove Theorem 1.7 in Section 4.

2. Preliminaries

To prove the theorems of Section 1 we need to recall some results of [11] and [2]. We refer to these papers 
for a more detailed exposition.

Let v be a weight on D. Fix b > 2. We define by induction the indices 0 ≤ m1 < m2 < . . . such that

b = min
(( rmn

rmn+1

)mn v(rmn
)

v(rmn+1)
,
(rmn+1

rmn

)mn+1 v(rmn+1)
v(rmn

)

)
.

This is always possible according to Lemma 5.1. of [11]. (Actually it suffices to choose the indices such that 
the preceding minimum lies between b and some constant b1 > b.) Formula (6.1) of [11] implies that

sup mn+1 −mn
< ∞ (2.1)
n mn −mn−1
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so that we also have supn mn+1/mn < ∞ and supn(mn+1 −mn−1)/mn−1 < ∞.
Now let h(ϕ) =

∑
k∈Z bke

ikϕ be a formal series with some numbers bk ∈ C and ϕ ∈ [0, 2π]. Take the 
preceding numbers mk and define for every n ∈ N the operator

(Wnh)(ϕ) =
∑

mn−1<|k|≤mn

|k| − [mn−1]
[mn] − [mn−1]

bke
ikϕ +

∑
mn<|k|≤mn+1

[mn+1] − |k|
[mn+1] − [mn]bke

ikϕ

=:
∑
k∈Z

βkbke
ikϕ (2.2)

with coefficients βk = βk(n) satisfying |βk| ≤ 1 for all k and n. Here [r] is the largest integer not larger than 
r. Obviously, Wnh is always a continuous function [0, 2π] → C. The following is Theorem 3.6. of [2].

Theorem 2.1. Let the weight v satisfy (B). If a ∈ L1 is radial then Ta is bounded as operator H∞
v → H∞

v if 
and only if

sup
n

2π∫
0

|(Wnfa)(ϕ)|dϕ < ∞

and Ta is a compact operator H∞
v → H∞

v , if and only if

lim
n→∞

2π∫
0

|(Wnfa)(ϕ)|dϕ = 0.

Here, fa(ϕ) is for ϕ ∈ [0, 2π] the formal series

fa(ϕ) =
∞∑
j=0

γje
ijϕ with γn =

∫ 1
0 r2n+1v(r)a(r)dr∫ 1

0 r2n+1v(r)dr
.

We recall that for radial symbols the Toeplitz operators reduce into a Taylor coefficient multiplier: if 
h(z) =

∑∞
n=0 hnz

n, then Ta(z) =
∑∞

n=0 γnhnz
n.

Examples. If v is normal, then one can take mn = 2kn for suitable fixed k > 0 (see [11], Example 2.4, and 
[10]).

For v(r) = exp(−α/(1 −r)β) one can take mn = β2(β/α)1/βn2+2/β −β2n2, and rmn
= 1 −

(
α/(βn2)

)1/β . 
This follows from (3.15), (3.16) and (3.30) of [1]. (There is a misprint in Theorem 3.1. of [1], two times the 
exponent 2 is missing in the description of mn.)

Corollary 2.2. Let the weight satisfy (B) and assume that a ∈ L1 is radial and satisfies a|[s,1] = 0 for some 
s ∈]0, 1[. Then Ta : H∞

v → H∞
v is compact.

Proof. We have ∣∣∣∣∣
∫ 1
0 a(r)rkv(r)dr∫ 1

0 rkv(r)dr

∣∣∣∣∣ ≤
∫ s

0 |a(r)|rkv(r)dr∫ 1
(1+s)/2 r

kv(r)dr

≤
(

2s
1 + s

)k ∫ s

0 |a(r)|v(r)dr∫ 1
v(r)dr

.

(1+s)/2
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Hence, with fa as in Theorem 2.1,

2π∫
0

|(Wnfa)(ϕ)|dϕ ≤ c1(mn+1 −mn−1)
(

2s
1 + s

)mn−1

≤ c2mn−1

(
2s

1 + s

)mn−1

for universal constants c1, c2. Here we used (2.1). The right-hand side goes to 0 as n goes to ∞. Hence 
Theorem 2.1 finishes the proof. �

For r > 0 and an integrable function f on r · ∂D we put

M1(f, r) = 1
2π

2π∫
0

|f(reiϕ)|dϕ.

It is well-known that M1(f, r) is increasing with respect to r if f is a harmonic function.
Let R be the Riesz projection, R :

∑∞
k=−∞ akr

|k|eikϕ �→
∑∞

0 akr
|k|eikϕ. In the following we consider the 

Poisson kernel p,

p(reiϕ) =
∞∑

k=−∞
r|k|eikϕ , where reiϕ ∈ D.

It is well-known that p ≥ 0 and that M1(p, r) = 1 for all r ∈ [0, 1[. The following lemma will be needed 
later.

Lemma 2.3. Let v satisfy condition (B) and consider the preceding numbers mn and operators Wn. Then we 
have

sup
n

sup
0≤r<1

M1(RWnp, r) < ∞.

Proof. According to Lemma 3.3 of [11] we have

M1(RWnp, r) ≤ 4
( [mn+1] − [mn−1]

[mn] − [mn−1]

)(
3 + 4[mn+1] − [mn−1]

[mn+1] − [mn]

)

·
(
1 + [mn+1] − [mn−1]

[mn−1]

)
M1(p, r).

Since M1(p, r) = 1, the lemma follows in view of (2.1). �
3. Estimates for 

∫ 2π
0 |(Wnfa)(ϕ)|dϕ

For the proofs of the theorems of Section 1 we will need the following estimate.

Proposition 3.1. Let v be a weight which satisfies (B) and let mn be the numbers defined above Theorem 2.1. 
Assume that a ∈ L1 is radial. Then there is a universal constant c > 0 with

2π∫
0

|(Wnfa)(ϕ)|dϕ ≤ c log(mn) ·
(∣∣∣∣∣

∫ 1
0 a(r)r2[mn−1]+1v(r)dr∫ 1

0 r2[mn−1]+1v(r)dr

∣∣∣∣∣
+

∑ ∣∣∣∣∣
∫ 1
0 a(r)r2k+1v(r)dr∫ 1

r2k+1v(r)dr
−

∫ 1
0 a(r)r2k−1v(r)dr∫ 1

r2k−1v(r)dr

∣∣∣∣∣
)

(3.1)

[mn−1]<k≤[mn+1] 0 0
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and

2π∫
0

|(Wnfa)(ϕ)|dϕ ≤ c log(mn)
∫ 1
0 |a(r)|r2[mn−1]+1v(r)dr∫ 1

0 r2[mn+1]+1v(r)dr
(3.2)

for all n large enough.

To prove Proposition 3.1 we need a lemma. Given m ∈ N, let Qm be the following projection acting on 
formal series (cf. (2.2)),

Qm

( ∞∑
l=0

ble
ilϕ

)
=

m∑
l=0

ble
ilϕ.

It is well-known (see for example (2.7) in Ch. I, [19]) that

2π∫
0

∣∣∣Qm

( ∞∑
l=0

ble
ilϕ

)∣∣∣dϕ ≤ d logm
2π∫
0

∣∣∣ ∞∑
l=0

ble
ilϕ

∣∣∣dϕ (3.3)

where the coefficients bl for example form an 
2-sequence so that the sum and the integral on the right 
converge and d > 0 is a constant independent of m.

Lemma 3.2. Let f(eiϕ) =
∑n

k=0 bke
ikϕ for some bk ∈ C and n ∈ N, and let g(eiϕ) =

∑n
k=0 αkbke

ikϕ for 
some coefficients αk ∈ C. Then,

2π∫
0

|g(eiϕ)|dϕ ≤ c log n
(
|α0| +

n∑
k=1

|αk − αk−1|
) 2π∫

0

|f(eiϕ)|dϕ (3.4)

where c > 0 is a constant independent of n and f .

Proof. We obtain, with βj = αj − αj−1 for j = 1, . . . , n and β0 = α0,

g(eiϕ) =
n∑

j=0
βj

n∑
k=j

bke
ikϕ.

Hence

2π∫
0

|g(eiϕ)|dϕ ≤
(
|α0| +

n∑
k=1

|αk − αk−1|
)

sup
j

2π∫
0

∣∣((id −Qj−1)f
)
(eiϕ)

∣∣dϕ
from which we infer (3.4), in view of (3.3). �
Proof of Proposition 3.1. Let fa be again as in Theorem 2.1. We have

(Wnfa)(eiϕ) =
[mn+1]∑ ∫ 1

0 a(r)r2k+1v(r)dr∫ 1
r2k+1v(r)dr

· βke
ikϕ
k=[mn−1] 0
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for certain βk with |βk| ≤ 1 (where β[mn−1] = β[mn+1] = 0; see (2.2)). Now put h(reiϕ) =∑[mn+1]−[mn−1]
j=0 βj+mn−1r

jeijϕ so that h is a polynomial, hence a holomorphic function. We obtain

M1(h, r) ≤ M1(h, 1) = M1(WnRp, 1) for r ≤ 1,

where p is the Poisson kernel. Since WnRp is a polynomial we clearly find a radius r(n) ∈ [0, 1[ such that

M1(WnRp, 1) ≤ 2M1(WnRp, r(n)) for all n. (3.5)

We use Lemma 3.2 with f(eiϕ) = h(reiϕ) for fixed r, bj = βj+[mn−1] and

αj =
∫ 1
0 a(s)s2(j+[mn−1])+1v(s)ds∫ 1

0 s2(j+[mn−1])+1v(s)ds

and obtain

2π∫
0

|Wnfa(eiϕ)|dϕ

≤ c log([mn+1] − [mn−1])
(
|α0| +

[mn+1]−[mn−1]∑
k=1

|αk − αk−1|
)
M1(WnRp, 1).

Then Lemma 2.3 proves (3.1).
To show (3.2) we see that

2π∫
0

|Wnfa(eiϕ)|dϕ

≤
1∫

0

2π∫
0

∣∣∣∣
[mn+1]∑

k=[mn−1]

r2k+1a(r)v(r)∫ 1
0 s2k+1v(s)ds

· βke
ikϕ

∣∣∣∣dϕdr

=
1∫

0

|a(r)|r2[mn−1]+1v(r)

·
2π∫
0

∣∣∣∣
[mn+1]∑

k=[mn−1]

1∫ 1
0 s2k+1v(s)ds

· r2(k−[mn−1])βke
i(k−[mn−1])ϕ

∣∣∣∣dϕdr.
Now put

h̃(reiϕ) =
[mn+1]−[mn−1]∑

j=0
βj+[mn−1]r

jeijϕ.

Again we obtain

M1(h̃, r) ≤ M1(h̃, 1) = M1(WnRp, 1) for r ≤ 1.
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We use Lemma 3.2 with f(eiϕ) = h̃(reiϕ) for fixed r, bj = βj+[mn−1]r
j and

αj =
( 1∫

0

s2(j+[mn−1])+1v(s)ds
)−1

.

Then αj is increasing and

|α0| +
[mn+1]−[mn−1]∑

k=1

|αk − αk−1| = |α[mn+1]−[mn−1]|

The preceding estimate and (2.1), (3.4), (3.5) yield constants c1, c2 > 0 with

2π∫
0

|Wnfa(eiϕ)|dϕ

≤ 2πc1 log([mn+1] − [mn−1])
1∫

0

|a(r)|r2[mn−1]+1∫ 1
0 s2[mn+1]+1v(s)ds

· v(r)M1(h̃, r)dr

≤ 2πc2 log([mn])
1∫

0

|a(r)|r2[mn−1]+1∫ 1
0 s2[mn+1]+1v(s)ds

· v(r)M1(h̃, 1)dr.

Now, Lemma 2.3 also shows (3.2). �
We recall the following

Lemma 3.3. Let v be normal. Then there is a universal constant c > 0 such that, for any k, m with 0 < k ≤
m ≤ 2k, we have

∫ 1
0 rkv(r)dr∫ 1
0 rmv(r)dr

≤ c.

Proof. This is Lemma 4.5. of [2]. �
Lemma 3.4. For a function a : [0, 1] → C, ε > 0 and δ ∈ [0, 1[ there are constants c1, c2 > 0 with

(a) c1 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rn log n ≤ sup
δ≤r<1

|a(r) log(1 − r)|

≤ c2 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rn logn

(b) c1 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rnnε ≤ sup
δ≤r<1

|a(r)|/(1 − r)ε

≤ c2 sup
n≥1/(1−δ)

sup
δ≤r≤1

|a(r)|rnnε

Proof. Put r = 1 − 1/n, n ≥ 1/(1 − δ), and observe that 1/(1 − 1/n)n is bounded. �
Proof of Theorem 1.6. The inequalities (1.3) or (1.4) and Lemma 3.4 imply that there is δ ∈ [0, 1[ such 
that supδ≤r<1 |a(r)rn| ≤ c0/ logn for all n > 1 and some constant c0. Without loss of generality, we may 
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assume that δ = 0, otherwise we take a1 = a · 1[δ,1] instead of a and use the fact that a = a1 + a2 where 
a2 = a · 1[0,δ] yields the compact operator Ta2 . We apply Proposition 3.1. At first, we get

∫ 1
0 |a(r)|r2mn−1+1v(r)dr∫ 1

0 r2mn+1+1v(r)dr
≤

(
sup

0≤r<1
|a(r)|rmn−1

) ∫ 1
0 rmn−1+1v(r)dr∫ 1
0 r2mn+1+1v(r)dr

According to (2.1) we have supk(mk+1−mk)/(mk−mk−1) < ∞. This implies that mn−1 +1 ≤ mn+1 +1 ≤
2q(mn−1 + 1) for some q ∈ N which is independent of n. If we apply Lemma 3.3 q times we see that

∫ 1
0 smn−1+1v(s)ds∫ 1
0 s2mn+1+1v(s)ds

≤ cq

where c is the constant of Lemma 3.3. By (3.2) this shows, for some constant c1

2π∫
0

|(Wnfa)(ϕ)|dϕ ≤ c1 log(mn)
(

sup
0≤r<1

|a(r)|rmn−1

)
cq

≤ log(mn)
log(mn−1)

cq

where we used (1.3) and Lemma 3.4(a). With (2.1) we see that supn

∫ 2π
0 |(Wnfa)(ϕ)|dϕ < ∞. If (1.4) holds 

then the same estimate yields

lim
n→∞

2π∫
0

|(Wnfa)(ϕ)|dϕ = 0.

So Theorem 1.6 follows from Theorem 2.1. �
In order to prove Theorem 1.2 we need

Lemma 3.5. Let v be a weight on D and let a : [0, 1] → R+ be continuous and non-increasing. Then

∫ 1
0 a(r)rkv(r)dr∫ 1

0 rkv(r)dr
≥

∫ 1
0 a(r)rk+1v(r)dr∫ 1

0 rk+1v(r)dr
for all k = 1, 2, . . . .

Proof. For t ∈ [0, 1] put

F (t) =

⎛
⎝ t∫

0

a(r)rkv(r)dr

⎞
⎠

⎛
⎝ t∫

0

rk+1v(r)dr

⎞
⎠ ,

G(t) =

⎛
⎝ t∫

0

a(r)rk+1v(r)dr

⎞
⎠

⎛
⎝ t∫

0

rkv(r)dr

⎞
⎠ .

Then F and G are differentiable and the mean value theorem yields s ∈]0, 1[ with

F (1) − F (0) = F ′(s)
′
G(1) −G(0) G (s)
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(Here we can assume that a is not the zero function.) Hence
(∫ 1

0 a(r)rkv(r)dr
)(∫ 1

0 rk+1v(r)dr
)

(∫ 1
0 a(r)rk+1v(r)dr

)(∫ 1
0 rkv(r)dr

)

=
(∫ s

0 a(r)rkv(r)dr
)
sk+1v(s) + a(s)skv(s)

(∫ s

0 rk+1v(r)dr
)(∫ s

0 a(r)rk+1v(r)dr
)
skv(s) + a(s)sk+1v(s)

(∫ s

0 rkv(r)dr
) .

Since a is non-increasing we have

skv(s)
s∫

0

(
a(s) − a(r)

)
rk(s− r)v(r)dr ≤ 0

which implies

( s∫
0

a(r)rkv(r)dr
)
sk+1v(s) + a(s)skv(s)

( s∫
0

rk+1v(r)dr
)

≥
( s∫

0

a(r)rk+1v(r)dr
)
skv(s) + a(s)sk+1v(s)

( s∫
0

rkv(r)dr
)
.

Since a is non-negative we obtain

F (1) − F (0)
G(1) −G(0) ≥ 1

and hence
∫ 1
0 a(r)rkv(r)dr∫ 1

0 rkv(r)dr
≥

∫ 1
0 a(r)rk+1v(r)dr∫ 1

0 rk+1v(r)dr
. �

Proof of Theorem 1.2. Let the symbol a satisfy the assumptions of Theorem 1.2. Let us assume that

lim sup
r→1

a′(r) < ∞, (3.6)

otherwise we can consider −a. We may even assume that a is differentiable on [0, 1[. Indeed put

a1(r) =
{

a(r) r ∈ [δ, 1]
a(δ) − a′(δ)(δ − r) r ∈ [0, δ]

Then a1 is differentiable on [0, 1[. Let a2 = a · 1[0,δ] and a3 = a1 · 1[0,δ]. According to Corollary 2.2, Ta2 and 
Ta3 are compact. Since a = a1 + a2 − a3 it suffices to assume (by perhaps taking a1 instead of a) that a is 
differentiable on [0, 1[.

Moreover it suffices to assume that a is decreasing. Indeed otherwise consider

ã(r) = a(r) + d(1 − r) (3.7)

instead of a where d > 0 is a constant so large that ã′ < 0 which exists in view of (3.6). The symbol ã
satisfies (1.3) or (1.4), too. If we have proved Theorem 1.2 for ã then it is also correct for the symbol 1 − r. 
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(Here take a = 0 in (3.7)). So let us assume that a is differentiable everywhere, satisfies (1.3) or (1.4) and 
is decreasing. Since limr→∞ a(r) = 0 we obtain a(r) ≥ 0 for all r.

We use again the terminology of Theorem 2.1. In view of Lemma 3.5 with Proposition 3.1 we see that

2π∫
0

|(Wnfa)(ϕ)|dϕ

≤ c log(mn) ·
(∫ 1

0 a(r)r2[mn−1]+1v(r)dr∫ 1
0 r2[mn−1]+1v(r)dr

+
∫ 1
0 a(r)r2[mn+1]+1v(r)dr∫ 1

0 r2[mn+1]+1v(r)dr

)
(3.8)

With (1.1) we obtain, for k = mn−1 and k = mn+1,

∫ 1
0 a(r)r2k+1v(r)dr∫ 1

0 r2k+1v(r)dr
≤ c1 sup

r
a(r)rk

ε

for a universal constant c1. According to Lemma 3.4(a) and (1.3) we obtain a constant c2 > 0 with

sup
r

a(r)rk
ε ≤ c2(ε log k)−1.

If we insert the last estimates in (3.8) we obtain supn

∫ 2π
0 |(Wnfa)(ϕ)|dϕ < ∞ and we can apply Theorem 2.1. 

If we even have (1.4), then the same estimates yield limn→∞
∫ 2π
0 |(Wnfa)(ϕ)|dϕ = 0 and again Theorem 2.1

finishes the proof. �
4. Exponential weights

We now turn to the proof of Theorem 1.7. Let us fix an exponential weight v of type (α, β), i.e. v(r) =
exp(−α/(1 − r)β) for all r. By analyzing the function j �→ jβ+1 − jβ we see that for every k > 0 there is 
exactly one j = j(k) > 1 with

k = αβ(jβ+1 − jβ). (4.1)

With this notation we see that rk := 1 − 1/j is the unique maximum point of the function f(r) = rkv(r). 
Hence f is increasing for 0 ≤ r ≤ rk and decreasing for rk ≤ r < 1. Moreover, in view of (4.1), there are 
constants c1, c2 > 0 with

c1k
1/(β+1) ≤ j ≤ c2k

1/(β+1) for all k ≥ 1. (4.2)

Proposition 4.1. Let k ≥ 1 and the number j = j(k) > 1 be as chosen above and let 0 < δ < 1. Then there 
is a constant d > 0, independent of k, such that

1∫
0

rk exp
(
− α

(1 − r)β
)
dr ≤ d

1∫
1−1/(δj)

rk exp
(
− α

(1 − r)β
)
dr.

Proof. Fix 1 > γ > δ and put x = 1 − 1/(δj), y = 1 − 1/(γj). We may only consider large enough j (and 
hence k) such that 0 < x and δj > 1. Then we have 0 < x < y < 1. We use

exp
(
− k )

≤
(
1 − 1)k

≤ exp
(
− k)
t− 1 t t
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whenever 1 < t. This implies

x∫
0

rk exp
(
− α

(1 − r)β
)
dr ≤ xk+1 exp

(
− α

(1 − x)β
)

≤ xk exp
(
− α

(1 − x)β
)

≤ exp
(
− α

(β
δ

+ δβ
)
jβ + αβ

δ
jβ−1

)
=: u1.

Moreover we have

rk∫
y

rk exp
(
− α

(1 − r)β
)
dr ≥ yk exp

(
− α

(1 − y)β
)(

1 − 1
j
− y

)

≥ exp
(
− αβ

jβ+1

γj − 1 + αβ
jβ

γj − 1 − αγβjβ
)1 − γ

γj

= exp
(
− α

(β
γ

+ γβ
)
jβ − αβ

γ
jβ−1

( 1
γ − 1/j

)

+αβ
jβ−1

γ − 1/j − log
( γj

1 − γ

))
=: u2.

Put g(t) = β/t + tβ for t > 0. We easily see that g is decreasing for 0 < t < 1. Moreover

u1

u2
≤ exp

(
− α

(
g(δ) − g(γ)

)
jβ + d1j

β−1 + d′1 log j
)

for some universal constants d1, d′1. Since g(δ) − g(γ) > 0 this implies lim supr→∞ u1/u2 < ∞. Hence 
u1 ≤ d2u2 for some universal constant d2. We obtain

1∫
0

rk exp
(
− α

(1 − r)β
)
dr

=
x∫

0

rk exp
(
− α

(1 − r)β
)
dr +

1∫
x

rk exp
(
− α

(1 − r)β
)
dr

≤ d2

rk∫
y

rk exp
(
− α

(1 − r)β
)
dr +

1∫
x

rk exp
(
− α

(1 − r)β
)
dr

≤ (1 + d2)
1∫

x

rk exp
(
− α

(1 − r)β
)
dr.

We finally put d = 1 + d2. �
Corollary 4.2. There is a constant c > 0 such that

1∫
rk−k1/(β+1)

exp
(
− α

(1 − r)β
)
dr ≤ c

1∫
rk exp

(
− α

(1 − r)β
)
dr
0 0
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whenever k ≥ 1.

Proof. It is enough to consider sufficiently large k. Let l = l(k) be such that

k − k1/(β+1) = αβ(lβ+1 − lβ).

For k ≥ k0, k0 sufficiently large, there is a constant c0 > 0 such that

(k − k1/(β+1))1/(β+1) ≥ c0k
1/(β+1).

Taking into account (4.2) for k − k1/(β+1) instead of k we find a constant c1 > 0 with

l ≥ c1k
1/(β+1). (4.3)

Let δ = 1/2 and apply Proposition 4.1 for k − k1/(β+1) instead of k. Together with (4.3) this yields

1∫
0

rk−k1/(β+1)
exp

(
− α

(1 − r)β
)
dr

≤ d

1∫
1−2/l

rk−k1/(β+1)
exp

(
− α

(1 − r)β
)
dr

≤ d

(1 − 2/l)k1/(β+1)

1∫
0

rk exp
(
− α

(1 − r)β
)
dr

≤ d(
1 − 2c1k−1/(β+1)

)k1/(β+1)

1∫
0

rk exp
(
− α

(1 − r)β
)
dr.

In order to complete the proof it is enough to take c such that

d(
1 − 2c1k−1/(β+1)

)k1/(β+1) ≤ c. �

Corollary 4.2 proves (1.1) (with ε = 1/(β + 1)) for exponential weights and thus completes the proof of 
Proposition 1.3.

Proof of Theorem 1.7. By possibly taking a · 1[δ,1] instead of a for suitable δ we can assume without loss 
of generality, in view of Lemma 3.4, that sup0≤r≤1 |a(r)|rk ≤ c0/k

1/2+β/4 for all k and some constant c0. 
To obtain the indices mn of Theorem 2.1 we use (4.1) with j = (βn2/α)1/β (see (3.30), (3.15) and (3.16) of 
[1]). Hence

mn = β2+1/β

α1/β n2+2/β − β2n2. (4.4)

Let fa be again as in Theorem 2.1. We need to show that

sup
n

1∫
|Wnfa(eiϕ)|dϕ < ∞.
0
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We have

(Wnfa)(eiϕ) =
[mn+1]∑

k=[mn−1]

∫ 1
0 a(r)r2k+1v(r)dr∫ 1

0 r2k+1v(r)dr
· δkeikϕ

for certain δk with |δk| ≤ 1.
The equality (4.4) implies that there is a constant c1 > 0 such that

(2k + 1)1/(β+1) ≥ c1n
(2+2/β)/(β+1) = c1n

2/β (4.5)

for all k ≥ mn−1. Moreover, by an application of the mean value theorem to the function n �→ mn of (4.4)
we may assume that

2(mn+1 −mn−1) + 1 ≤ c2n
1+2/β . (4.6)

The remark in the beginning of the proof, Corollary 4.2, (4.5) and the assumption (1.9) on a yield a 
constant c3 > 0 such that, for mn−1 ≤ k < mn+1, we have

∣∣∣∣∣
∫ 1
0 a(r)r2k+1v(r)dr∫ 1

0 r2k+1v(r)dr

∣∣∣∣∣
≤

(
sup
r

|a(r)|r(2k+1)1/(β+1)
)
·
∫ 1
0 r2k+1−(2k+1)1/(β+1)

v(r)dr∫ 1
0 r2k+1v(r)dr

≤ c3
1

(n2/β)1/2+β/4 = c3
1

n1/β+1/2 .

This implies by (4.6)

1∫
0

|Wnfa(eiϕ)|dϕ ≤

⎛
⎝ 1∫

0

|Wnfa(eiϕ)|2dϕ

⎞
⎠

1/2

=
(

mn+1∑
k=mn−1

∣∣∣∣∣
∫ 1
0 a(r)r2k+1v(r)dr∫ 1

0 r2k+1v(r)dr

∣∣∣∣∣
2

|δk|2
)1/2

≤
(
(2(mn+1 −mn−1) + 1) c23

n1+2/β

)1/2

≤ c
1/2
2 c3.

Hence, supn

∫ 2π
0 |(Wnfa)(ϕ)|dϕ < ∞. So Theorem 2.1 concludes the first part of Theorem 1.7. If (1.10) holds 

then the same estimates as above show that limn→∞
∫ 2π
0 |Wnfa(eiϕ)|dϕ = 0. Again, with Theorem 2.1 we 

see that then Ta is compact. �
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