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In this paper, we consider the Frechet differentiability with respect to a given´
domain of the solution of direct acoustic scattering problems with sound-soft,
sound-hard, or lossy boundary conditions. We propose a new proof for characteriz-
ing the derivative of the acoustic scattered field as the solution of a particular
direct scattering problem. This proof assumes that the boundary of the scatterer is
only Lipschitzian and therefore extends this well-known characterization to obsta-
cles with rough surfaces. Our result can be of practical interest because the
characterization of the derivative of the acoustic scattered field has a great
potential for the solution of inverse acoustic scattering problems by Newton-type
methods. Q 1999 Academic Press
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1. INTRODUCTION

Recently we proved that the acoustic scattered field and its correspond-
ing far-field pattern are continuously Frechet differentiable with respect to´

w xthe domain of a given obstacle 1 . We have established this result for
acoustic scattering problems with a sound-soft obstacle, a sound-hard
obstacle, or lossy boundary conditions and have assumed that the shape of
the scatterer and the relevant perturbations are only Lipschitzian. Here,
our aim is to propose a new and simple proof for characterizing the
derivative with respect to an obstacle’s domain of the acoustic scattered
field as the solution of a particular direct scattering problem. Our proof
assumes that the shape of the scatterer is only Lipschitzian, and that the
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admissible perturbations are CC1-functions. It is based on the fact that the
w xchain rule is also valid for infinite-dimensional spaces 1]3 and on the

w xclassical trace theorems 4]6 . Our result has a great potential for reducing
the complexity of the solution of inverse scattering problems by iterative

w xmethods 7]9 .
For a sound-soft scatterer, a similar result has previously been estab-

w x w xlished by Kirsch 10 , using a variational approach, and by Potthast 11 ,
using an integral representation of the far-field pattern. However, both of
these previous investigations have assumed CC 2 regularity for the boundary
of the scatterer as well as for the relevant perturbations. Recently, Het-
tlich has extended this result for sound-soft scatterers that are also of class
CC 2, but for perturbations of the domain that are only CC1-functions. For
both cases of a sound-hard obstacle and lossy boundary conditions, he has
also proposed a characterization of the derivative with respect to the
domain of the scattered field and has assumed for this purpose that the
boundary of the domain is of class CC 2, 1. However, it has been reported to

w x w xus 19 that the characterization published in 9 contains an error. For the
w xcase of a sound-hard obstacle, Potthast has already proved in 13 the same

characterization of the derivative with respect to the domain of the
scattered field that we establish in this paper. However, his proof assumed
more regularity for the boundary of the scatterer and the relevant pertur-
bations than ours. Indeed, Potthast’s proof requires that the boundary of
the scatterer be of class CC 2, a, and that the perturbations of the scatterer
by CC 2-functions.

The remainder of this paper is organized as follows. In Section 2, we
first specify the nomenclature and assumptions used in this work, then

w xformulate the focus acoustic scattering problem 1, 14, 15 . In Section 3, we
state as a theorem the characterization of the derivative of the scattered
field with respect to the domain as the solution of a particular direct
acoustic problem and deduce as a corollary a characterization of the
Frechet derivative of its far-field pattern. In Section 4 we prove the main´
result of this work.

2. PROBLEM STATEMENT

2.1. Nomenclature and Assumptions

Throughout this paper, we adopt the following nomenclature and as-
sumptions

v
3V is a bounded domain of R representing an impenetrable obsta-

cle.
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e 3 3
v V s R _ V is the homogeneous isotropic medium in R where

the obstacle is embedded.
v

e w xG is the boundary of V and is assumed to be Lipschitzian 5, 6, 16 .
v

3Ž . 5 5x s x , x , x is a point of R , and r s x is the distance from21 2 3
an origin point to x.

v
3‘‘.’’ denotes the scalar product in R .

v
1 3 3� 5 5 4S s x g R _ x s 1 is the unit sphere in R .2

v
3= is the gradient operator in R .

v
3= is the Laplacian operator in R .

v n is the outward normal to G and ­r­n is the normal derivative
operator.

v k is a positive number representing the wavenumber of the incident
wave.

v
1d is a vector of S representing the normalized direction of the

incident planar wave.
v

0, 1 3 3Ž .CC R is the space of Lipschitzian functions in R .
v

1 3 3Ž .CC R is the space of functions with continuous derivatives in R .
v

eŽ .DD V is the standard space of infinitely differentiable functions
with compact support in V e.

v
eŽ .DD9 V is the standard space of distributions.

v
2 e 1 eŽ . Ž .L V is the standard Lebesgue space and H V is the Sobolev

space.
v

2 e 2Ž . Ž .L V is the space of functions that are in L D for any openloc
bounded set D in V e.

v
e 2 e 2 eŽ . � Ž . Ž .4H D, V s w; w g L V and Dw g L V .loc loc loc

v
1 e 1 e 2 eŽ . � Ž . Ž .4H D, V s w; w g H V and Dw g L V .loc loc loc

v
sŽ .H G are the trace Sobolev spaces.

v
3 3I: R ª R is the identity mapping.

v
3 3u : R ª R denotes an admissible perturbation. u is assumed to be

Ž 1Ž 3..3in CC R and to have a compact support. u is also supposed to be small
1 31 3 3Ž 5 5 .enough for example, u - such that I q u is bijective in R .CC ŽR .. 2

v w x w x Ž .u 9 is the Jacobian matrix of u . Hence, u 9 s ­u r­ x .l j

v
T Tw x w xu 9 is the transpose Jacobian matrix of u . Hence, u 9 s

Ž .­u r­ x .j l

v
e eŽ .Ž .V s I q u V is an admissible perturbed configuration of theu

reference domain V e. Note that V e s V e.0
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v
eG is the boundary of V and therefore is an admissible perturba-u u

tion of the reference boundary G. Note that G s G.0

v Ž . Ž .w s w u , x and w s w 0, x .u

Furthermore, in this paper we manipulate a function u that is definedu

on an open set V e that varies with u . Hence, this function cannot beu

differentiated with respect to u in the classical sense. For this reason, we
w xfollow 2, 3 and adopt the following concept of a local derivative.

We say that u ¬ w is locally differentiable if for every open set Du

strictly included in V e and strictly included in V e the restriction of w tou u

Ž .Ž .D is differentiable. We denote by w9 s ­ w r­u 0 h the local derivativeu

of w at u s 0 and in the direction h, where h is a vector field satisfyingu

Ž 1Ž 3..3h g CC R .

2.2. Mathematical Formulation of the Problem

The scattering of time-harmonic acoustic waves by an impenetrable
obstacle embedded in a homogeneous medium can be formulated as the

Ž . w xexterior boundary value problem BVP 1, 14, 15

¡ 2 eDu q k u s 0 in Vu u u

i k x .dB u s yB e on Gu u u u~ 1Ž .
­ uu

lim r y iku s 0,u¢ ž /­ rrª`

where B is a linear operator given byu

­
B s aI q b . 2Ž .u ­nu

Here, a and b are constants that do not vanish simultaneously, and n isu

the outward normal to V e . Since G is Lipschitzian, it follows that theu u

w xnormal vector n is defined almost everywhere on G 5, 6 .u u

Ž .For a given u , the operator B defined in Eq. 2 allows a compactu

representation of all of the Dirichlet, Neumann, and lossy boundary
conditions that are usually encountered in acoustic scattering problems.
For a s 1 and b s 0, B simplifies to the Dirichlet operator that isu

typically used for a sound-soft scatterer. For a sound-hard scatterer, the
Neumann boundary condition is recovered by setting a s 0 and b s 1.

w xOtherwise, B reproduces the lossy boundary conditions 1, 14, 15 .u

In this paper, we also characterize the derivative of the acoustic far-field
pattern. We remind the reader that the scattering amplitude u of theu , `

Ž .acoustic scattered field u that is the solution of BVP 1 is defined on theu
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1 w xunit sphere S and is obtained from the asymptotic behavior of u 14, 15u

as follows:

eik r x 1
5 5u x s u q O ; r s x ª q`. 3Ž . Ž .2u u , `ž / ž /ž /r r r

3. THE MAIN RESULTS

Our aim is to prove that the local derivative of the acoustic scattered
field with respect to the boundary of the scatterer is the solution of a
boundary value problem that can be ¨iewed as a particular direct acoustic
scattering problem.

THEOREM. Let u9 be the local derï atï e at u s 0 and in a direction
Ž 1Ž 3..3 Ž .h g CC R of the solution u of BVP 1 . Then, u9 is the solution of theu

boundary ¨alue problem

¡ 2 eDu9 q k u9 s 0 in V

Bu9 s F u on GŽ .~ 4Ž .­ u9
lim r y iku9 s 0,¢ ž /­ rrª`

where the function F depends on the expression of the boundary operator B.

Ž Ž .For a sound-soft scatterer, B is the Dirichlet operator see Eq. 2 with
.a s 1 and b s 0 , and

F u s F u ,Ž . Ž .D

where

3 ­
i k x .dF u s y h u q e on G a.e. 5Ž . Ž . Ž .ÝD j ­ x jjs1

Ž Ž .For a sound-hard scatterer, B is the Neumann operator see Eq. 2 with
.a s 0 and b s 1 , and

F u s F u ,Ž . Ž .N
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where

3 2 i k x .d­ u q eŽ .
F u s y h nŽ . ÝN j l­ x ­ xl j� 4l , j s1

3 ­ ­ hlik x .dq u q e n on G a.e. 6Ž . Ž .Ý j­ x ­ xl j� 4l , j s1

Ž Ž .For a lossy boundary condition, B is a Robin-type operator see Eq. 2
.with a / 0 and b / 0 , and

F u s F u ,Ž . Ž .R

where

3 ­ hl
F u s aF u q a n n u y f q bF u on G a.e.Ž . Ž . Ž . Ž .ÝR D j l Nž /­ x j� 4l , j s1

7Ž .

From the above theorem and the fact that the mapping u ª u , fromu , `

Ž 1Ž 3..3 mŽ 1.CC R to CC S , is continuously Frechet differentiable at u s 0 in´
Ž 1Ž 3..3 Ž w x.the direction h g CC R see Theorem 4.2 in 1 , and from the

w xuniqueness of the acoustic far-field pattern 14 , we deduce the following
Ž .Ž .characterization of the derivative of the far-field pattern ­ u r­u 0 h.u , `

X Ž .COROLLARY. Let u be the far-field pattern of the solution u9 of BVP 4 ,`

Ž .Ž .and let ­ u r­u 0 h be the derï atï e at u s 0 and in a direction h of theu , `

Ž .far-field pattern u of the solution u of BVP 1 . We ha¨eu , ` u

­ uu , ` X0 h s u . 8Ž . Ž .`­u

4. PROOF OF THE THEOREM

We prove our theorem in five steps, each formulated as a lemma. The
first lemma states that the local derivative u9 at u s 0 and in a direction

Ž 1Ž 3..3 Ž .h g CC R of the solution of BVP 1 is a solution of the Helmholtz
equation.

LEMMA 1. The local derï atï e u9 of the acoustic scattered field at u s 0
Ž 1Ž 3..3and in a direction h g CC R satisfies the following equation:

Du9 q k 2 u9 s 0 in V e . 9Ž .
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Proof of Lemma 1. Let

A s D q k 2I 10Ž .
and define

f s Au , 11Ž .u u

Ž .where u is the acoustic scattered field that is the solution of BVP 1 . Weu

have

f s 0 in V e , 12Ž .u u

and thus,

f ( I q u s 0 in V e . 13Ž . Ž .u

1 Ž e.Furthermore, since A is a linear and continuous operator from H Vloc
Ž e.into DD9 V , A is differentiable at least in the distribution sense, i.e.,

² : Ž e.¨ ¬ A¨ , c is differentiable for each c g DD V , and

­ A
s A. 14Ž .

­ ¨

Ž .Therefore, it follows from the differentiability of u ¬ u ( I q u andu

Žw x. Ž . Žu ¬ u 1, Theorem 3.3 and Corollary 3.4 that u ¬ f ( I q u resp.u u

. Žu ¬ f is continuously Frechet differentiable resp. locally continuously´u

.Frechet differentiable }at least in the distribution sense}at u s 0 and´
Ž 1Ž 3..3in a direction h g CC R . Moreover, for every admissible perturbation

Ž 1Ž 3..3u , i.e., u g CC R and u in the neighborhood of 0, their derivatives
w xsatisfy 2, 3 :

­f ­u e0 h s f ( I q u 0 h y h.=f in V . 15Ž . Ž . Ž . Ž .Ž .u­u ­u

Ž . Ž .From Eqs. 11]13 and 15 , we deduce that

­ A ­ uu e0 h s 0 in V , 16Ž . Ž .
­ u ­u

Ž . Ž .and from Eqs. 10, 14 and 16 it follows that

Au9 s Du9 q k 2 u9 s 0 in V e , 17Ž .

which proves Lemma 1.
The second lemma considers the case of the sound-soft scatterer, i.e.,

Ž Ž .the case where B is the Dirichlet operator see Eq. 2 with a s 1 andu

.b s 0 , and states the boundary equation satisfied by u9. This result has
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w x w xalready been established by Kirsch in 10 and by Potthast in 11 , using,
however, the assumption that the boundary of the scatterer as well as its
perturbations are of class CC 2.

LEMMA 2. The local derï atï e of the sound-soft scattered field u9, at
Ž 1Ž 3..3 y1r2Ž .u s 0 and in a direction h g CC R , belongs to H G and satisfies

the following boundary equation:

3 ­
i k x .du9 s y h u q e on G a.e. 18Ž . Ž .Ý j ­ x jjs1

1 Ž e. w xProof of Lemma 2. Since the scattered field u is in H D, V 17, 18 ,loc
2 Ž e. w xits local derivative u9 is at least in L V 1]3 . From Lemma 1, weloc

Ž e .deduce that u9 is in fact in H D, V . Therefore, it follows from theloc R
w xclassical trace theorems 4]6 that the trace of u9 on the boundary G can

y1r2Ž .be defined in H G .
Define

f s yeik x .d . 19Ž .

Ž 1Ž 3..3For every perturbation u g CC R , the sound-soft scattered field uu

Ž .that is the solution of BVP 1 satisfies

u y f s 0 on G . 20Ž .u u

Ž 1Ž 3..3Hence, for every perturbation u g CC R we have

u y f ( I q u s 0 on G. 21Ž . Ž . Ž .u

We now introduce the following auxiliary function F that is defined in theu

whole domain V e byu

F s u y f in V e . 22Ž .u u u

Ž . ŽwSince F and F ( I q u are differentiable 1, Theorem 3.3 and Corol-u u

x. w xlary 3.4 , one can apply the classical rule of derivation 2, 3 for every
Ž 1Ž 3..3admissible perturbation u , i.e., u g CC R and u in the neighborhood

of 0, and obtain

­ F ­u e0 h s F ( I q u 0 h y h.=F in V . 23Ž . Ž . Ž . Ž .Ž .u­u ­u



FRECHET DERIVATIVE´ 267

Thus, for every admissible perturbation u , u9 can be written as

­
eu9 s F ( I q u 0 h y h.= u y f in V . 24Ž . Ž . Ž . Ž .Ž .u­u

Furthermore, since u satisfies the Helmholtz equation, we deduce that

D =u s yk 2 =u in V e . 25Ž . Ž .

Ž . Ž 2 Ž e..3 Ž .Therefore, given that = u y f g L V , it follows from Eq. 25 thatloc
Ž . Ž Ž e..3 Ž e.= u y f g H D, V . Since u9 is also in H D, V , we deduce thatloc loc

Ž Ž .. y1r2Ž . Žthe trace of u9 resp. = u y f exists and belongs to H G resp.
Ž y1r2Ž ..3.H G . Furthermore, since the trace operator is linear and continu-

Ž e. y1r2Ž . w x Ž .ous from H D, V into H G 4]6 , we deduce that Eq. 24 is alsoloc
Ž .valid on G. Hence, using Eq. 20 , we can write u9 as

u9 s yh.= u y f in G , 26Ž . Ž .

which concludes the proof of Lemma 2.
y1r2Ž . Ž .Remark 1. Since ­ ur­n g H G , we deduce from Eq. 20 that the

w xgradient of u y f is proportional to n on G 2, 3 }that is,

= u y f s n n .= u y f on G. 27Ž . Ž . Ž .Ž .
Hence

­
= u y f s n u y f on G. 28Ž . Ž . Ž .

­n

Ž . Ž .From 26 and 28 it follows that

­
u9 s yh.n u y f on G , 29Ž . Ž .

­n

w xwhich is the classical form 10, 11 for expressing the boundary condition
satisfied by the derivative u9 of the acoustic sound-soft scattered field.

Remark 2. One can observe that Lemmas 1 and 2 remain valid even if
the perturbations u of the scatterer are assumed to be only Lipschitzian
functions. The CC1-assumption on the perturbations is needed only to
characterize the boundary condition of the derivative of the scattered field
in the case of the sound-hard scatterer and the lossy boundary condition.

The third lemma considers the case of the sound-hard scatterer; i.e., Bu

Ž Ž . .is the Neumann operator see Eq. 2 with a s 0 and b s 1 and specifies
the boundary equation satisfied by u9. This result has been established by
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w x 2, aPotthast in 13 , assuming that the boundary of the scatterer is CC and
its perturbations are CC 2. To the best of our knowledge, the result obtained

w xby Hettlich 12 for this case is erroneous.

LEMMA 3. Let u9 be the local derï atï e of the sound-hard scattered field,
Ž 2Ž 3..3at u s 0 and in a direction h g CC R . Then, the trace on G of its normal
y3r2Ž .derï atï e ­ u9r­n belongs to H G and satisfies the following boundary

equation:

3 2 i k x .d­ u9 ­ u q eŽ .
s y h nÝ j l­n ­ x ­ xl j� 4l , j s1

3 ­ ­ hlik x .dq u q e n on G a.e. 30Ž . Ž .Ý j­ x ­ xl j� 4l , j s1

Ž .Proof of Lemma 3. We have already proved see proof of Lemma 2
Ž e.that u9 belongs to H D, V . Therefore, it follows from the traceloc

w xtheorems 4]6 that ­ u9r­n , the trace of the normal derivative of u9,
y3r2Ž .exists and belongs to H G .

Ž 1Ž 3..3Furthermore, for every perturbation u g CC R , the sound-hard
Ž .scattered field u that is the solution of BVP 1 satisfiesu

n .=u s n .=f on G a.e., 31Ž .u u u u

Ž .where f is given in Eq. 19 . Hence,

n .=u ( I q u s n .=f ( I q u on G a.e.; 32Ž . Ž . Ž . Ž . Ž .u u u

i.e.,

n ( I q u . =u ( I q u s n ( I q u . =f ( I q u on a.e.Ž . Ž . Ž . Ž . Ž . Ž .u u u

33Ž .

w x Ž .With the use of the chain rule 2, 3 , Eq. 33 becomes

n ( I q u .P u = u ( I q uŽ . Ž . Ž .Ž .u u

s n ( I q u .P u = f ( I q u on G a.e., 34Ž . Ž . Ž . Ž .Ž .u

Ž .where the matrix P u is given by

yT 3P u s I q u 9 in R . 35Ž . Ž . Ž .



FRECHET DERIVATIVE´ 269

w xMoreover 2, Lemma 4.8 , we have

1
n ( I q u s P u n on G a.e., 36Ž . Ž . Ž .u 5 5P u nŽ . 2

Ž . Ž .and therefore from Eqs. 34 and 36 it follows that

P u n .P u = u ( Iqu sP u n .P u = f ( Iqu on G a.e.,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .u

37Ž .

Ž 1Ž 3..3which implies that for every perturbation u g CC R , the sound-hard
Ž .scattered field u solution of BVP 1 satisfiesu

P u n .P u = u y f ( I q u s 0 on G a.e. 38Ž . Ž . Ž . Ž . Ž .Ž .u

We now introduce the following auxiliary function C defined in the wholeu

domain V e by

C s P u n .P u = u y f ( I q u in V e , 39Ž . Ž . Ž . Ž . Ž .Ž .˜u u

Ž `Ž e..3where n is an extension of the normal vector n into L V . Hence, for˜
Ž 1Ž 3..3every perturbation u g CC R we have

C s 0 on G a.e. 40Ž .u

First, we show that u ¬ C is differentiable}at least in the distributionu

Ž 1Ž 3..3sense} at u s 0 in a direction h g CC R . Indeed, this result is a
consequence of the two following considerations:

v Ž . w xThe differentiability of u ¬ u ( I q u 1, Theorem 3.3 and u ¬u

Ž .f ( I q u at u s 0, and the fact that = is a linear and continuous
ŽŽ . Ž ..operator, allows us to affirm that u ¬ = u y f ( I q u is differen-u

tiable}at least in the distribution sense}at u s 0 in a direction h g
Ž 2Ž 3..3CC R . We also have

­
= u y f ( I q u 0 hŽ . Ž . Ž .Ž .Ž .u­u

­
es = u y f ( I q u 0 h in V . 41Ž . Ž . Ž . Ž .Ž .už /­u

w xFurthermore, using the classical derivation rule 2, 3 , we have

­ ­ uu eu y f ( I q u 0 h s 0 h q h.= u y f in V . 42Ž . Ž . Ž . Ž . Ž . Ž .Ž .u­u ­u
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Ž . Ž .Therefore, from 41 and 42 it follows that

­
e= u y f ( I q u 0 h s =u9 q = h.= u y f in V .Ž . Ž . Ž . Ž .Ž .Ž .Ž .u­u

43Ž .

v
1 3 3Ž . Ž Ž ..u ¬ P u is differentiable at u s 0 in a direction h g CC R ,

Ž 1Ž 3..3 Ž 0Ž 3..3 w xfrom CC R into CC R , and we have 2, 3

­ P uŽ . T ew x0 h s y h9 in V . 44Ž . Ž .
­u

Ž .Hence, using the chain rule we deduce from Eq. 39 that the derivative
Ž 1Ž 3..3of C at u s 0 in a direction h g CC R satisfiesu

­ C ­ P uŽ .u
0 h s 0 hn .P 0 = u y fŽ . Ž . Ž . Ž .˜

­u ­u

­ P uŽ .
q P 0 n . 0 h= u y fŽ . Ž . Ž .˜

­u

­
eq P 0 n .P 0 = u y f ( I q u 0 h in V .Ž . Ž . Ž . Ž . Ž .Ž .˜ Ž .u­u

45Ž .

Ž . Ž .From Eqs. 43 ] 45 it follows that

­ Cu T Tw x w x0 h s y h9 n .= u y f y n . h9 = u y fŽ . Ž . Ž .˜ ˜
­u

q n .=u9 q n .= h.= u y f in V e . 46Ž . Ž .Ž .˜ ˜

Furthermore, since

w x e= h.= u y f s h9 = u y f q = = u y f h in V , 47Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž .we deduce from Eqs. 46 and 47 that

­ Cu T Tw x w x0 h s y h9 n .= u y f y n . h9 = u y fŽ . Ž . Ž .˜ ˜
­u

w x eq n .=u9 q n . h9 = u y f q n .= = u y f h in V .Ž . Ž .Ž .˜ ˜ ˜
48Ž .
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Hence, using the fact that

T ew x w xn . h9 = u y f s h9 n .= u y f in V 49Ž . Ž . Ž .˜ ˜
and

n .= = u y f h s = = u y f n .h in V e , 50Ž . Ž . Ž .Ž . Ž .˜ ˜

Ž .Eq. 48 becomes

­ Cu w x0 h s y h9 n .= u y f q n .=u9Ž . Ž .˜ ˜
­u

q n .= = u y f h in V e . 51Ž . Ž .Ž .˜

Ž .Ž . y3r2Ž .Next, we show that the trace of ­ C r­u 0 h exists in H G .u

Indeed, this property results from the three following considerations:

v
1 eŽ .Since u g H D, V , the trace of its normal derivative is inloc

y1r2Ž . y1r2Ž . Ž . y1r2Ž .H G , i.e., n .=u g H G . Then, n .= u y f g H G . Further-
1Ž 3. w xmore, for every h g CC R , the coefficients of the matrix h9 are in

0Ž 3. w x Ž . y1r2Ž .CC R . It follows that h9 n .= u y f g H G . Hence, the embedding
w xtheorems 5, 6 allow us to deduce that

w x y3r2h9 n .= u y f g H G . 52Ž . Ž . Ž .

v We have already shown that the trace of the normal derivative of u9
y3r2Ž .belongs to H G , i.e.,

n .=u9 g Hy3r2 G . 53Ž . Ž .

v
e 3Ž . Ž Ž ..From Eq. 25 , we deduce that =u belongs to H D, V . Hence,loc

w xusing the trace theorems 4]6 , we deduce that the trace of the normal
Ž . Ž y3r2Ž ..3derivative of = u y f exists in H G . Therefore for every h g

1Ž 3.CC R , we have

= = u y f n .h g Hy3r2 G . 54Ž . Ž . Ž .Ž .
Ž . Ž .Hence, Eq. 39 is also valid on G, and one can deduce from Eqs. 40 and

Ž .51 that

w xy h9 n ? = u y f q n .=u9 q = = u y f n .h s 0 on G , 55Ž . Ž . Ž .Ž .

which concludes the proof of Lemma 3.

The fourth lemma considers the case of the lossy boundary condition,
Ž Ž . .i.e., B is a Robin-type operator see Eq. 2 with a / 0 and b / 0 , andu

states the boundary equation satisfied by u9.



DJELLOULI AND FARHAT272

LEMMA 4. Let u9 be the local derï atï e of the acoustic scattered field, at
Ž 1Ž 3..3u s 0 and in a direction h g CC R for a scatterer with a lossy boundary

y3r2Ž .condition. Then, Bu9 is in H G and satisfies the boundary equation

3 ­ hl
Bu9 s aF u q a n n u y f q bF u on G a.e.,Ž . Ž . Ž .ÝD j l Nž /­ x j� 4l , j s1

56Ž .

Ž . Ž . Ž . Ž .where f is gï en in Eq. 19 , F u is gï en in Eq. 5 , and F u is gï en inD N
Ž .Eq. 6 .

Proof of Lemma 4. For the same reasons as in the proofs of Lemmas 2
and 3, the derivative u9 of the acoustic scattered field that is the solution

Ž . Ž e.of BVP 1 with a Robin-type boundary condition belongs to H D, V .loc
Ž . y1r2Ž . y3r2Ž .It follows that u9, ­ u9r­n g H G = H G . Since the operator

B is a linear combination of the trace and the normal derivative operators,
w x y3r2Ž .using the embedding theorems 5, 6 , we conclude that Bu9 g H G .

Ž 1Ž 3..3Furthermore, for every perturbation u g CC R , the acoustic scattered
Ž .field u that is the solution of BVP 1 with a lossy boundary conditionu

satisfies

B u s B f on G a.e., 57Ž .u u u u

Ž .where the operator B is given in Eq. 2 , and the function f is given inu

Ž .Eq. 19 . It follows that

B u ( I q u s B f ( I q u on G a.e., 58Ž . Ž . Ž . Ž . Ž .u u u

i.e.,

a u y f ( I q u q bn ( I q uŽ . Ž . Ž .u u

. = u y f ( I q u s 0 on G a.e. 59Ž . Ž . Ž .Ž .u

Ž .Hence, as in Eq. 34 , we deduce that

a u y f ( I q uŽ . Ž .u

q bn ( I q u .P u = u y f ( I q u s 0 on G a.e., 60Ž . Ž . Ž . Ž . Ž .Ž .u u

Ž . Ž . Ž .where the matrix P u is given in Eq. 35 . Moreover, from Eqs. 36 and
Ž .60 we deduce that

5 5a P u n u y f ( I q uŽ . Ž . Ž .2 u

q bP u n .P u = u y f ( I q u s 0 on G a.e. 61Ž . Ž . Ž . Ž . Ž .Ž .u
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As in the proofs of Lemmas 2 and 3, we now introduce the following&
eauxiliary function C defined in the whole domain V byu

&
e5 5C s a P u n F ( I q u q bC in V , 62Ž . Ž . Ž .˜ 2u u u

Ž `Ž e..3where n is an extension of the normal vector n into L V , F is given˜ u

Ž . Ž .in Eq. 22 , and C is given in Eq. 39 . Hence, for every perturbationu

Ž 1Ž 3..3 Ž . Ž .u g CC R , from Eqs. 61 and 62 it follows that

&
C s 0 on G. 63Ž .u

&
Furthermore, the function u ¬ C is Frechet differentiable}at least in´u

Ž 1Ž 3..3the distribution sense}at u s 0 and in a direction h g CC R . This
property is a consequence of the three following observations:

v 5 Ž . 5The function u ¬ P u n is Frechet differentiable, at u s 0 and˜ ´2
Ž 1Ž 3..3 Ž 1Ž 3..3 `Ž e.in a direction h g CC R , from CC R into L V . Furthermore,

Ž .because of Eq. 44 , one can easily check that for every admissible
perturbation u we have

­ y1 T e5 5 w xP u n 0 h s h9 n .n in V . 64Ž . Ž . Ž .Ž .˜ ˜ ˜2 5 5­u P 0 nŽ .˜ 2

v Ž .As in the proof of Lemma 2, the function u ¬ F ( I q u isu

Frechet differentiable}at least in the distribution sense}at u s 0 and in´
Ž 1Ž 3..3 Ž Ž ..a direction h g CC R , and its derivative satisfies see Eq. 24

­
eF ( I q u 0 h s u9 q h.=F in V . 65Ž . Ž . Ž .Ž .u­u

v As in the proof of Lemma 3, the function u ¬ C is Frechet´u

differentiable}at least in the distribution sense}at u s 0 and in a
Ž 1Ž 3..3direction h g CC R , and for every admissible perturbation u we have

Ž Ž ..see Eq. 51

­ Cu w x0 h s y h9 n .= u y f q n .=u9Ž . Ž .˜ ˜
­u

q n .= = u y f h in V e . 66Ž . Ž .Ž .˜

Ž .Therefore, using the chain rule, it follows from Eq. 62 and Eqs.&
1 3 3Ž . Ž . Ž Ž ..64 ] 66 that the derivative of C at u s 0 and in a direction h g CC Ru



DJELLOULI AND FARHAT274

satisfies

˜­ C y1u Tw x0 h s a h9 n .n u y fŽ . Ž .˜ ˜½ 5 5­u P 0 nŽ .˜ 2

5 5q P 0 n u9 q h.= u y fŽ . Ž .Ž .˜ 2 5
w xq b y h9 n .= u y f� Ž .˜

qn .=u9 q n .= = u y f h in V e . 674Ž . Ž .Ž .˜ ˜

The arguments used to prove Lemmas 2 and 3 allow us to affirm that the
˜ y3r2Ž .Ž . Ž . Ž .trace of ­ C r­u 0 h exists in H G and that Eq. 67 is also valid onu

Ž .G. Therefore, using Eq. 63 we obtain

Tw xa y h9 n .n u y f q u9 q h.= u y fŽ . Ž .� 4
w xq b y h9 n .= u y f q n .=u9� Ž .

qn .= = u y f h s 0 on G a.e. 684Ž . Ž .Ž .
Hence

Tw xBu9 s a h9 nrn u y f y ah.= u y fŽ . Ž .
w xq b h9 n .= u y f y b= = u y f n .h on G a.e., 69Ž . Ž . Ž .Ž .

and then Lemma 4 is proved.
The fifth lemma states that the derivative with respect to an obstacle’s

domain of the acoustic scattered field satisfies the outgoing radiation
condition.

LEMMA 5. The local derï atï e u9 at u s 0 and in a direction h g
Ž 1Ž 3..3 Ž .CC R of the acoustic scattered field u that is the solution of the BVP 1u

satisfies the following outgoing radiation condition:

­ u9
lim r y iku9 s 0.ž /­ rrª`

Proof of Lemma 5. This lemma results from the asymptotic behavior of
w xthe scattered field u 14, 15 . Indeed, one can easily check that for r largeu

Ž .enough, Eq. 3 can be rewritten as

eik r x 1
u x s u q M O , 70Ž . Ž .u u , ` už / ž /ž /r r r
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where M is a function that is continuously Frechet differentiable at u s 0´u

Ž 1Ž 3..3and in a direction h g CC R because u and u are differentiableu u , `

w x1, Corollary 3.4 and Theorem 4.2 . Differentiating the above expression at
u s 0 and in a direction h leads to

eik r ­ u x 1u , `
u9 x s 0 h q O . 71Ž . Ž . Ž .ž / ž /ž /r ­u r r

It follows that

­ u9 eik r ­ u 1 1u , ` Ik rr y iku9 s y 0 h q O q e O , 72Ž . Ž .2ž / ž / ž /ž / ž /­ r r ­u r r

which proves Lemma 5.

Ž .Remark 3. The corollary is an immediate consequence of Eq. 71 and
w xthe uniqueness of the far-field pattern of the acoustic scattered field 14 .
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