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1. INTRODUCTION

The Fourier-Bessel transform is defined by ([2])

h(F)(y) = fOOO(XY)wJu(xy)f(X)xz"” dx (y €1=1(0,%)),

where J, represents the Bessel function of the first kind and order
w > —1/2[15].
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We denote by L? (1 < p < «) the space of the measurable functions f
defined on I such that

o 1/p
||f||,,,,L={[0 If(x)lpxz““dx} <

and by L, the space of the essentially bounded measurable functions on 1.
We write L” and ||-[/, instead of L? and Il 15, ., respectively, when
= —1/2.Tt is known ([8, p. 997)) that 4, is a continuous mapping from
L, into L.

F. M. Cholewinski [4], D. T. Haimo [7], and I. I. Hirschman, Jr. [9]
investigated a convolution operation associated with the Fourier-Bessel
transform. To make the study of the Besov type spaces, the generalized
convolution # plays an important role. If f, g € LL, the generalized
convolution, # of f and g, is defined by

(F#0)(x) = [ S5 () dy(y). x < 1.

K2ntl

where dy(x) = 57,1 dx and the generalized translation operator 7, is
defined by

(%)) = [ Du(x.3. 2)8(2)dy(2)

234710 (p + 1)°
V(2 )
A(x,y, z) is the area of a triangle with sides x, y, z, if the triangle exists,
and A(x, y, z) = 0 otherwise. We denote by A, to the Bessel differential
operator x~2*~1Dx?#**1D 1t is well known that for a suitable function u,

being D,(x,y,z) = (xyz) " 2#A(x, y, 2)** x, y, z € I), where

h,(Au)(x) = —x*h,u(x). (1.1)

In this paper, the work is realized in the following space of generalized
functions %, defined by G. Altenburg in [1], that consists of those smooth,
complex-valued functions f = f(x), x € I = (0, ), such that the quantities

Yok (F) = suplx”(x7'D) f(x)| (m, k € N)

xel

are finite. # is a Fréchet space equipped with the topology generated by
the family of seminorms {y,, ;},, 1)< nxn- The dual space of Z is denoted
by 7.

Our paper is devoted to the study of the spaces of Besov, Nikol’skij, and
Triebel-Lizorkin type defined on the basis of the Fourier-Bessel transform
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h,.. Such a Besov type space B, was introduced by Altenburg in [2]. We

P, 1
flrst define the Nikol’skij and Tr1ebe1 Lizorkin spaces b, ., and F;
and give a characterization of B, , , in terms of b, , , and an embeddmg

theorem between B, , , and F, . . Then, we prove a one-to-one mapping
property of the Hankel potentlals spaces W7 (given in [2], [5], or [10]) and
of the Besov type spaces B, , , that together with certain relation of
density and some properties of Rademacher functions ([12], [17]) are used
to characterize W,;>? in terms of the Triebel-Lizorkin spaces F,, ,; in
particular, we characterize a Sobolev type space Lj;” ([5). Apphcatlon 1s
given to solve a differential equation involving the Bessel operator A,

X —2pn— 1Dx2p.+1D

2. NIKOL’SKIJ AND BESOV TYPE SPACES
In this section, we define Besov type spaces ([2]), Nikol’skij type spaces,

and Triebel-Lizorkin type spaces and we demonstrate some relations
among them.

DErINITION 2.1. Let s €R, for 1 <p < » we define the sequence

spaces [, as
1/p

(2.1)

= {§:§= (&),_y & complex, £l = ( Y (2771g17)

j=0

and for p = » we have
= {§:§= (§)] 0» & complex, || €]l = supzjsl.fjl < 00}. (2.2)
j

In the case of s = 0 we denote lg by [,.

DEFINITION 2.2. Let @ be the collection of all systems {¢;(x)}_, €#Z
with the following properties:

i) ¢(x) €7 h,¢x) > 0for j=0,1,2,3,...

(i) supp h, ¢, C {x: V2 ' —1<x <V2I" — 1} for j =
1,2,3,..., and supp h, ¢, € {x:x < 1}.
(iii) Exists a positive number ¢, such that

|(x" D) h, 0, (x)| < crx " (2.3)
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forj=1,2,...;0<k<[pu]l+2and x e I
(iv) X7 h,e(x)=1forevery x € I.

Proceeding as in [14, pp. 171-172] we can see that ®(7) is not empty.
The definitions of the Besov type spaces B, , , (see [2]) and Nikol’skij
type spaces are the following.

DEFINITION 23. Let 1 <p<®», 1<g<wo u>-1/2 and s €R.
Then for any system of functions {¢j};°:0 € O, the Besov type spaces are
defined by

B = {17 Wl =l{e# N up <=} (24
being

o 4 1/q
- ligeepy = N1 Dglls = ( ¥ (271 1lny) ) .
j=0

DEFINITION 24. For s€R, 1 <p <o, 1 <g<o, u=>—1/2, we
define

il

1/q
< ),

pqp,_{ffezrf}?

( i (2%lla( x)llu)

and for g = %, we set

{f fe, fo z a/(x). |{a

= sqp25i||a,-(x)||Lﬁ < 00},
where supp h,a;, C{£:V2""' =1 < &< V2" — 1} for i=1,2,... and
supp h,a, C {¢: €< 1}

By f =, X7_, a,(x) will be understood that ~7_, a,(x) converges in .Z’

to f. The norm of b, , . comes defined by

1l = inf (@i} leep-

Now, we can state the following theorem.
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THEOREM 2.1. Let {pf_o€e®, sER, 1 <p<» 1<qg<x and
w= —1/2. Then B =b;

P‘ZI" P q,

Proof. Flrst we prove that B Cb,

p q, p P m*
Let f€ B, , . Given {gol}j 0 € D we know that

P

( ih,ﬁpj)(f) =1
j=0

Then
= j=0
Therefore, taking a; = ¢;#f, we achieved
Ifle . <|{a, = (e # M scep = 1715, ,-
Then, we have B, , , b, .,
Now, we w111 see that by 4 u CB; o
Let feb,,, and f=3Y_,a(x) in the sense of the convergence
in 7.
Consider {qo]} _o € ®; then
o j+1
(@j#f)(x) =7 Z (‘Pj#ai)(x) = Z (‘Pj#“i)(x)
i=0 i=j—1

since ¢, #a; = h,(h,¢;-h,a) =0, for i >j+ 1 and i <j — 1. Further-

M i
more, if we define ¢; = a; = 0 for j < 0, we have

“f”Bé,q.n=||{¢j#f}||l;;<w— Z || o#a; s p- (25)

On the other hand, applying [6, Corollary 1.2, p. 656] with 1 < p < % we
get

le#a;, ey < cilla,, Il (2.6)

being c, a suitable positive constant.
Now, taking the norm of /; in (2.6) it follows that

”{%#“w}

By = cifl{a;..} ||1;(L5)' (2.7)
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Then from (2.5) we obtain

1
Ifllgs, , = ||{<0,~#f}||z;(Lp <e ¥ [{a;0) ||1;(Lzz>
r=-—1

< cyf{a}} ||z;(L;;>° (2.8)
Taking the infimum on the right-hand side of (2.8) we get
1fllss . <o lifll .

Thus Theorem 2.1 is established.

Remark 2.1.  Note that by Theorem 2.1, the spaces B,
dent of the functions {goj}f:0 e .

g, are indepen-

We introduce new Triebel-Lizorkin type spaces as follows.

DEFINITION 2.5. Let 1 <p<®» 1 <g<wo u>-1/2 and s €R.
Then, for any system of functions {¢}_, € @, the Triebel-Lizorkin type
spaces are defined by

Eow={r €7 0, =le# Moy <=) (29

where

gy = 11 el =

( T (2Sf(->)q)w

j=

LL

THEOREM 2.2. Let 1 <p,q <o, u> —1/2 and s € R, then

Bpf,min(p;q))u < Fps,q,u c B;,maX(p,q),w (2.10)
where C means continuous embedding.
Proof. We must demonstrate that
s s s
By pow CFy g ©Bpqn (2.11)
for p < g, and
5 N N
B;a‘laﬂ CFPa‘I’,U« CBP7PaIL (212)

for g < p. We will use the monotony of the /; spaces and the trivial
equality B, =F’

s Py p,ps 1°
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First we will prove (2.11). Let f € F;, , and {¢}]_, € ®,

P9 K

I£ls;, , =|{e#f}

- ‘ p 1/q
By = ( 21] (2” {¢#r} ”L,f) )
j=

. (:ozsjq(fom|¢,#f|p dy(x))q/p)l/q

1/p

:H{/:zsf%,#f(x)l” dv(X)}

l;/p

Then, using Minkowski’s inequality we obtain

o 1/p
Iflls; ( [ I2mie#rcorts, dv(X))

1/q
ey

j=0

g
e g = 1F1Irs, . < e |y

{e# oy = 1f1ls; , -
Now, we prove (2.12). For f € B, , , we have

Iflss, = {e# mwp = [{e#f)
= ||{go,-#f}

Ly < ”{%#f}

(LD

LA

1/p

1/q o
< ( X 2901 | g 2 ()l

Lp/4 j=0

L (27lg#f1)’
j=0

”{@j#f} ||1;<L;> =115,

3. A NEW CHARACTERIZATION OF THE HANKEL
POTENTIALS SPACES

In this section we prove a lifting property, a classical equality for the
Fourier transform ([14]), characterizing the Hankel potentials in terms of
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the Triebel-Lizorkin spaces and also we see an application. For this we
need to recall the definition of Hankel potentials given in [2, 5].

The definition of Hankel potentials H; of a function u €.2" of order
s, s €R (p>=—-1/2)is

(Hu)(x) = h,((1+ €2) " h(w)) (x).

For s € Rand 1 < p < = in ([2, Definition 5, p. 55], [5, Definition 2.3, p.
86]) we can see the Hankel potentials spaces

wer =wer(l) ={pexr Hp € LI(I)}.
The norm in W,>?(I) is defined by
s, p, = pllwr = 1H, bl -
Moreover, /Z is dense in WMS*F(I ) (See [2, 5D.

Now, we see in the following theorem a lifting property.

THEOREM 3.1. Let o,s €R, p> —1/2, 1 <p <o, and 1 <q < oo.
Then H is a linear bounded one-to-one operator form W? onto W;"-?

N s+ o
and from B, , , onto B," .’ .

Proof. Consider {qpl-};;o € ®. We define {zpj};-‘;o as follows
U = g, (1 +x%)77207).
A straightforward manipulation leads to {wj}fzo € ®. Thus
Hf#0; =,y HF) = (g (1 + €)1
=1 (2h, 6 h, ) = 2,

Now, the result follows immediately as in [14, pp. 180-181].

By [2, Satz 1, p. 57], Theorem 2.1 and Theorem 2.2 we obtain the
following theorem.

THEOREM 3.2. Lets€ R, 1 <p <o, 1 <g<o, u> —1/2. Then #

. . K . : ' N
is a denseinb, ., andif 1 <p, q <o, ZisdenseinF, .

To obtain a new characterization of the Hankel potentials spaces, we
need to prove in advance the following lemma.

LEMMA 3.1. Lets € R, let {(pj}]lo € ® and let {rj};°=0 be the Rademacher
functions (see [12, p. 104] or [17, Chapter V, Theorem 8.4, p. 213]). Then,
for every p with 1 < p < = and for all t € (0, 1), there are some constants A;,



BESOV AND TRIEBEL-LIZORKIN SPACES 59
i =1,2, such that
th.(mihp.f)”p,,u < A[“f”p,y,,
being

my(x) = ;Ozfsr].(z)a +x2) h,¢(x)

and
my(x) = (é(mj)z(m) :

Proof. We can see without difficulty that m; satisfies
(x~'D) my(x)| < A,x7%,
for k=0,1,...,[n]+ 2 and i = 1,2. Then applying [6, Corollary 1.2,
p. 656] we obtain the desired result.

Next, we prove that for particular cases the Triebel-Lizorkin type spaces
are reduced to the Hankel potentials spaces.

THEOREM 3.3. Ifs€ R, u = —1/2 and 1 < p < © we have
Eyo (1) = Wrr(I),

where || f ”W,f"’( 1) is an equivalent norm in F, , /L(I ).

Proof. We shall see that there exist ¢, ¢, positive constants such that

cillflls,pu < < llflls, p, - (3.1)

I

o 1/2
( Z 22js|¢j#f|2)

j=0

By Theorem 3.2 we know that 7 is dense in F,, , for 1 <p <. Then, it
is not difficult to see that the functions f € L/ with supp /, f compact are
dense both in W>? and in F;, ,, for 1 <p < . Therefore it is enough to
prove (3.1) for functions of this type. Note that in this case the infinite sum
in (3.1) is actually finite.

Initially, we will prove the estimate on the right-hand side.

Let f € W7 then f= G#g; ie.,

hf(&) = (1+ &) h,g(é).
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Applying Lemma 3.1 we have for all # € (0,1)

Z ri(1)27%%, <Alglly w=ANflls p -
= P, m
Thus, it follows that
/ Z (1)27%,; dt < Alf s, p, u- (3.2)
= SN

Using the right-hand inequality of ([12, p. 104] or [17, Chapter V,
Theorem 8.4, p. 213]) with p = 1 and the Minkowski’s inequality we obtain

1/2 ©
( Y 127%, #flz) Z ri(1)27%,

P, m P,

oo

Z (1)2%,

dt.

Pk

<)

Now, by (3.2) we have

<cllflls, p,n>
p. 1

1/2
(le #f )

being ¢ a suitable positive constant

Therefore we achieve that f € F,, .

Now, we will see the converse mequahty. For this we will use duality. Let
f€EF),, ad

= £ 17 ). o

Applying Lemma 3.1 with m,(x) = (X7_(h, ¢)*)~" we obtain

lglp, . =

m((}i (thDJ-)z)_lh,Lh,L(é (m-f-hug))

=0 P, 1

<A = A,lkll,, .- (3.4)

2 hu( i (huu"oj)z'hug)

=0
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Now, consider u € L%(I) to be a function such that [lull, , = 1, supp h,u

w
is compact (1/p + 1/q = 1), and

f:u(x)k(x) dy(x) = k... (3.5)

Let w a function defined by h,w(&) = (1 + £2)°/?h,u(¢); ie., u =
G#w and f = G#g, as above, so that &, f-h,w = h,g-h, u. Then from

(3.3)—(3.5) we obtain
1 ey =gl < ¢ [ u(x)k(x) dy(x) = c [ huu(€)hk(€) dy(£)
0 0

~ e a6 X () () d(6)

—ef” 20 (25, f(€)(h,9)(£))

X (277 (hw)(€)(h,9)(€)) dy(€),
for certain constants ¢ > 0. Hence, by Plancharel’s formula and the

Cauchy and Holder inequalities we get

flly.pw = cfom Aé (27 (@ #F)(x))(27" (g #w)(x)) dy(x)

< cfom( i (21‘-?(95,].#1‘)(x))2)1/2

j=0

. 1/2
X ( -go (2—fS(gpj#w)(x))2) dy(x)

" 1/2 - 1/2
<c ( Y 22f5|¢].#f|2) . ( y 22js|goj#w|2) . (3.6)
j=0 pop 1\J=0 a.n
Then by the right-hand side of inequality of (3.1) we achieve
" 1/2
( Y 2_2j5|<pj#w|2) < elwll=y, g = cllully, . = ¢, (3.7)
j=0 q,r

Therefore, combining (3.6) and (3.7) the proof is finished.
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As a consequence of Theorem 3.3 we obtain the following results.

COROLLARY 3.1. Ifs € Nand 1 < p < then F;5 ,(I) = L}, "(I), where
Lyr(I)={Tex:TeL, and AT € L}, 0 <j <s}.

Proof. Tt follows from Theorem 3.3 and of the equality (known for the
Fourier transform as Calderén’s theorem) given in [5]; i.e., L;? = WMZW
forl <p <.

Moreover by Theorem 3.3 and using Theorem 2.2 we can obtain similar
results to those previous obtained in [13, Theorem 15] and [12, p. 155,
Theorem 5] for the Fourier transform. Namely, for s € R, we have

B, , cW>tcB)  ,,2<p<>, (3.8)

P2, 1

B, ,CW"? CB

p,ps K P2, mo 1 <p =< 2. (39)
Finally, we give an application to solve a differential equation.

THEOREM 3.4. Letf € B, Then there exists u € %' such that

T
(E - Au)mu =/
where E is the identity operator and m € N\ {0}.

Proof.  Consider f € B,
such that

e We want to obtain a distribution u €7’

(E—A)"u=F. (3.10)
Applying the Fourier-Bessel transform and by (1.1) we obtain
(1+ &) hu=h,finz

Then u = h,(1 + £*)™"h,f = H}"f and by Theorem 3.1 we have that the

: s+2m
solution of (3.10) as u € Bpfq’u.
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