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Most of the existing results on stochastic stability use a single Lyapunov function,
but we shall instead use multiple Lyapunov functions in this paper to establish some
sufficient criteria for locating the limit sets of solutions of stochastic differential
equations. From them follow many useful results on stochastic asymptotic stability
and boundedness, which enable us to construct the Lyapunov functions much more
easily in applications. In particular, the well-known classical theorem on stochastic
asymptotic stability is a special case of our more general results. These show clearly
the power of our new results. © 2001 Academic Press
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1. INTRODUCTION

Since Itô introduced his stochastic calculus about 50 years ago, the the-
ory of stochastic differential equations has been developed very quickly.
In particular, Lyapunov’s second method has been developed to deal
with stochastic stability by many authors, and we here only mention
Arnold [1], Elworthy [4], Friedman and Pinsky [5], Has’minskii [7],
Kolmanovskii and Myshkis [8], Kushner [9], Ladde and Lakshmikan-
tham [10], Lakshmikantham et al. [11, 12], Mohammed [19], and the
author himself [15–18] among others. Most of the existing results on
stochastic stability use a single Lyapunov function, but we shall instead use
multiple Lyapunov functions in this paper. We shall establish some suffi-
cient criteria, in terms of multiple Lyapunov functions , for locating the
limit sets of solutions of stochastic differential equations. These new results
claim their originality is due to LaSalle [13] and generalize a key result
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obtained in the author’s earlier work Mao [18]. Moreover, from them fol-
low many useful results on stochastic asymptotic stability and boundedness,
which enable us to construct the Lyapunov functions much more easily
in applications. In particular, we shall show in Section 4 below that the
well-known classical theorem on stochastic asymptotic stability is a special
case of our more general results. These show clearly the power of our new
results. It should also be pointed out that the idea of using two Lyapunov
functions in the study of stability of ordinary differential equations can
be found in Salvadori [20] and, more generally, the idea of using vector
Lyapunov functions can be found in Lakshmikantham et al. [12].

2. MAIN RESULTS

Throughout this paper, unless otherwise specified, we let ���� � ��t�t>0,
P� be a complete probability space with a filtration ��t�t>0 satisfying the
usual conditions (i.e., it is right continuous and �0 contains all P-null sets).
Let B�t� = �B1�t�� � � � � Bm�t��T be an m-dimensional Brownian motion
defined on the probability space. Let � · � denote the Euclidean norm in
Rn. If A is a vector or matrix, its transpose is denoted by AT . If A is a

matrix, its trace norm is denoted by �A� =
√
trace�ATA�.

Consider a nonautonomous n-dimensional stochastic differential
equation

dx�t� = f �x�t�� t�dt + g�x�t�� t�dB�t� (2.1)

on t ≥ 0 with initial value x�0� = x0 ∈ Rn. Here f � Rn × R+ → Rn and
g� Rn ×R+ → Rn×m are measurable functions. We assume that both f and
g are sufficiently smooth for Eq. (2.1) to have a unique continuous solution
on t ≥ 0, which is denoted by x�t�x0� in this paper. For example, f and
g satisfy the local Lipschitz condition and the linear growth condition. For
other conditions please see Arnold [1] or Mao [17].
Let C2� 1�Rn × R+�R+� denote the family of all nonnegative functions

V �x� t� on Rn × R+ which are twice continuously differentiable in x and
once in t. Define an operator L acting on C2� 1�Rn × R+�R+� functions by

LV �x� t� = Vt�x� t� + Vx�x� t�f �x� t� +
1
2
trace�gT �x� t�Vxx�x� t�g�x� t���

where

Vt�x� t� =
∂V �x� t�
∂t

� Vx�x� t� =
(
∂V �x� t�
∂x1

� � � � �
∂V �x� t�
∂xn

)
�

Vxx�x� t� =
(
∂2V �x� t�
∂xi∂xj

)
n×n
�
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Moreover, let � denote the class of continuous (strictly) increasing func-
tions µ from R+ to R+ with µ�0� = 0. Let �∞ denote the class of functions
µ in � with µ�r� → ∞ as r → ∞. Functions in � and �∞ are called class
� and �∞ functions, respectively. If µ ∈ �, its inverse function is denoted
by µ−1 with domain [0� µ�∞�). We also denote by L1�R+�R+� the family
of all functions γ� R+ → R+ such that

∫∞
0 γ�t�dt < ∞ while we denote

by ��R+�R+) the family of all continuous functions η� R+ → R+ such
that

∫∞
0 η�t�dt = ∞. If K ⊆ Rn × R+ and H ⊆ R, let C�K�H� denote the

family of all continuous mappings from K to H.
We can now formulate our first result, which is a stochastic version of

the well-known LaSalle theorem (i.e., Theorem 1 of LaSalle [13] and the
reader may refer to Hale and Lunel [16]) for locating limit sets of a system.

Theorem 2.1. Assume that there are functions V�U ∈ C2� 1�Rn ×
R+�R+�, γ1� γ2 ∈ L1�R+�R+�, η ∈ ��R+�R+�, and ρ ∈ C�R+�R+�,
such that

LV �x� t� ≤ γ1�t�� LU�x� t� ≤ γ2�t� (2.2)

and

γ1�t� − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ η�t�ρ�U�x� t�� (2.3)

for all �x� t� ∈ Rn × R+. Then Dρ = �u ≥ 0� ρ�u� = 0� �= � 0 (as usual � 0
denotes the empty set), and

lim
t→∞U�x�t�x0�� t� ∈ Dρ a�s� (2.4)

for every x0 ∈ Rn.
To prove this theorem let us present two useful lemmas. The first one

is the nonnegative semimartingale convergence theorem established by
Lipster and Shiryayev [14, Theorem 7, p. 139].

Lemma 2.2. Let A�t� and U�t� be two continuous adapted increasing
processes on t ≥ 0 with A�0� = U�0� = 0 a.s. Let M�t� be a real-valued
continuous local martingale with M�0� = 0 a.s. Let ξ be a nonnegative �0-
measurable random variable such that Eξ <∞. Define

X�t� = ξ +A�t� −U�t� +M�t� for t ≥ 0�

If X�t� is nonnegative, then{
lim
t→∞A�t� <∞

}
⊂

{
lim
t→∞X�t� <∞

}
∩
{
lim
t→∞U�t� <∞

}
a�s��

where B ⊂ D a.s. means P�B ∩Dc� = 0. In particular, if limt→∞A�t� <∞
a.s., then for almost all ω ∈ �

lim
t→∞X�t� ω� <∞� lim

t→∞U�t� ω� <∞
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and

−∞ < lim
t→∞M�t� ω� <∞�

Lemma 2.3. Assume that there are two functions V ∈ C2� 1�Rn ×R+�R+�
and γ ∈ L1�R+�R+� such that

LV �x� t� ≤ γ�t� (2.5)

for all �x� t� ∈ Rn ×R+. Then, for every x0 ∈ Rn the solution of Eq. (1.1) has
the properties that

lim
t→∞V �x�t�x0�� t� <∞ a�s� (2.6)

and ∫ ∞

0
�γ�t� − LV �x�t�x0�� t�

+ �Vx�x�t�x0�� t�g�x�t�x0�� t��2�dt <∞ a�s� (2.7)

Proof. Fix any initial value x0 and write x�t�x0� = x�t� for simplicity.
By Itô’s formula

V �x�t�� t� = V �x0� 0� +
∫ t
0
γ�s�ds −

∫ t
0
�γ�s� − LV �x�s�� s��ds

+
∫ t
0
Vx�x�s�� s�g�x�s�� s�dB�s�� (2.8)

Noting that
∫∞
0 γ�s�ds < ∞ and γ�s� − LV �x�s�� s� ≥ 0, we can apply

Lemma 2.2 to get the required (2.6) and, moreover,∫ ∞

0
�γ�s� − LV �x�s�� s��ds <∞ a�s� (2.9)

and

−∞ < lim
t→∞M�t� <∞ a�s�� (2.10)

where

M�t� =
∫ t
0
Vx�x�s�� s�g�x�s�� s�dB�s��

For every integer i ≥ 1, define a stopping time

τi = inf�t ≥ 0� �M�t�� ≥ i��
where here and throughout this paper we set inf � 0 = ∞. It is clear that τi is
increasing. In particular, by (2.10), there is a subset �1 of � with P��1� = 1
such that for every ω ∈ �1 there is an i�ω� such that

τi�ω� = ∞ for all i ≥ i�ω�� (2.11)
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On the other hand, we have, for any t > 0,

E
∫ t∧τi
0

�Vx�x�s�� s�g�x�s�� s��2 ds = E�M�t ∧ τi��2 ≤ i2�

Letting t → ∞ yields

E
∫ τi
0

�Vx�x�s�� s�g�x�s�� s��2 ds ≤ i2�

which implies that ∫ τi
0

�Vx�x�s�� s�g�x�s�� s��2 ds <∞ (2.12)

holds with probability 1. Hence there is another subset �2 of � with
P��2� = 1 such that if ω ∈ �2, (2.12) holds for every i ≥ 1. Therefore, for
any ω ∈ �1 ∪�2, we have

∫ ∞

0
�Vx�x�s�ω�� s�g�x�s�ω�� s��2 ds

=
∫ τi�ω��ω� �Vx�x�s�ω�� s�g�x�s�ω�� s��2 ds <∞�

Since P��1 ∪�2� = 1, we must have
∫ ∞

0
�Vx�x�s�� s�g�x�s�� s��2 ds <∞ a�s�

This, together with (2.9), gives the other required result (2.7). The proof is
therefore complete.

We can now easily prove Theorem 2.1.

Proof of Theorem 2�1� Fix any initial value x0 and write x�t�x0� = x�t�
as before. By Lemma 2.3, we observe that

lim
t→∞U�x�t�� t� <∞ a�s� (2.13)

while ∫ ∞

0
η�t�ρ�U�x�t�� t��dt <∞ a�s� (2.14)

Since ρ ∈ C�R+�R+�, it follows from (2.13) that

0 ≤ lim
t→∞ρ�U�x�t�� t�� = ρ

(
lim
t→∞U�x�t�� t�

)
<∞ a�s�

We now claim that

lim
t→∞ρ�U�x�t�� t�� = ρ

(
lim
t→∞U�x�t�� t�

)
= 0 a�s� (2.15)
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If this is false, there is some �� ⊂ � with P���� > 0 such that for any ω ∈ ��,

lim
t→∞ρ�U�x�t� ω�� t�� > 0�

Hence, for any ω ∈ ��, one can find a pair of ε�ω� > 0 and T �ω� > 0 such
that

ρ�U�x�t� ω�� t�� ≥ ε�ω� whenever t ≥ T �ω��

Consequently
∫ ∞

0
η�t�ρ�U�x�t� ω�� t��dt ≥ ε�ω�

∫ ∞

T �ω�
η�t�dt = ∞�

But this contradicts (2.14) so (2.15) must hold. It now follows from (2.15)
immediately that Dρ �= � 0 and

lim
t→∞U�x�t�� t� ∈ Dρ

as required. The proof is complete.

In Theorem 2.1 two Lyapunov functions V and U are used but we can
take a further step to use multiple Lyapunov functions. For this purpose
we introduce a new notation �Rk+ = �u = �u1� � � � � uk�� ui ≥ 0� 1 ≤ i ≤ k�
Theorem 2.4. Assume that there are functions V�U1� � � � � Uk ∈ C2� 1�Rn×

R+�R+�, γ0� γ1� � � � � γk ∈ L1�R+�R+�� η ∈ ��R+�R+�, and ρ̄ ∈ C��Rk+�
R+�, such that

LV �x� t� ≤ γ0�t�� LUi�x� t� ≤ γi�t� �1 ≤ i ≤ k� (2.16)

and

γ0�t� − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ η�t�ρ̄�U1�x� t�� � � � � Uk�x� t�� (2.17)

for all �x� t� ∈ Rn × R+. Then, for every x0 ∈ Rn,

lim
t→∞�U1�x�t�x0�� t�� � � � � Uk�x�t�x0�� t�� ∈ Dp̄ a�s�� (2.18)

where Dp̄ = �u ∈ �Rk+� ρ̄�u� = 0� �= � 0�
This theorem can be proved in the same way as in the proof of

Theorem 2.1. In the sequel we will only use two Lyapunov functions in
order to simplify the statements of our new results, though they can be
generalized by using multiple Lyapunov functions.
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3. STOCHASTIC ASYMPTOTIC STABILITY
AND BOUNDEDNESS

Let us demonstrate that the results obtained in the previous section can
be used to establish useful criteria on stochastic asymptotic stability and
boundedness.

Theorem 3.1. Let all the assumptions of Theorem 2.1 hold.

(i) If Dp is bounded and

lim inf
�x�→∞� t→∞

U�x� t� > max�u� u ∈ Dp�� (3.1)

then there is a constant K > 0 such that for every x0 ∈ Rn,

lim sup
t→∞

�x�t�x0�� ≤ K a�s� (3.2)

(ii) If Dρ = �0� and for some µ ∈ �,

µ��x�� ≤ U�x� t�� �x� t� ∈ Rn × R+� (3.3)

then for every x0 ∈ Rn,

lim
t→∞ �x�t�x0�� = 0 a�s� (3.4)

Proof. (i) Let K1 = max�u� u ∈ Dρ�. By condition (3.1), one can find a
sufficiently small ε > 0 for which there is a pair of K > 0 and T > 0 such
that

U�x� t� ≥ K1 + ε for all �x� ≥ K and t ≥ T�

On the other hand, Theorem 2.1 shows that

lim
t→∞U�x�t�x0�� t� ≤ K1 a�s�

Hence, for almost all ω ∈ �, there is a �T �ω� ≥ T such that

U�x�t� ω�x0�� t� < K1 + ε whenever t ≥ �T �ω��

Consequently we must have

�x�t� ω�x0�� < K whenever t ≥ �T �ω�

and the required assertion (3.2) follows.
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(ii) Theorem 2.1, together with condition Dp = �0�, shows that
lim
t→∞U�x�t�x0�� t� = 0 a�s�

Consequently, by (3.3)

lim
t→∞µ��x�t�x0��� = 0 a�s�

This means that there is an �� ⊂ � with P���� = 1 such that

lim
t→∞µ��x�t� w�x0��� = 0 for all ω ∈ ��� (3.5)

It is enough to show that

lim
t→∞ �x�t� ω�x0�� = 0 for all ω ∈ ��� (3.6)

If this is false, there is some ω̄ ∈ �� such that

lim sup
t→∞

�x�t� ω̄�x0�� > 0�

Hence one can find a sufficiently small number ε > 0 and a sequence
�tk�k≥1 with tk → ∞ such that

�x�tk� ω̄�x0�� ≥ ε� k ≥ 1�

Since µ is increasing, we have

µ��x�tk� ω̄�x0��� ≥ µ�ε�� k ≥ 1�

Thus

lim sup
t→∞

µ��x�t� ω̄�x0��� ≥ µ�ε� > 0

with contradicts (3.5) so (3.6) must hold. The proof is complete.
Let us now establish another generalization of a classical result on the

globally stochastically asymptotic stability.

Theorem 3.2. Assume that there are functions V�U ∈ C2� 1�Rn ×
R+�R+�� γ1� γ2 ∈ L1�R+�R+�� η ∈ ��R+�R+�, and µ1� µ2� µ3 ∈ �, such
that

LV �x� t� ≤ γ1�t�� LU�x� t� ≤ γ2�t�� µ1��x�� ≤ U�x� t� ≤ µ2��x�� (3.7)

and

γ1�t� − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ η�t�µ3��x�� (3.8)

for all �x� t� ∈ Rn × R+. Then, for every x0 ∈ Rn,
lim
t→∞ �x�t�x0�� = 0 a�s� (3.9)
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Proof. Without loss of any generality we may assume that µ2 ∈ �∞
(otherwise we can replace µ2�u� by µ2�u� + u which is in �∞), and hence
its inverse function µ−1

2 ∈ �∞. It follows from (3.7) that

µ−1
2 �U�x� t�� ≤ �x��

Substituting this into (3.8) gives

γ1�t� − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ η�t�µ3�µ−1
2 �U�x� t����

Let ρ�·� = µ3�µ−1
2 �·�� which is in � whence Dρ = �0�. The required

assertion (3.9) now follows from part (ii) of Theorem 3.1. The proof is
complete.

4. COMPARISONS WITH THE EXISTING RESULTS

Let us first recall the well-known classical result on the globally stochas-
tically asymptotic stability (cf. Arnold [1], Has’minskii [7], or Kushner [9]).

Theorem 4.1. Assume that there are functions V ∈ C2� 1�Rn × R+�R+��
µ1� µ2 ∈ �∞ and µ3 ∈ � such that

µ1��x�� ≤ V �x� t� ≤ µ2��x�� (4.1)

and

LV �x� t� ≤ −µ3��x�� (4.2)

for all �x� t� ∈ Rn × R+. Then, for every initial value x0 ∈ Rn the solution of
Eq. (1.1) has the property that

lim
t→∞ �x�t�x0�� = 0 a�s� (4.3)

To see the important contributions of this paper, let us form a useful
corollary that follows from Theorem 3.2 directly.

Corollary 4.2. Assume that there are functions V ∈ C2� 1�Rn × R+�
R+�� µ1� µ2� µ3 ∈ � and γ ∈ L1�R+�R+� such that (4.1) is satisfied while
(4.2) is replaced by the following weaker condition

LV �x� t� ≤ γ�t� ∧ �γ�t� + �Vx�x� t�g�x� t��2 − µ3��x����
�x� t� ∈ Rn × R+� (4.4)

Then the conclusion of Theorem 4.1 still holds.
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This corollary only requires that µ1� µ2 be class � functions but not
class �∞ functions. Of course this is a minor improvement. However,
let us explain the significant features of this corollary. In the classical
Theorem 4.1, LV is required to be negative definite. So far, to the best
knowledge of the author, there is no paper that shows whether the asymp-
totic stability holds or not if this negative definiteness does not hold, but
our Corollary 4.2 gives a positive answer. In fact, we see from condition
(4.4) that LV may take positive values somewhere (see the example below
for an explicit support) but yet the corollary shows that the equation may
still be stochastically asymptotically stable. Moreover, condition (4.4) is
equivalent to

LV �x� t� ≤ γ�t� and LV �x� t� ≤ γ�t� + �Vx�x� t�g�x� t��2 − µ3��x���
We hence see clearly that if (4.2) is satisfied, (4.4) must be satisfied
but not conversely. It is the terms γ�t� and �Vx�x� t�g�x� t��2 that make
condition (4.4) able to be satisfied much more easily than condition (4.2).
So Corollary 4.2 has already enabled us to construct the Lyapunov function
more easily in application. Note furthermore that the term �Vx�x� t�g�x� t��2
is connected with the diffusion coefficient g�x� t� so our result reveals the
important role of noise in stabilizing the system. Stabilization by noise is a
very interesting issue but we will not develop it further in this paper due to
page limit and we only refer the reader to Arnold et al. [2, 3] and Mao [17].
Let us now use an example to illustrate the above features explicitly.

Example 4.3. Let us consider a two-dimensional equation

d

[
x1�t�
x2�t�

]
=

[−x1�t� + x1�t�x2�t� + 2e−t

−x21�t� − 2x2�t�
]
dt +

[
e−tdB1�t�

2x2�t�dB2�t�
]
� (4.5)

where �B1�t�� B2�t�� is a two-dimensional Brownian motion. Let V �x� =
�x�2 so condition (4.1) is satisfied with µ1�r� = µ2�r� = r2. Compute

LV �x� t� = 2x1�−x1 + x1x2 + 2e−t� + 2x2�−x21 − 2x2� + e−2t + 4x22

= e−2t + 4x1e
−t − 2x21 ≤ 5e−2t − x21 ≤ 5e−2t

which is not negative definite even LV �x� t� > 0 for some �x� t�, e.g., when
x1 = 0�5 and t = 1. Hence we cannot apply the classical Theorem 4.1
using the Lyapunov function above to deduce the asymptotic stability in
probability 1. However, we can apply Corollary 4.2. In fact, compute

�Vx�x� t�g�x� t��2 = 4x21e
−2t + 16x42

so

5e−2t − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ x21 + 16x42 ≥ µ3��x���
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where

µ3�r� = min
�x�≥r

[
x21 + 16x42

]
for r ≥ 0�

which is in � clearly. Thus

LV �x� t� ≤ 5e−2t + �Vx�x� t�g�x� t��2 − µ3��x��

and condition (4.4) is satisfied. We can therefore conclude by our new
Corollary 4.2 that the solution of Eq. (4.5) starting from anywhere in R2

will tend to zero asymptotically with probability one.
In the previous sections we use two or more Lyapunov functions while

most authors use usually a single one. To show the advantage of using two
or more Lyapunov functions , let us obtain a useful corollary by letting
U = V and γ1 = γ2 = γ in Theorem 2.1.

Corollary 4.4. Assume that there are functions V ∈ C2� 1�Rn×R+�R+�,
γ ∈ L1�R+�R+�, η ∈ ��R+�R+�, and ρ ∈ C�R+�R+�, such that

LV �x� t� ≤ γ�t� and

γ�t� − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ η�t�ρ�V �x� t�� (4.6)

for all �x� t� ∈ Rn × R+. Then, for every x0 ∈ Rn,

lim
t→∞V �x�t�x0�� t� ∈ Dρ a�s��

where Dρ is the same as defined in Theorem 2.1.

This corollary is a generalization of Theorem 2.6 of the author’s earlier
work Mao [18]. In fact, if we let η ≡ 1 and replace (4.6) by the stronger
condition

LV �x� t� ≤ γ�t� − ρ�V �x� t��� (4.7)

then Corollary 4.4 reduces to Theorem 2.6 of Mao [18]. Moreover, com-
paring Theorem 2.1 with Corollary 4.4 we observe that both V and U in
Theorem 2.1 satisfy less restricted conditions, which gives us more flexibil-
ity to construct them in applications. This will be illustrated by Example 6.1
below but let us first discuss linear stochastic differential equations.
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5. LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

Consider an n-dimensional linear stochastic differential equation

dx�t� = Ax�t�dt +
m∑
i=1

Cix�t�dBi�t�� (5.1)

Let Q be a positive-definite symmetric n × n-matrix and define V �x� t� =
V �x� = xTQx. It is known that

λmin�Q��x�2 ≤ xTQx ≤ λmax�Q��x�2�
where λmin�Q� and λmax�Q� denote the smallest and largest eigenvalue of
Q (so 0 < λmin�Q� ≤ λmax�Q��. It is also easy to compute

LV �x� = xTHx� where H = QA+ATQ+
m∑
i=1

CTi QCi�

and

�Vx�x�g�x��2 =
m∑
i=1

∣∣∣xT(QCi + CTi Q
)
x
∣∣∣2�

where g�x� = C1x� � � � � Cmx�. If we impose a hypothesis that

H is a non-positive definite� (5.2)

then LV �x� ≤ 0. Set

G0 = �x ∈ Rn� xTHx = 0� and

Gi = �x ∈ Rn� xT
(
QCi + CTi Q

)
x = 0� �i ≥ 1�

and impose another hypothesis that
m⋂
i=0

Gi = �0�� (5.3)

Then

−LV �x� + �Vx�x�g�x��2 > 0 if and only if x �= 0�

Define

µ3�r� = min
�x�≥r

�−LV �x� + �Vx�x�g�x��2� for r ≥ 0�

Clearly, µ3�·� ∈ � and, moreover,

LV �x� ≤ �Vx�x�g�x��2 − µ3��x���
By Corollary 4.2, we therefore obtain a useful result for linear stochastic
differential equations.



stochastic asymptotic stability 337

Corollary 5.1. If there is a positive-definite symmetric n × n-matrix Q
such that (5.2) and (5.3) hold, then all the solutions of the linear equation (5.1)
will tend to zero with probability 1.

Let us now discuss an example to illustrate this result, especially to
explain how to verify hypothesis (5.3).

Example 5.2. Consider a two-dimensional linear stochastic differential
equation

dx�t� = Ax�t�dt + C1x�t�dB1�t�� (5.4)

where B1�t� is a scalar Brownian motion,

A =
[−6�5 −3

1 −2

]
and C1

[
1 −1
−2 1

]
�

Let Q be the identity matrix. Then

H = A+AT + CT1 C1 = −
[
8 4
4 2

]
�

which is non-positive definite. It is easy to show that the eigenvalues of H
are λ1 = 0 and λ2 = 10 and the corresponding normalized eigenvectors are
θ1 = �−1� 2�T /√5 and θ2 = �2� 1�T /√5. Note also that any x ∈ R2 can be
represented as x = α1θ1 + α2θ2 for some real numbers α1� α2 and hence

xTHx = �α1θ1 + α2θ2�T �α1λ1θ1 + α2λ2θ2� = 10α22
which is zero if and only if α2 = 0. Therefore

G0 = �x ∈ R2� x = α1θ1 for α1 ∈ R� = �x ∈ R2� x2 = −2x1��
which is a line in R2 through the origin with slope −2. On the other hand,

C1 + CT1 =
[

2 −3
−3 2

]

has the eigenvalues λ1 = 5 and λ2 = −1 and their corresponding normal-
ized eigenvectors ϕ1 = �1�−1�T /√2 and ϕ2 = �1� 1�T /√2. Representing
any x ∈ R2 as x = β1ϕ1 + β2ϕ2 for some real numbers β1� β2 we have

xT �C1 + CT1 �x = �β1ϕ1 + β2ϕ2�T �β1γ1ϕ1 + β2γ2ϕ2� = 5β2
1 − β2

2

which equals zero if and only if β2 = ±√
5β1. Hence

G1 = �x ∈ R2� x = β1ϕ1 ±
√
5β1ϕ2 for β1 ∈ R�

= �x ∈ R2� x = β�1±
√
5�−1±

√
5�T for β ∈ R�

= �x ∈ R2� x2 = x1�
√
5± 1�2/4��

which are two lines in R2 through the origin with slopes (
√
5 − 1�2/4 and

�√5 + 1�2/4, respectively. We therefore see that G0 ∩G1 = �0� and can
conclude that all the solutions of Eq. (5.4) will tend to the origin with
probability 1.



338 xuerong mao

6. FURTHER EXAMPLES

Although two examples have been discussed before to illustrate our the-
ory, let us discuss two more examples in this section. In the following exam-
ples whenever we use g we mean the diffusion coefficient of the equations
discussed. The first example not only illustrates the advantage of using two
Lyapunov functions but also shows how our theory can be applied to deal
with partial asymptotic stability (i.e., only a part (or subset) of the compo-
nents tends to zero).

Example 6.1. Let B�t� = �B1�t�� B2�t�� be a two-dimensional Brownian
motion. Consider a two-dimensional stochastic differential equation{

dx1�t� = −x22�t� sin�x1�t�� cos2 tdt + e−t cos�x2�t��dB1�t��
dx2�t� = −x2�t� cos2�x1�t�� cos2 tdt + e−t cos�x1�t��dB2�t��

(6.1)

Let

V �x� t� = V �x1� x2� = 1− cosx1 +
1
2
x22 and U�x� t� = U�x2� = x22�

Compute

LV �x� t� = −x22 sin2�x1� cos2 t +
1
2
e−2t cos�x1� cos2�x2�

− x22 cos2�x1� cos2 t +
1
2
e−2t cos2�x1�

≤ e−2t − x22 cos2 t ≤ e−2t �

and hence

e−2t − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ x22 cos2 t = U�x2� cos2 t�
while

LU�x� t� = −2x22 cos
2�x1� cos2 t + e−2t cos2�x1� ≤ e−2t �

Theorem 2.1 shows that for any given initial value x0 ∈ R2 the solution of
Eq. (6.1) has the property

lim
t→∞x2�t�x0� = 0 a.s. (6.2)

Moreover, by Lemma 2.3,

lim
t→∞

[
1− cos�x1�t�x0�� +

1
2
x22�t�x0�

]
<∞ a.s.

This, together with (6.2), implies that

lim
t→∞ cos�x1�t�x0�� exists almost surely�

It then follows easily that

lim
t→∞x1�t�x0� exists and is finite almost surely� (6.3)
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Example 6.2. Let B�t� be a scalar Brownian motion. Consider a two-
dimensional stochastic equation{

dx1�t� = − sin2 t�x1�t� − x2�t��dt +
√
2 sin t��x�t�� ∧ 1�dB�t��

dx2�t� = − sin2 t�x1�t� + x2�t��dt + e−t cos��x�t���dB�t��
(6.4)

where x = �x1� x2� of course. Let V �x� t� = V �x� = �x�2 and compute

LV �x� t� = −2 sin2 t��x�2 + ��x�2 ∧ 1�� + e−2t cos2��x��
≤ e−2t − 2 sin2 t���x�2 ∨ 1� − 1� ≤ e−2t (6.5)

while

e−2t − LV �x� t� + �Vx�x� t�g�x� t��2 ≥ 2 sin2 t���x�2 ∨ 1� − 1��
We can therefore conclude by Theorem 3.1 that for any initial value x0 ∈ R2

the solution of Eq. (6.4) has the property

lim
t→∞ �x�t�x0�� ≤ 1 a.s. (6.6)
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