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Abstract

For smoothly bounded, multiplyomnected domains in the complgbane, S. Bell showed how the
Kerzman-Stein method can be used to compute thedS@gel and Ahlfors map. In this paper, we
present a modification of that method for domains that are piecewise-smooth. The procedure is based
on a method of preliminary transformation and involves adding an explicit holomorphic function to
the Cauchy kernel. In the last section, we show the effectiveness of using this method for the special
case of a square.

0 2004 Elsevier Inc. All rights reserved.

Keywords:Reproducing kernels; Szédernel; Piecewise-smooth

1. Introduction

Kerzman and Stein found in [4] a method for computing the 8Zegnel and Riemann
map for smooth, simply connected domains in the complex plane. Kerzman and Trummer
then implemented this method in [5] and gamor estimates for the Riemann map for
several example domains. Bell later extended the method in [1] to include multiply con-
nected domains—he showed how the same Kkasitniques can be used in this situation
to compute the Szégkernel and Ahlfors map. In this paper we present one way to extend
these methods to the case of domains with corners.

The Szeg kernel itself is one of the canonical domain functions, and is closely related
to the Green’s function of a domain. The Ahlfors map is a proper holomorphic map from
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the domain to the unit disc. It, too, plays a key role in solving problems that arise in elec-
trostatics and fluid mechanics.

The aim of this paper is to construct holomorphic reproducing kernels that are suitable
for the Kerzman—Stein method in the case of piecewise-smooth domains. For a smooth
boundary, one uses the Cauchy kernel, which closely resembles th& I&ragl as Kerz-
man and Stein showed. For a non-smooth boundary we here use preliminary transforma-
tions to construct a singular function that, when added to the Cauchy kernel, will more
closely resemble the Szégernel. In the last section, we show the error when computing
the Sze@ kernel using our methods for the square.

2. Background

Let 2 € C be a multiply connected domain witliecewise-smobtboundary. Define
L?(3£2) spaces using arclength measure, andffarL2(3£2) let

1 f(w)dw

Cf(Z)Z% forz € £2.

w—2z
a0
At first C f is defined on the interior of2, but by lettingz — zp € 982 it is defined al-
most everywhere on the boundary. In fact lingiting function is square-integrable aidd
extends to a bounded operator bA(3£2).

The image ofC is the space??(d$2) of boundary values of holomorphic functions.
Moreover, by the Cauchy integral formul@, reproduces{?(9£2). SoC is a bounded
projectionL?(d2) — H?%(9£2). In the case of smooth boundary, Kerzman and Stein [4]
showed that is ‘almost orthogonal,’ in the sense that=C — C* is compact. Moreover,

C and A can be used to write the Szegrojection, that is, the orthogonal projection to
H?(3£2), as the compositio§ = C(Z + A)~L.

An important application of this equation is that it leads to a Fredholm integral equation

of the second kind,

S(z,a) — / Az, w)S(w,a)dsy, =C*(z,a) forae 2, 7€082, Q)
992
whose solutiors is the Sze§ kernel. One obtains the Sagkernel by solving this equation
numerically; one then obtains the Riemann map or Ahlfors map using identities involv-
ing the Sze§ kernel. See [1,5], for instance. These techniques are further developed in
[7,9,11].

At a corner, the kerned (z, w) is unbounded, so Kerzman asked in [3] for how best to
modify the procedure for domains with corners. The modification we present uses prelim-
inary maps to construct a holomorphic functierthat, when added to the Cauchy kernel,
gives a uniformly bounded kerndl, (z, w). The corresponding Fredholm equation can be
readily solved using the Nystrom method.

We point out that our method is simpler than the one Michel [6] used to study the
Bergman theory for orthodomains. That modification depends on both the angles and the
curvature at the corners, whereas our construction only depends on the angles at the corners
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and it applies to a larger class of domains. We also point out work of Thomas in [10]. He
showed that the Nystrom solution of Eq. (1) converges in the mean to thé Keeugl,

even for piecewise-smooth domains. The convergence is slow near corners, however, as
will be evident for the case of a square.

3. Statement of results

We assume? € C is a multiply connected domain whose boundary is made of finitely
many closed curves, each curve consisting of finitely many (smooth)atbst haveC?
parameterizations; : [¢;_1,t;1 — y;, j =1,...,n, with

o zj(tj)y=zjt1(tj) for j=1,....,n—1,andz,(t,) = z1(to),
° T — argz;+1(tj)/z;(tj)] =m/ajwith 1 <a; < oo, and
o [Zjl=1on[tj_1,1].

The cornersP; = z;(¢;) have interior angles that measurg ;, which is between 0 and.
Let T = T,, be the complex unit tangent vectonate 052 providedw is not a corner. So
dw = Ty ds,,. Here, and in what follows, we will often use subscripts to denote a function’s
argument, not its derivative, in order to reduce the number of parentheses.

A domain is piecewise-smooth if its boundary has parameterizations satisfying the
above conditionsWe exclude corners with angle greater thanbecause at such points
the Sze@ kernel is infinite, and our uniform estimates will fail.

Theorem 1. If 22 € C is a multiply connected domainitiv piecewise-smooth boundary,
then there is an explicit functiodne O (£2 x £2), extending smoothly & x 2\ {(P;, P;)},

so that the kernel
Tw 1
- + h(z, w)

Ch(z,w) = 2mi | w—z

satisfiesd;, = Cj — C}f € L>(082 x 382), whereC}(z, w) = Cp(w, 2).

We identify an operator with its kernel vidf (z) = fm A(z, w) f(w) dsy, forinstance.
The operatord;, = C;, — C; is then compact, and we have the following

Theorem 2. With 2 andCj, as above, the Szegfojection can be written as the composi-
tion of bounded operators; = C, (Z + A;) 1, and the SzegKernel satisfies the Fredholm
equation of the second kind,

S(z,&)—/Ah(z,w)S(w,&)dsw=C;;(z,a) forae 2, z€052. (2)
082
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Proof. In fact, by Theorem 1, the operatot; is Hilbert-Schmidt. Moreover, iff €
0(£2) N C(£2), then by Stokes’ theorem,

[rewswan= [ [ e wsw]dndn=0 forzca
2

82

as bothi and f are holomorphic. SG;, reproduces holomorphic functions by the Cauchy
integral formula. In factC; projects to holomorphic functions, too, A9s holomorphic.
So the theorem’s first assertion foNle from a fact about Hilbert spaces—dfis a densely
defined projection on Hilbert space and = C — C* is compact, the is bounded, and
the orthogonal projection can be writténZ + A)~L.

Equation (2) follows by writingS(Z + A;) = C;, taking adjoints, and applying an ap-
proximate identity. By the Fredholnitarnative, its solution is unique.d

4. Construction of the singular function

The functionk will be a sum}_; i;, where eacth; is holomorphic on x £2, and

smooth o2 x £2 exceptal P;, P;). Sinceh; comes from eacl?;, we drop subscripts for
the remainder of this section and [Rtrefer to any of theP;, andh the corresponding;.

At corner P, construct two circles that are exterior@so that one circle is tangent to
9£2 at P in each direction. These circles intersecPawith anglesr /a and they have a sec-
ond point of intersectio®’. We allow for the case that lines are circles (with infinite radii),
so possiblyP’ = co. If P’ #£ 0o, the mapw — (w — P)/(w — P’) sendsf2 injectively into
a wedge with angle /«, and the map

[P'(w—P)/(P"—w)]*, P'# o0,

(w— P)*, P =00, (3)

u(w) :{

sends2 injectively into a halplane. Furthermore, straightens the corner & so that the
boundary of2’ = u(£2) is at leastC1-smooth nean(P). Define

V' (w)Vu'(z) B 1

T e R

, zFweL,

Fig. 1. Construction of the singular function.
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so thati is holomorphic in bothw, z € §2. The square roots make sense simgginjective.

Moreover, sincex > 1, it follows thath(z, w) = —1/(w — z) if w or z equalsP, sohk is

unbounded fow, z nearP. Elsewherey’ # 0 andh extends smoothly to the boundary.
The function

Ty V)@
271 u(w) —u(z)

is the pullback of the Cauchy kernel from(£2) under the H?-preserving isometry
L2(082) > (fou) - vu' < f € L%(9£2'). Moreover, since:(£2) is smoother ai(P) than
is £2 at P, it should more closely resemble the Sadgrnel atP than does the Cauchy
kernel for 2. So as defined; gives a reasonable correction to the Cauchy kernefXor
atP.

5. Proof of Theorem 1

Back to the earlier notation we lét= > h;, where eacth; corresponds to a cor-
ner P;, and is constructed as in the previous section. We must show that

- Ty 1
Chiz.w) = Ch(w,2) = [w—_z +Y hiGz, w)}
J

T, 1 _
‘%[w_z‘;hﬂ“)}

is bounded fot, w € 352, and for this we need only considerandz close to one another.
Recall thatz ; is unbounded only for botty andz nearP;; moreover, wheré (2 is smooth,
T,(w—2z)~1 — T.(w — 2)~ 1 is bounded. So, dropping subscripts, we need only verify the
boundedness of

/ / / /
Tw[i‘i‘h(Zy w)j| _Tz[;_h(ULZ)} = Tw\/u—w\/z - TZ_\/E\_/Zy
w—2z w—2z Uy — Uy Uy — Uy
wherew, z € 32 are both near a cornér which has interior angle /«, andu is given by
Eq. (3). For simplicity assumg = 0 and replace®’ by P.

We use the convention that ~ B means there is a constanso thatc|A| < |B| <
¢~ 14|, andA < B means there is a constanso that|A| < ¢~1|B|. The constants may
depend on up to two derivatives of the paraanization, and can therefore be controlled by
the maximum curvature of the boundary. We reiterate the conventiostbatripts will
often be used to indicate a function’s argumenimed notation will be used to indicate
the derivative.

Casel. Suppose first thay andz are on the same side of the corner and that the
common side is parametrized by z; = z(f) with z0 =0, z5 = ¢ and|z)| = 1. We
assume that, is smooth up to the corner, but it parameteria€s only on one side. We
setw = z; andz = z;, wheres, r > 0.
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The estimates are essentially the sameHce oo, SO we consider the cage+# co. We
have first,

N
Pz o P o Pa+1 a—1_s
u(w)—u(z):( Zs ) _( u ) Y

P —z P—z) ] (P—z)ett
t

Then using;, = ¢/?r + 0(r?) andz. = ¢! + O(r) we have
s
u(w) —u@@) =« / r* % 4+ 0 () dr
t
= (5% — 1)+ O (™ + 1) (s — 1) A 5% — 1%, (4)

Next,

Tw\/“_;u\/@' [m - M]

,\/aP"‘*lz?l \/ozP‘”lz?‘l [aPetizt T
R

(P —z)et I\ (P —zp)ett ] (P =7,)ett
t

_ b2y \/ Pa+l(z, /s)-1 \/ pati(z, /r)a-1

V(P =zt (P —z)tt

N e
a+1 a—1
X azro‘_l—P @ /1) Z.dr
(P—zpett

and after switching andw, and conjugating,

[— a+1 a—1 a+1 a—1
NN [u(w)—u(z)]z(st)(a_l)/ZZ;/P ) /P e/

(P —z;)ott (P —z)ott

s

a+1l a—1
X azra_l—P /1) Z.dr.
(P —z)etl ™"
'

Then, since

/\/P“Jrl(zs/s)al\/P“Jrl(Z;/t)al P“Jrl(zr/r)“*l .

s (P — ZS)OH_J' (P — Zz)a+l (P = Zr)a-',-l Z,

. / P+l /syt / ety /net Petl, et

NP | (Pt (Pt
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vanishes at =t = r, and since the square roots are bounded away from 0, it follows that
Tu/uly Ju? - [uw) —u@)] = To/ulyJu? - [u(w) = u(2)]
N
< (5@ V25— 1) / roYar < (st) @ D25 — 1) (s* —1%). (5)
13

(In this estimate, the implied constant depends on two derivatives) dfhen, putting
together (4) and (5), we have

Tty Jul,  Tofuly /U - (st) @ D/2(5 — 1) (s* — 1%) <1
u(w) —u@  u(w)—ui) "~ (s% —19)? ~
Case2. Suppose, then, that andz are on opposite sides of the corner, and the two
sides are parameterized by with wo =0, wy = et and|w}| = 1, and byz; with zo =0,
z5=€'@*7/* and|z;| = 1. We assume thab, andz, are smooth up to the corner, and
we setw = w,; andz =z, for s, > 0. ThenT,, = w;, andT; = —z,.

We first estimate

— Pw; * Pz a_ o a_ o o

~ (eiQS)a _ (ei(9+n/a)t)a — ei@a (Soz +t0[). (6)

Next,

Ty w),Jul, - u(w) — T\ uy, Jul, - u(w)
N e L T
V(P —wy)e Y (P —z)* L\ P — wy
Ly aPetlyd~l [gpa+la=l /opyy o\
t (P — wg)‘“'l (P — Zt)a-i-l P — w;
=a-s%(st)@D2| Petl(wg/s)e=1 [Petl(z /r)e=1 / Pwg/s \*
s (P _ ws)oz+1 (P _ Zt)oz-i—l P — w;
+ 7z Pa+l(ws/s)a—l P“Jrl(zt/t)“*l Pw;/s a
VP —wrtt (P gt AP —wg) |
Then what is in brackets is differentiable srand¢, the square roots are again bounded
away from 0, and at = = 0 it equals
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ei(-?ei(-?(afl)/Zei((-?+rr/ot)(afl)/267i(-?a + e*i(9+n/a)e*iG(afl)/Zefi((-?Jrn/a)(ozfl)/ZeiGa
= ol T/ @=D/2[ 6 i) =ifle  ,=i(6+7/a) =i (B+7/a)(@=1)  ifary
— ei(n/a)(a—l)/2[1+ e—i(0+n/a)aei0a] —-0.

From this we conclude that

T/t JuT - u(w) = Tofu, Jul - uw) S 5% (s0) D2 (s +1). (7)

(The implied constant again depends on two derivativesafdw.) By interchangingo
andz, then conjugating, we also conclude that

Tty JuL - u(@) + Tonfuly Jul - u(z) S 1 (st) @ D25 4 1), (8)
Putting together (6)—(8), we have

Tovup o, Tefu il 6° +1960 D26+

uw) —u@  uw) —u@ "~ (5% +1)?

Notice that it is not the case tha&t,(z, w) — Cj(w, z) is continuous at the corner. For
supposew = z; andz = z; lie to the same side of the corner, and take As for some
A >0.Then

(s@-D/2  je-D/2
sa—1 + o1 = 1+ Aa—1’

which assumes values from 0 tcbQdepending or.. So forw andz close to the corner,
the kernelCy, (z, w) — C(w, z) assumes a range of values, and is therefore discontinuous.

6. Example: thesquare

In this section, we illustrate for the square how quickly the Nystrém solution of Eq. (2)
converges to the Szédernel. We use a square with side length 1 and with center at
Letr — z(¢) parameterize the boundary, witle [0, 4] the arclength parameter, an@)
one of the corners. We show the error in computing the funatien S(z;, a) for three
situations. First, we compute the Spekernel using the unmodified Cauchy kernel; this
is Kerzman and Trummer’s method in [5]. Then we compute the kernel using preliminary
maps that are squaring maps—these maps completely straighten the boundary near the
corners. Finally, we compute it using maps that do not depend on the curvature near the
corners. This better illusttas how the method should wor&rfgeneral piecewise smooth
domains.

For comparison, we also compute the Szégrnel using the Riemann map. In par-
ticular, the functions = s(z) that maps the square biholomorphically to the unit disc, so
s(a) = 0 ands’(a) > 0, is given bys(z) = ¥ o sn(z — 1/2), where snry is the Jacobian
elliptic function (see Nehari [8, p. 280]), and is a linear transformation that ensures
normalization. The Szégkernel is thenS(z, a) = +/s'(z)s'(a)/27 (see Bell [2, p. 92]).
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1 2 3 4

Fig. 2. Graph of S(z;, a)| for the square.

The reason we use the square is becaudbisfalternate solution for the Szgdernel,
with which we can determine the error for any approximate solution. The actual size of the
Szed kernel according to this method is shown in Fig. 2. Notice that the kernel vanishes
at the corners.

For our approximate solutions, recdiket Nystrom method. Given an equation

L

f@o+ / K(t,5)f(s)ds = g(1),
0

andn > 0, define collocation points & ¢; < L for 1 < j < n according tot; = (j —
1/2)L/n. At these points, define a functigfy as the solution of the matrix equation

L n
Fat))+ =3 K (@10 fu 1) = 8()).

k=1
Then definef,, on [0, L] by interpolating its values at the,

L n

@) =g) — =Y Kt 1) fu(tr).
n
k=1

Of course, this function does not solve the problem exactly, but there are convergence
results forf, — f depending on the smoothnesskof

6.1. Unmodified Cauchy kernel

This is the method Kerzman and Trummer used in [5]. We fipéor n = 32, where

1 g 17 g Z
1) = — and K(t,5)=—— S EEE N -
s0=oria g, t:9) 2711'[ :

In Fig. 3, we show the errdsS, (z;, a) — S(z;,a)| as a function of, whereS,, (z;, a) is the
approximate solution given by the Nystrém method. The spikes correspond to the corners,
where in fact, the Szégkernel is zero. For larger valuesmothese spikes seem to become
narrower, but they remain tall.
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0.015

0.005

1 2 3 4

Fig. 3. Error in computing (z;, a) using the unmodified kernet & 32).
0.0008
0.0006
0.0004

0.0002

1 2 3 4

Fig. 4. Error in computing (z;, a) using the first modified kerneh (= 16).

6.2. First modified Cauchy kernel

We find f,, for n = 16, using a modified Cauchy kernel based on squaring maps at the
corners. In particular, latj (w) = (w — P;)?for j =1,2,3,4, and
Vi1

hj(z, w) = ;
Uy — Uy w—z

as in Section 3. Set
Ty 1
Cn(z, w) = —[— + Y hiG w)]
2ri|l w—z 1234
We then use
g(t)=Cpla,z;) and K(t,5) = —Cu(zs,25) + Cn(zs, 21)-

In Fig. 4, we show the errdss, (z;, a) — S(z¢, a)|, whereS,, (z;, a) is the solution given by
the Nystrém method. There is significant improvement, especially at the corners.

6.3. Second modified Cauchy kernel

Here we use maps; (w) = [Pj/.(w — Pj)/(Pl’. —w)]?, WherePl’. lies outside the square,

a distance,/2 from P; along the line extending from the squa're’s center. The use of these
maps better reflects the situation when one uses maps that do not depend on the curvature
near the corner. We show the error in Fig. 5. Evidently, the error at the corners is compa-
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0.003

0.002

0.001

1 2 3 4

Fig. 5. Error in computing (z;, @) using the second modified kernel £ 16).

rable to the previous situation, but the error at the smooth points is comparable to the first
situation.
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