
a

e
e

is based
ion to
special

n
mmer

for
con-

ion
tend

lated
from
J. Math. Anal. Appl. 296 (2004) 154–164

www.elsevier.com/locate/jma

Holomorphic reproducing kernels for
piecewise-smooth planar domains

Michael Bolt

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received 27 May 2003

Available online 7 June 2004

Submitted by H. Gaussier

Abstract

For smoothly bounded, multiply connected domains in the complexplane, S. Bell showed how th
Kerzman–Stein method can be used to compute the Szegő kernel and Ahlfors map. In this paper, w
present a modification of that method for domains that are piecewise-smooth. The procedure
on a method of preliminary transformation and involves adding an explicit holomorphic funct
the Cauchy kernel. In the last section, we show the effectiveness of using this method for the
case of a square.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Kerzman and Stein found in [4] a method for computing the Szegő kernel and Rieman
map for smooth, simply connected domains in the complex plane. Kerzman and Tru
then implemented this method in [5] and gaveerror estimates for the Riemann map
several example domains. Bell later extended the method in [1] to include multiply
nected domains—he showed how the same basictechniques can be used in this situat
to compute the Szegő kernel and Ahlfors map. In this paper we present one way to ex
these methods to the case of domains with corners.

The Szeg̋o kernel itself is one of the canonical domain functions, and is closely re
to the Green’s function of a domain. The Ahlfors map is a proper holomorphic map
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0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
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the domain to the unit disc. It, too, plays a key role in solving problems that arise in
trostatics and fluid mechanics.

The aim of this paper is to construct holomorphic reproducing kernels that are su
for the Kerzman–Stein method in the case of piecewise-smooth domains. For a s
boundary, one uses the Cauchy kernel, which closely resembles the Szegő kernel as Kerz-
man and Stein showed. For a non-smooth boundary we here use preliminary trans
tions to construct a singular function that, when added to the Cauchy kernel, will
closely resemble the Szegő kernel. In the last section, we show the error when compu
the Szeg̋o kernel using our methods for the square.

2. Background

Let Ω � C be a multiply connected domain withpiecewise-smooth boundary. Define
Lp(∂Ω) spaces using arclength measure, and forf ∈ L2(∂Ω) let

Cf (z) = 1

2πi

∫
∂Ω

f (w)dw

w − z
for z ∈ Ω.

At first Cf is defined on the interior ofΩ , but by lettingz → z0 ∈ ∂Ω it is defined al-
most everywhere on the boundary. In fact thelimiting function is square-integrable andC
extends to a bounded operator onL2(∂Ω).

The image ofC is the spaceH 2(∂Ω) of boundary values of holomorphic function
Moreover, by the Cauchy integral formula,C reproducesH 2(∂Ω). So C is a bounded
projectionL2(∂Ω) → H 2(∂Ω). In the case of smooth boundary, Kerzman and Stein
showed thatC is ‘almost orthogonal,’ in the sense thatA = C − C∗ is compact. Moreover
C andA can be used to write the Szegő projection, that is, the orthogonal projection
H 2(∂Ω), as the compositionS = C(I +A)−1.

An important application of this equation is that it leads to a Fredholm integral equ
of the second kind,

S(z, ā) −
∫

∂Ω

A(z,w)S(w, ā) dsw = C∗(z, a) for a ∈ Ω, z ∈ ∂Ω, (1)

whose solutionS is the Szeg̋o kernel. One obtains the Szegő kernel by solving this equatio
numerically; one then obtains the Riemann map or Ahlfors map using identities in
ing the Szeg̋o kernel. See [1,5], for instance. These techniques are further develop
[7,9,11].

At a corner, the kernelA(z,w) is unbounded, so Kerzman asked in [3] for how bes
modify the procedure for domains with corners. The modification we present uses p
inary maps to construct a holomorphic functionh, that, when added to the Cauchy kern
gives a uniformly bounded kernelAh(z,w). The corresponding Fredholm equation can
readily solved using the Nyström method.

We point out that our method is simpler than the one Michel [6] used to stud
Bergman theory for orthodomains. That modification depends on both the angles a
curvature at the corners, whereas our construction only depends on the angles at the



156 M. Bolt / J. Math. Anal. Appl. 296 (2004) 154–164

]. He

ver, as

itely

ion’s

g the
ts

y,

si-
m

and it applies to a larger class of domains. We also point out work of Thomas in [10
showed that the Nyström solution of Eq. (1) converges in the mean to the Szegő kernel,
even for piecewise-smooth domains. The convergence is slow near corners, howe
will be evident for the case of a square.

3. Statement of results

We assumeΩ � C is a multiply connected domain whose boundary is made of fin
many closed curves, each curve consisting of finitely many (smooth) arcsγj that haveC2

parameterizationszj : [tj−1, tj ] → γj , j = 1, . . . , n, with

• zj (tj ) = zj+1(tj ) for j = 1, . . . , n − 1, andzn(tn) = z1(t0),

• π − arg[z′
j+1(tj )/z

′
j (tj )] = π/αj with 1< αj < ∞, and

• |z′
j | ≡ 1 on[tj−1, tj ].

The cornersPj = zj (tj ) have interior angles that measureπ/αj , which is between 0 andπ .
Let T = Tw be the complex unit tangent vector atw ∈ ∂Ω providedw is not a corner. So
dw = Tw dsw . Here, and in what follows, we will often use subscripts to denote a funct
argument, not its derivative, in order to reduce the number of parentheses.

A domain is piecewise-smooth if its boundary has parameterizations satisfyin
above conditions.We exclude corners with angle greater thanπ because at such poin
the Szeg̋o kernel is infinite, and our uniform estimates will fail.

Theorem 1. If Ω � C is a multiply connected domain with piecewise-smooth boundar
then there is an explicit functionh ∈ O(Ω ×Ω), extending smoothly tōΩ ×Ω̄ \{(Pj ,Pj )},
so that the kernel

Ch(z,w) = Tw

2πi

[
1

w − z
+ h(z,w)

]

satisfiesAh = Ch − C∗
h ∈ L∞(∂Ω × ∂Ω), whereC∗

h(z,w) = Ch(w, z).

We identify an operator with its kernel viaAf (z) = ∫
∂Ω A(z,w)f (w)dsw, for instance.

The operatorAh = Ch − C∗
h is then compact, and we have the following

Theorem 2. WithΩ andCh as above, the Szeg˝o projection can be written as the compo
tion of bounded operators,S = Ch(I +Ah)

−1, and the Szeg˝o kernel satisfies the Fredhol
equation of the second kind,

S(z, ā) −
∫

∂Ω

Ah(z,w)S(w, ā) dsw = C∗
h(z, a) for a ∈ Ω, z ∈ ∂Ω. (2)
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Proof. In fact, by Theorem 1, the operatorAh is Hilbert–Schmidt. Moreover, iff ∈
O(Ω) ∩ C(Ω̄), then by Stokes’ theorem,∫

∂Ω

h(z,w)f (w)dw =
∫ ∫

Ω

∂

∂w̄

[
h(z,w)f (w)

]
dw̄ dw = 0 for z ∈ Ω,

as bothh andf are holomorphic. SoCh reproduces holomorphic functions by the Cauc
integral formula. In fact,Ch projects to holomorphic functions, too, ash is holomorphic.
So the theorem’s first assertion follows from a fact about Hilbert spaces—ifC is a densely
defined projection on aHilbert space andA= C − C∗ is compact, thenC is bounded, and
the orthogonal projection can be writtenC(I +A)−1.

Equation (2) follows by writingS(I +Ah) = Ch, taking adjoints, and applying an a
proximate identity. By the Fredholm alternative, its solution is unique.�

4. Construction of the singular function

The functionh will be a sum
∑

j hj , where eachhj is holomorphic onΩ × Ω , and

smooth onΩ̄ ×Ω̄ except at(Pj ,Pj ). Sincehj comes from eachPj , we drop subscripts fo
the remainder of this section and letP refer to any of thePj , andh the correspondinghj .

At cornerP , construct two circles that are exterior toΩ so that one circle is tangent
∂Ω atP in each direction. These circles intersect atP with angleπ/α and they have a sec
ond point of intersectionP ′. We allow for the case that lines are circles (with infinite rad
so possiblyP ′ = ∞. If P ′ �= ∞, the mapw → (w −P)/(w −P ′) sendsΩ injectively into
a wedge with angleπ/α, and the map

u(w) =
{ [P ′(w − P)/(P ′ − w)]α, P ′ �= ∞,

(w − P)α, P ′ = ∞,
(3)

sendsΩ injectively into a halfplane. Furthermore,u straightens the corner atP so that the
boundary ofΩ ′ = u(Ω) is at leastC1-smooth nearu(P ). Define

h(z,w) =
√

u′(w)
√

u′(z)
u(w) − u(z)

− 1

w − z
, z �= w ∈ Ω̄,

Fig. 1. Construction of the singular function.
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so thath is holomorphic in bothw,z ∈ Ω . The square roots make sense sinceu is injective.
Moreover, sinceα > 1, it follows thath(z,w) = −1/(w − z) if w or z equalsP , soh is
unbounded forw,z nearP . Elsewhere,u′ �= 0 andh extends smoothly to the boundary.

The function

Tw

2πi

√
u′(w)

√
u′(z)

u(w) − u(z)

is the pullback of the Cauchy kernel fromu(Ω) under theH 2-preserving isometry
L2(∂Ω) 
 (f ◦ u) · √u′ ← f ∈ L2(∂Ω ′). Moreover, sinceu(Ω) is smoother atu(P ) than
is Ω at P , it should more closely resemble the Szegő kernel atP than does the Cauch
kernel forΩ . So as defined,h gives a reasonable correction to the Cauchy kernel foΩ

atP .

5. Proof of Theorem 1

Back to the earlier notation we leth = ∑
j hj , where eachhj corresponds to a co

nerPj , and is constructed as in the previous section. We must show that

Ch(z,w) − Ch(w, z) = Tw

2πi

[
1

w − z
+

∑
j

hj (z,w)

]

− T̄z

2πi

[
1

w̄ − z̄
−

∑
j

hj (w, z)

]

is bounded forz,w ∈ ∂Ω , and for this we need only considerw andz close to one anothe
Recall thathj is unbounded only for bothw andz nearPj ; moreover, where∂Ω is smooth,
Tw(w − z)−1 − T̄z(w̄ − z̄)−1 is bounded. So, dropping subscripts, we need only verify
boundedness of

Tw

[
1

w − z
+ h(z,w)

]
− T̄z

[
1

w̄ − z̄
− h(w, z)

]
= Tw

√
u′

w

√
u′

z

uw − uz

− Tz

√
u′

w

√
u′

z

ūw − ūz

,

wherew,z ∈ ∂Ω are both near a cornerP which has interior angleπ/α, andu is given by
Eq. (3). For simplicity assumeP = 0 and replaceP ′ by P .

We use the convention thatA ≈ B means there is a constantc so thatc|A| � |B| �
c−1|A|, andA � B means there is a constantc so that|A| � c−1|B|. The constants ma
depend on up to two derivatives of the parameterization, and can therefore be controlled
the maximum curvature of the boundary. We reiterate the convention thatsubscripts will
often be used to indicate a function’s argument; primed notation will be used to indica
the derivative.

Case1. Suppose first thatw and z are on the same side of the corner and that
common side is parametrized byt → zt = z(t) with z0 = 0, z′

0 = eiθ and |z′
t | ≡ 1. We

assume thatzt is smooth up to the corner, but it parameterizes∂Ω only on one side. We
setw = zs andz = zt , wheres, t � 0.
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The estimates are essentially the same forP = ∞, so we consider the caseP �= ∞. We
have first,

u(w) − u(z) =
(

Pzs

P − zs

)α

−
(

Pzt

P − zt

)α

=
s∫

t

αPα+1zα−1
r z′

r

(P − zr )α+1 dr.

Then usingzr = eiθ r + O(r2) andz′
r = eiθ + O(r) we have

u(w) − u(z) = α

s∫
t

rα−1eiθα + O(rα) dr

= eiθα(sα − tα) + O
(
(sα + tα)(s − t)

) ≈ sα − tα. (4)

Next,

Tw

√
u′

w

√
u′

z · [u(w) − u(z)
]

= z′
s

√
αPα+1zα−1

s

(P − zs)α+1

√
αPα+1zα−1

t

(P − zt )α+1

s∫
t

αPα+1zα−1
r z′

r

(P − zr )α+1
dr

= (st)(α−1)/2z′
s

√
Pα+1(zs/s)α−1

(P − zs)α+1

√
Pα+1(zt /t)α−1

(P − zt )α+1

×
s∫

t

α2rα−1Pα+1(zr/r)α−1

(P − zr )α+1
z̄′
r dr,

and after switchingz andw, and conjugating,

Tz

√
u′

w

√
u′

z · [u(w) − u(z)
] = (st)(α−1)/2z̄′

t

√
Pα+1(zs/s)α−1

(P − zs)α+1

√
Pα+1(zt /t)α−1

(P − zt )α+1

×
s∫

t

α2rα−1Pα+1(zr/r)α−1

(P − zr )α+1 z′
r dr.

Then, since

z′
s

√
Pα+1(zs/s)α−1

(P − zs)α+1

√
Pα+1(zt /t)α−1

(P − zt )α+1

Pα+1(zr/r)α−1

(P − zr )α+1
z̄′
r

− z̄′
t

√
Pα+1(zs/s)α−1

(P − z )α+1

√
Pα+1(zt /t)α−1

(P − z )α+1

Pα+1(zr/r)α−1

(P − z )α+1 z′
r

s t r
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Tw

√
u′

w

√
u′

z · [u(w) − u(z)
] − Tz

√
u′

w

√
u′

z · [u(w) − u(z)
]

� (st)(α−1)/2(s − t)

s∫
t

rα−1 dr � (st)(α−1)/2(s − t)(sα − tα). (5)

(In this estimate, the implied constant depends on two derivatives ofz.) Then, putting
together (4) and (5), we have

Tw

√
u′

w

√
u′

z

u(w) − u(z)
− Tz

√
u′

w

√
u′

z

u(w) − u(z)
� (st)(α−1)/2(s − t)(sα − tα)

(sα − tα)2
� 1.

Case2. Suppose, then, thatw andz are on opposite sides of the corner, and the
sides are parameterized byws with w0 = 0,w′

0 = eiθ , and|w′
s | ≡ 1, and byzt with z0 = 0,

z′
0 = ei(θ+π/α), and|z′

t | ≡ 1. We assume thatws andzt are smooth up to the corner, a
we setw = ws andz = zt for s, t � 0. ThenTw = w′

s andTz = −z′
t .

We first estimate

u(w) − u(z) =
[

Pws

P − ws

]α

−
[

Pzt

P − zt

]α

= wα
s (1+ · · ·)α − zα

t (1+ · · ·)α

≈ (eiθ s)α − (ei(θ+π/α)t)α = eiθα(sα + tα). (6)

Next,

Tw

√
u′

w

√
u′

z · u(w) − Tz

√
u′

w

√
u′

z · u(w)

= w′
s

√
αPα+1wα−1

s

(P − ws)α+1

√
αPα+1zα−1

t

(P − zt )α+1

(
Pws

P − ws

)α

+ z′
t

√
αPα+1wα−1

s

(P − ws)α+1

√
αPα+1zα−1

t

(P − zt )α+1

(
Pws

P − ws

)α

= α · sα(st)(α−1)/2

[
w′

s

√
Pα+1(ws/s)α−1

(P − ws)α+1

√
Pα+1(zt/t)α−1

(P − zt )α+1

(
Pws/s

P − ws

)α

+ z′
t

√
Pα+1(ws/s)α−1

(P − ws)α+1

√
Pα+1(zt /t)α−1

(P − zt )α+1

(
Pws/s

P − ws

)α
]
.

Then what is in brackets is differentiable ins and t , the square roots are again bound
away from 0, and ats = t = 0 it equals
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eiθ eiθ(α−1)/2ei(θ+π/α)(α−1)/2e−iθα + e−i(θ+π/α)e−iθ(α−1)/2e−i(θ+π/α)(α−1)/2eiθα

= ei(π/α)(α−1)/2[eiθ eiθ(α−1)e−iθα + e−i(θ+π/α)e−i(θ+π/α)(α−1)eiθα]
= ei(π/α)(α−1)/2[1+ e−i(θ+π/α)αeiθα] = 0.

From this we conclude that

Tw

√
u′

w

√
u′

z · u(w) − Tz

√
u′

w

√
u′

z · u(w) � sα(st)(α−1)/2 · (s + t). (7)

(The implied constant again depends on two derivatives ofz andw.) By interchangingw
andz, then conjugating, we also conclude that

−Tw

√
u′

w

√
u′

z · u(z) + Tz

√
u′

w

√
u′

z · u(z) � tα(st)(α−1)/2(s + t). (8)

Putting together (6)–(8), we have

Tw

√
u′

w

√
u′

z

u(w) − u(z)
− Tz

√
u′

w

√
u′

z

u(w) − u(z)
� (sα + tα)(st)(α−1)/2(s + t)

(sα + tα)2
� 1. �

Notice that it is not the case thatCh(z,w) − Ch(w, z) is continuous at the corner. F
supposew = zs andz = zt lie to the same side of the corner, and taket = λs for some
λ > 0. Then

(st)(α−1)/2

sα−1 + tα−1
= λ(α−1)/2

1+ λα−1
,

which assumes values from 0 to 0.5 depending onλ. So forw andz close to the corner
the kernelCh(z,w) − Ch(w, z) assumes a range of values, and is therefore discontinu

6. Example: the square

In this section, we illustrate for the square how quickly the Nyström solution of Eq
converges to the Szegő kernel. We use a square with side length 1 and with centera.
Let t → z(t) parameterize the boundary, witht ∈ [0,4] the arclength parameter, andz(0)

one of the corners. We show the error in computing the functiont → S(zt , ā) for three
situations. First, we compute the Szegő kernel using the unmodified Cauchy kernel; t
is Kerzman and Trummer’s method in [5]. Then we compute the kernel using prelim
maps that are squaring maps—these maps completely straighten the boundary n
corners. Finally, we compute it using maps that do not depend on the curvature n
corners. This better illustrates how the method should work for general piecewise smoo
domains.

For comparison, we also compute the Szegő kernel using the Riemann map. In pa
ticular, the functions = s(z) that maps the square biholomorphically to the unit disc
s(a) = 0 ands′(a) > 0, is given bys(z) = ψ ◦ sn(z − 1/2), where snz is the Jacobian
elliptic function (see Nehari [8, p. 280]), andψ is a linear transformation that ensur
normalization. The Szegő kernel is thenS(z, ā) = √

s′(z)s′(a)/2π (see Bell [2, p. 92]).



162 M. Bolt / J. Math. Anal. Appl. 296 (2004) 154–164

of the
ishes

rgence

orners,
e

Fig. 2. Graph of|S(zt , ā)| for the square.

The reason we use the square is because ofthis alternate solution for the Szegő kernel,
with which we can determine the error for any approximate solution. The actual size
Szeg̋o kernel according to this method is shown in Fig. 2. Notice that the kernel van
at the corners.

For our approximate solutions, recall the Nyström method. Given an equation

f (t) +
L∫

0

K(t, s)f (s) ds = g(t),

and n > 0, define collocation points 0< tj < L for 1 � j � n according totj = (j −
1/2)L/n. At these points, define a functionfn as the solution of the matrix equation

fn(tj ) + L

n

n∑
k=1

K(tj , tk)fn(tk) = g(tj ).

Then definefn on [0,L] by interpolating its values at thetj ,

fn(t) = g(t) − L

n

n∑
k=1

K(t, tk)fn(tk).

Of course, this function does not solve the problem exactly, but there are conve
results forfn → f depending on the smoothness ofK.

6.1. Unmodified Cauchy kernel

This is the method Kerzman and Trummer used in [5]. We findfn for n = 32, where

g(t) = 1

2πi

z̄′
t

ā − z̄t

and K(t, s) = − 1

2πi

[
z′
s

zs − zt

− z̄′
t

z̄s − z̄t

]
.

In Fig. 3, we show the error|Sn(zt , ā) − S(zt , ā)| as a function oft , whereSn(zt , ā) is the
approximate solution given by the Nyström method. The spikes correspond to the c
where in fact, the Szegő kernel is zero. For larger values ofn these spikes seem to becom
narrower, but they remain tall.



M. Bolt / J. Math. Anal. Appl. 296 (2004) 154–164 163

at the

,

hese
urvature
ompa-
Fig. 3. Error in computingS(zt , ā) using the unmodified kernel (n = 32).

Fig. 4. Error in computingS(zt , ā) using the first modified kernel (n = 16).

6.2. First modified Cauchy kernel

We findfn for n = 16, using a modified Cauchy kernel based on squaring maps
corners. In particular, letuj (w) = (w − Pj )

2 for j = 1,2,3,4, and

hj (z,w) =
√

u′
w

√
u′

z

uw − uz

− 1

w − z
,

as in Section 3. Set

Ch(z,w) = Tw

2πi

[
1

w − z
+

∑
j=1,2,3,4

hj (z,w)

]
.

We then use

g(t) = Ch(a, zt ) and K(t, s) = −Ch(zt , zs) + Ch(zs, zt ).

In Fig. 4, we show the error|Sn(zt , ā) − S(zt , ā)|, whereSn(zt , ā) is the solution given by
the Nyström method. There is significant improvement, especially at the corners.

6.3. Second modified Cauchy kernel

Here we use mapsuj (w) = [P ′
j (w −Pj )/(P

′
j −w)]2, whereP ′

j lies outside the square

a distance
√

2 fromPj along the line extending from the square’s center. The use of t
maps better reflects the situation when one uses maps that do not depend on the c
near the corner. We show the error in Fig. 5. Evidently, the error at the corners is c
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Fig. 5. Error in computingS(zt , ā) using the second modified kernel (n = 16).

rable to the previous situation, but the error at the smooth points is comparable to th
situation.
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