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Abstract

This paper is concerned with the exact number of positive solutions for boundary value problems
1Y'1772y"Y + Af(y) =0 and y(—1) = y(1) = 0, wherep > 1 andx > 0 is a positive parameter. We
consider the case in which the nonlinearjtys positive on(0, co) and(p — 1) f (u) — uf’(«) changes sign
from negative to positive.
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1. Introduction

This paper is concerned with the exact number of positive solutions of the one-dimensional
p-Laplacian Dirichlet problem

{ (YOI +2fG1) =0, te(=1D), 1.1)
y(=1)=y1) =0,
wherep > 1, f € C[0, 0c0) N C%(0, 00) andx > O is a positive parameter. The problem (1.1)

arises in many different situations. Some results have been obtained under different assumptions
on f andp, for instance, see [1-5,9-12,15-18].
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For (1.1) and wherp = 2, Laetsch [10] first gave an exact multiplicity result for general
nonlinearity f under the assumptions thdt satisfiesf («) > 0 on [0, o0), f(u) IS a convex
function ofu, and f (1) /u is eventually strictly increasing. He proved that there exist$ a 0
such that (1.1) has exactly two positive solutions for @ < A*, exactly one for. = A*, and
none fori > A*. His method is based on a quadrature method (called the time map) and the
convexity assumption of the nonlineari. Castro et al. [3] considered the case whiths
monotonically increasing and concavg’(< 0) with f(0) <0 and f(«) > O for largeu. For
special nonlinearityf, Addou et al. [1], Sanchez and Ubilla [14] and Liu [11] obtained the exact
multiplicity result for f («) = u® + u? with @ > p — 1> B > 0. Cheng [4] discussed the case of
p=2andfu)=u® —uf witha > > —1.

Recently, for (1.1) with the general case pf- 1, Karatson and Simon [8] investigated
convex nonlinearity (a natural generalization of convexity). Wang and Yeh [17] obtained the
exact result for nonlinearity’ satisfying

(i) f(0)>0andf(u)>0foru=>0;
(ii) there exist positive numbers < B such that
(p—=Df@) —uf'm)>0  on(0,A),
{ (p—Df(A)—Af'(A)=0,
(p—Df@w) —uf'u) <0  on(A,+00),
and
B B
/[(p — D f(u) —uf' ()] du = p/f(u)du — Bf(B)=0;
0 0
(i) wf'w)/fwm)>—1/(1+ p)on (0, A) anduf’(u)/f (u) is increasing oA, B).

In particular, f is positive on(0, co) and(p — 1) f (u) — uf'(u) changes sign from positive to
negative.

In the present paper our aim is to investigate the case which nonlingaigypositive on
(0,00) and(p — 1) f (u) — uf'(u) changes sign from negative to positive, for example,

{ Y + A%V +y)=0, te(-11),
y(=)=y(1) =0,
wherea > 1. We note thai“e™ + u is convex—concave—convex @f, co). To the author’s

knowledge, it is difficult to obtain exact multiplicity result and remains to be considered for very
largea, see Remark 4.3.

(1.2)

2. Main results
Assume thap > 1, f € C[0, oo) N C2(0, oo) and the following conditions are satisfied:

(A1) f(0)=0, f(u) >0foru >0and

1 1
/|uf/(u)| du < oo, /|u2f”(u)|du < 00. (2.1)
0 0
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(A2) There exists d/; € (0, co) such that

gu) <0 forO<u < Ui, gU1)=0, gw)>0 foru=> U, (2.2)
and
400
O0< / ug(u)du < oo, (2.3)
0
where
gw)=(p—=Df@ —uf'w), ue(0,00). (2.4)

By (A2) itis clear that there exists a unique € (Ui, oo) satisfying

Uz

/ug(u) du=0.

0

Since(f (u) /uP~1y =

ing on (U1, o0). Let

(2.5)

—g(u)/u?, we have thaif (u) /u?~1 is increasing o0, U1) and decreas-

Iirrg f)/uPt=1Lq, Jim f)/uP~t=Lo. (2.6)
u— 0+
Then 0< L1 < oo and 0< L2 < co. Denote by
_1\Vr
C,= (”—) : 2.7)
p
1/p
Wy = (£) Jo e Li>0, (2.8)
+00, L1=0,
and
1/p
Wy = (% ) fo a- ;p)l/p dt, L2>0, (2.9)
+00, L,=0.

Our main result for exact multiplicity of positive solutions of (1.1) is the following theorem.

Theorem 2.1. Letp > 1 and f € C[0, 0o) N C?(0, oo) satisfy(A1), (A2) and

(A3) [rg(r)]1?>12g(r) +rg (] J§ ugw)du for r € Uz, Ua).

Put

r=min{[C,W1]7, [C,W2IP},  do=maX{[C,W1l?, [C,W2]"}.
Then there exist® < A* < A1 such that(1.1) has

(i) no positive solution fob < 1 < A*;

(i) exactly one positive solution far= 21*;
(iii) exactly two for* < A < Aq;
(iv) exactly one fol1 < A < A2 wheniy < Ag;
(v) nofori > A2 whenis < 4o00.
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The proof of this theorem will be conducted in the next section. Note ghat) =
(p — 2 f'(u) — uf”(u) is permitted to change sign dit/1, U») in (A3), see Remark 4.1. In
particular, we have the following theorem. In Section 4, an interesting application of this theo-
rem will be given.

Theorem 2.2. Letp > 1 and f € C[0, co) N C2(0, o0) satisfy(Al) and(A2). Put
go(r)=r’g(r).  gj(N=rg;_4(r). j=123
Assume that one of the following three conditions is satisfied

(i) g1(r) =00n (U1, U2);
(i) fe C3(0, 00) and there exists € (U1, Us) such that
g1(r) =20 on(Uy,u1), g1(r) <0 on(uy, Uz),
and
g2(r) <0 on(uz, U2);
(i) f e C*0,c0) and there exist/; < u1 < us < U, such that
g1(r) =20 on(Uy,u1), g1(r) <0 on(uy, Uz),
and

g2(r) <0 on(uy,uz), g3(r) =0 on(uz, U).
Then(A3) holds.

Proof. Let
ho(r) = r2<[rg(r)]2 — [Zg(r) + rg/(r)] / ug(u) du).
0

Then

ho(r) = [g0)]? — g1(r) / ug () du,
0

hi(r) =rho(r) = go(r)g1(r) — g2(r) / ug(u)du,
0
and
ha(r) = rity(r) = [g1()]? — g3(r) f ug(u) du.
0
By (A2) and (2.5) we have that

go(r)>0 and /ug(u) du <0 forr e Uy, Uy).
0
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(1) If the condition (i) is satisfied, then it is clear thajf(r) > 0 on (U1, Ua).
(2) If the condition (ii) is satisfied, then we have that

ho(r) 20 on(Uz, u1),
ho(U2) = [g0(U2)]” > 0.
and
hi(r) <0 on(u, U2).
It follows thathg(r) > 0 on(Uz, U).
(3) For the condition (iii), we have that
ho(r) =0 on(Uiu1),  ho(U2) =[go(U2)]* =0,
hi(r) <0 on(u, uz), h1(Uz) = go(U2)g1(U2) <0,
and
ha(r) 20 on(uz, U2).
It follows that/1(r) < 0 on(u1, U2) andhg(r) = 0 on(Uy, U2).

The proof of Theorem 2.2 is completer

Remark 2.1. Let p > 1 and f € C[0, 00) N C3(0, c0) satisfy (A1) and (A2). If there exists
r1 € (U1, Uz) such thatg1(r) > 0 on (U, r1) andga(r) < 0 on (r1, Uz), then by Theorem 2.2
we have that (A3) holds.

Remark 2.2. It follows from (A2) that—fO’ ug(u) du is positive and decreasing with respect to
r € (Uy, Uz). By
< r2g(r) ) _r(rg(m12 = [2g(r) +rg' ()] J§ ug(u) du)
—Jo ug(u)du (—Jo ug(u) du)?
we have that (A3) holds if and only if

is nondecreasing ofU1, Uz).
3. Proof of Theorem 2.1

The time map formula which we apply to study thd_aplacian Dirichlet problem (1.1) takes
the form as follows:

r r _1/,;
T(r):/(/f(u)du) dv, r€(0,00). (3.1)
0 v

First, we state the following lemma without proof (cf. [2,6-8,13,15,17]).
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Lemma 3.1. Letr > 0. Then(1.1) has a positive solution satisfying= max¢[—1,1) y(¢) if and
only if A =[C,T(r)]”, and in this case the solution is unique.

Thus to study the exact number of positive solutions of (1.1) is equivalent to studying the
shape of the time maf'(r) on (0, o). In the following lemmas, we summarize some basic
results required for our investigations.

Lemma3.2.lim,_ o T(r) = W1, andlim,_, 1 oo T (r) = Wo.

Proof. It follows that
1

[ fs) o
rs _
T(r)=/< (rS)Pflsp lds) dt.

0 t

If L1 =0, thenitis clearthatlim, o 7 (r) = +0o0 = Wi. If L1 > 0, then the dominated conver-
gence theorem implies that

p\Y? L —p
lim T(r)= <—) / /psp_lds dt = Wy.
r—0+ L1
0 \i

Finally, lim,_, ;~ T (r) = W can be obtained by [13, Corollary 2.6]0

Now, forr > 0 andr € [0, 1], denote by

Do(r, t):rfp/f(u)du, D1(r, t):rfp/uf’(u)du, (3.2)
rt rt
and
Da(r, 1) :r_"’/uzf”(u)du. (3.3)

rt

Itis clear that

r

(p — 1 Do(r,t) — D1(r,t) =1r"P / gu)du. (3.4)
rt

Let

1
[ (p—DDo(r, 1) — Da(r, 1)
Foy= [Do(r. 0)]E1/7

dr, (3.5)

1
Gl(r):/ —(p = D)?Do(r,1) + 2p — 3 D1(r, 1) — Da(r, 1) ds

[Do(r, )] +1/r ’ (39

0
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and

1
Gory = [ L= VDol 1) — Datr, nJ?
2= [Do(r, )I2+1/P

dt. (3.7)

Remark 3.1. Fix r > 0. Itis clear thatDg(r, 1) > 0 for 0< ¢ < 1. Since

im 2000 ety ), D) /') -y, Dant) _rA0),
-1 1—t¢ t—1 Do(r, t) f@r) t—1 Do(r, 1) £(r)
we have that
l D D ,
/ T~ di <0, sup 1(r, 1) < o0, 2(r, 1) -
o [DO(I‘,Z‘)] /p 1€(0,1) DO(}", t) t€(0,1) DO(’,’ t)

It follows from p > 1 thatF(r), G1(r) andG2(r) are well defined for € (0, o0).

Lemma 3.3. T and F are two differentiable functions, and for any (0, co)

1
dt
e Z/ [Do(r. 017’ (3.8)
0
prT’(r)=F(r), (3.9)
prF'(r)=pGi(r) + (1+ p)Ga(r). (3.10)

Proof. (3.8) can be obtained by (3.1), immediately. From

8D(;(rr, 2 = —pr_”_lf f@ydu+r=P[f@r)—tf(rn)]
rt
= —pr*p*l/ Sfu)du+ r’”’l[rf(r) —(r0) f(r1)]
rt
= —pr_p_l/ f(u)du +r—1’—1/[uf(u)]’du
rt rt
:r_p_l((l— p)/f(u)du +/uf’(u)du)
rt rt
and
303(:’ Dot f uf'@ydu+r=P[rf' ) = *rf ()]

rt
r

= —prfpfl/ uf’ (u)du + rfpfl[rzf/(r) - (rt)zf’(rt)]

rt
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r r

:—pr_p_lfuf’(u)du—i—r_p_l/[uzf/(u)]/du
rt rt

f u® f”(u)du>

rt

:r_p_l((Z— p)/uf’(u)du +
rt

we have that
dDo(r,t) (1 —p)Do(r,t) + D1(r, 1)

(3.11)
ar r
and
aDg(rr, n_@- p)Dl(r,rt) + Da(r 1) (3.12)
Combine (3.8) and (3.11) to obtain
1
o1 1 (1—p)Do(r,t) + Di(r,t) . F(r)
T'(r)= / Dot TP . dt = o (3.13)

It follows from (3.11) and (3.12) that
i((ﬁ —1)Do— Dl) _ (1+ p)[(1— p)Do + D1ll(p — 1) Do — D1]

or Dé-+l/p prD§+1/P
n (p—DIA—-p)Do+ D11 —[(2— p)D1+ D3]
rDé+l/p
_ (14 p)l(p— 1Dy — D1J?
- 2+1/
prDg p
—(p—1)2Do+ (2p —3)D1— D>
+ 1+1/ :
rD0 p

This implies (3.10). O
Lemma3.4. Go(r) > Oforr > 0.

Proof. Fix r > 0. From (3.4) and (A2) we have thgt — 1) Do(r, t) — D1(r, t) is not identically
zero on any open subinterval @, 1) with respect ta. Thus, this lemma is clear.C

Lemma3.5. F(r) < Oforr € (0, Uy].

Proof. From (A2) and (3.4) we have th&p — 1) Do(r,t) — D1(r,t) < O for r € (0, U1] and
t € (0, 1). Thus, the lemma follows. O

Lemma3.6. F(r) > 0forr € [Uz, 00).

Proof. Fix r € [Uz, o0). We distinguish two cases.
Case(i). Assume thagfg g(u)du > 0. It follows from (A2) that

(i-i) if fo' gu)du >0, thenrt > Uy and [’ g(u) du > 0;
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(i-ii) if [y g(u)du <0, then

r r rt rt
/g(u)du:/g(u)du—/g(u)du}—/g(u)du>0.
rt 0 0 0

By (3.4) we have thatp — 1) Do(r, t) — D1(r,t) > O forz € (0, 1). In particular,F (r) > 0.
Case(ii). Assume thatfor gw)du < 0. Byr > Uz > Up and (A2) we have that there exists a
uniquetg € (0, 1) such that

(p — 1) Do(r,t) — D1(r, 1) = rfp/g(u) du <0 forr e (0, 1g),
rt
and
(p — 1) Do(r,t) — D1(r,t) = r_p/g(u) du>0 forte(rnl).

rt

SinceDo(r, t) is positive and decreasing with respect (0, 1), it follows that

fo

F(r) / [(p — )Do(r. 1) — Dy(r.0)] dr
0

> _—
[Do(r, 10)]+1/P

1
[t =0000:0) = Dacr. 1)
o]

1

1
= (Do 10) ] 77 /[(p — 1) Do(r, 1) — D1(r, 1) ] d1.
[Do(r, t0)] )

1
T Dotr, 11717

By (3.4) andr > U, we have that

1 1 r r
/[(p —1)Dg(r, t) — D1(r, t)] dt = r_p/ dt/g(u) du=r"177 / ug(u)du > 0.
0 0 ot 0
Thus, F(r) > 0 follows.
The proof is complete. O
In the following part, denote by
rg(r)
Nr) = ——>———, re0U), (3.14)
— Jougw)du

r

o(r,v)=rg(r) —vg) + (n(r) + 1) / gt)ydt, re(0,Uy), ve(0,r], (3.15)

v
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Y (r, v) =r2g(r) — v2g(v) + n(r) / tg(t)dt, re(0,Up), ve(O,rl (3.16)
It follows from (A2), (A3) and Remarkv2.2 that

nU)=0,1n(r)>0 and n@r) =0 forre (U, Uy). (3.17)
Lemma3.7. ¥ (r,v) > 0for r € (Uy, Up) andv € (0, r).
Proof. Fix r € (U1, Up). Since

WD) (2080 + %' @)] = n(r)vgw)

= —[2vg(v) + v%¢' ()] — n(W)vg (V) + [n(W) — () g (v),

it follows that
W v _ U[Zg(v) +vg' )] fo ug(u)du — [vg(v)1?
v — Jo ug()du
By (A2), (2.5) and (3.17) we have that

/ug(u) du <0, gw)>0 and nw)—n@k)<0 forve (Us,r).
0

Thus, (A3) implies that
oY (r, v)

Jdv

+ [n(@) = n(r)Jvg ().

<0 forve(Uy,r),

and
Y(r,v) =2y, r)=0 forvelUs,r). (3.18)
Forv € (0, U1), sinceg(v) <0, [y ug(u)du <0 andn(r) >0, we have that

Y(r,v) > rzg(r) +n() / ug(u)du=0 forve(0,Ur). (3.19)
0

The proof is complete. O
Lemma3.8. k(r,v) = fvr¢(r, u)du > 0forr € (U1, Up) andv € [0, r].

Proof. Fix r € (U1, Up). From

k(r,v) = /[rg(r) - ug(u)] du + (n(r) + 1)/ du/g(t) dt

v
r r

=/[rg(r) —ug(u)]du+ (n(r)+1)f(t—v)g(t)dt

v v



J. Cheng / J. Math. Anal. Appl. 315 (2006) 583-598

r

= —v)rgr)+n(r) f ug()du — (n(r) + 1)v/g(t)dr

=Y (r,v) —vd(r,v)

and
ok(r, v)
5 =—¢(r,v)
v
we have that
ak(r, v)

k(r,v) —v

=Y (r,v) forve(,r).
v

Sincek(r,r) =0 and
k(r,0) =r2g(r) + n(r)/ug(u)du =0,
0

by Lemma 3.7 we have thatr,v) >0forve[0,r]. O
Lemma3.9. G1(r) +[p+n@) + 11F(r) = 0forr € (U1, Uy).
Proof. It follows from (3.2)—(3.6) that

1
(p = DDo(r.1) + (p =3 D1(r.1) — Da(r 1)

G1(r) + pF(r) = Dot

0

and

1
r—P frrt g(u)du

Foy= Dot )77

By [ug)] = (p — 1) f(u) + (p — uf’ () — u?f" (u) we have that

(p — 1) Do(r,t) + (p — 3)D1(r,t) — Da(r, t) = r_p[rg(r) — rtg(rt)].

Combine (3.21)—(3.23) to obtain

¢(r,rt)

G1(") +[p+n() + 1 Fr)=r"" Dot 7
0

By Lemma 3.8 we have that
1
/¢(r, rt)dt >0 forr e (U, U2) ands € [0, 1].
s

Suppose to the contrary that there exists @(U1, Uz) such that
G1(r) + [p+n(r)+1]F(r) <O.

593

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Then it follows from (3.24) and the dominated convergence theorem that theresexigtsvith

1

¢(r,rt)
dt <0.
/ [Do(r, t) +e]1t1/p =

By the second mean value theorem of integral we may imply that there £xi48, 1] satisfying

[

1 1

¢(r,rt) di — 1 di — 1 J
/ Dot D) o517 t= Dot 1)+8]1+1/p/¢(r,rt) t——81+l/p/¢(r,rt) t,
0 & H

which contradicts (3.25).
The proof is complete. O

Lemma 3.10. There exists* € (U1, Uz) such thatF(r) < 0 for r € (0, r*) and F(r) > O for
r € (r*, 00).

Proof. It follows from Lemmas 3.5 and 3.6 that there existss (U1, U2) such thatF'(»*) =0
andF(r) > 0forr e (r*, 00).
By Lemmas 3.3, 3.4 and 3.9 we can obtain that

priF'(r*) = p[Gl(V*) + (P +n(r*) + 1)F(r*)] + (14 p)Ga2(r*) > 0. (3.26)
This implies that there existg € (0, r*) such thatF'(r) < O forr € (rg, r*). Denote by
r= inf{ro € (0,r*): F(r) <0forr e (ro, r*)}.

Suppose to the contrary that > 0. It follows F(r1) = 0. By Lemmas 3.3-3.6 and 3.9 we can
also obtain that, € (Uy, Uz) and

priF'(r1) = p[G1(r) + (p + n(r) + 1) F(ry) ] + (1 + p)Ga(r1) > 0,

which contradictsF(r) < 0 for r € (r1,r*) and F(r1) = 0. It follows thatr; = 0. Thus, this
lemma holds. O

Now, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. It follows from Lemmas 3.3 and 3.10 that there existss (U, U2)
such that7’(r) < 0 for r € (0,r*) and7T'(r) > O for r > r*. Let A* = [C, T (r*)]?, then by
Lemmas 3.1 and 3.2 we have the results of Theorem 2.1, immediately.

4. An application of Theorem 2.2

Consider the general case of (1.2)
{ (IY17-2y) + 2% + pyPH =0, 1€ (-1 1),
y(=)=y(@1) =0,
wherep > 1,a>p—1landg >0

(4.1)
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It is clear that (A1) and (A2) are satisfied with

gw)=(p-=Dfw) —uf w)y=u"e"(u—(a—p+1), (4.2)
Ui=(@—p+12), (4.3)
and
1p 1
lewzzl(%) " Jo (lfzdﬁ’ p>0, (4.4)
+00, p=0.

In this section, we discuss the assumption (A3) for (4.1). By Theorem 2.2ugtw) =
(p + Duf () — W?f ), the following theorem can be obtained.

Theorem 4.1. Assume thap > 1, @ > p — 1 and g > 0. If there existy. > U; such that

" u
/ug(u) du=(p+1 / u e " gy — u‘”zeﬂ* >0, (4.5)
0 0
and
Ki(u) >0 or Ka(u) <0 or Kz(u) =0, (4.6)
then(A3) holds for(4.1), whereKo(u) = (u — Uy) and
Kjw) =[(a+2) —u]Kj-1(u) +uK’ ), j=1,2,3. (4.7)

Proof. It follows that
go(u) = ug(u) = u**2e™" Ko(u),
gj(u) =ug)_1(u) =u"*2e™"K;(u),

and

. K )
KjO=—@+2/v1,  lim Mjiul) = (-1)/, (4.8)

j=1,2, 3. SincekK1 is a 2-order polynomial function ankl; (U1) > 0, by (4.8) we have thak';
can be written in the form of

K1(u) = —(u — B1,1)(u — B12), (4.9)
where

0< B11<Ui< By, (4.10)
and

Bipo<u <= Ui<u and Ki(u)<O0. (4.12)
By K2(B1,1) > 0, K2(B1,2) < 0 and (4.8), we can obtain that

Ko(u) = (u — B2,1)(u — B2.2)(u — B23), (4.12)
where

0< B21<B11<B22<Bi12<B3, (4.13)
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and

Boz<u <= Biz2<u and Kau)>0. (4.14)
Similarly, K3(B2,1) > 0, K3(B2,2) <0, K3(B2,3) > 0 and (4.8) imply

K3(u) = —(u — B3 1)(u — B3 2)(u — B3 3)(u — B3 4), (4.15)
where

O<B31<B21<B32<Bz2<B33<By3< B3a, (4.16)
and

Bza<u <<= Byz<u and Kz(u)<0. (4.17)
Now, we have obtained

g1(u)>0 on(Uy, B12),  g(u) <0 on(Byz,00), (4.18)

g2(u) <0 on(Biz,B23),  g2(u) >0 on(Bz3,0), (4.19)

g3(u) >0 on(Bzg3, B3a), g3(u) <0 on(Bz4,0). (4.20)

Finally, U, < u < B3 4 follows from (4.5), (4.11), (4.14) and (4.17). Thus, Theorem 2.2 implies
that (A3) holds. O

In the following examples and remarks, much of the computation is calculated by the symbolic
manipulatotMathematica 4.0

Example 4.1. It follows that
Ko(e+7)=45+4+18p — a(15+ p)
and
Ka(a +7) = 118— 302 — 27p + (103+ 14p) ©' o ().
By &”(a) <0,
@(p—1)=12+68p +11p? > 0,
and

(45+ 18p> 25(3600+ 1380p + 184p? + 9p3) 0
= > 9

15+ p (15+ p)?
we have that itt > p — 1 andK(e + 7) > 0 thenK3(¢ +7) > 0, i.e.,
Ko(a+7)<0 or Kza+7)>0 foralla>p-—1
Thus, Theorem 4.1 implies (A3) if
at? at7
/ ugw)du=(p+121 / utlte " du — (a0 4+ 1)+ 2D > 0,
0 0
Since(u®tle ) <0 on(a + 1, 00), we have

at7 a+7
(p+1 / ule " du > (p+ 1) / u e ™ du > 6(p + 1)(a + 7)* e @D,
0 a+1

It follows that (A3) holds if O< p —1 <o <6p —1andg > 0.
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Example4.2. For p =2, = 10° andB >0, let; = 113. Then
“w
(p+1) / utle™" qu — p*+2e " = 2.53503x 10t°°,
0

and
Ki(pn) =—41, Ka(pn) = —2261
By Theorem 4.1 we have that (A3) holds.

Remark 4.1. For Example 4.2, ijx = 112 then
n
(p+1) / utle™" du — pot2e " = —2.08942x 10°8,
0

K1(n) = —18 andK>(u) = —2284. By (4.10), (4.11) and (4.14) we have
O0<B11<U1<B12<112< Uy <113< By 3.

It follows thatgs (u) = ugg(u) = u?(2g(u)+ug'(u)) changes sign ofl/1, U>), and the condition
(i) of Theorem 2.2 is satisfied. In particular, by(U1) > 0 > g1(U2), g(U1) =0, andg(U2) > 0
we haveg’(U1) > 0 andg’(U2) < 0. It follows thatg’ (1) changes sign otU1, U>).

Example4.3. For p =2, « = 10* andg > 0, letx = 10232. Then
"
(p+1 / utle™ qu — pu*t2e* = 4.80629528x 10°°66%
0

and
K1(un) = —43358 K2(u) = 5245165 K3(u) = 110390664
By Theorem 4.1 we have that (A3) holds.

Remark 4.2. For Example 4.3, ijx = 10231 then
"
(r+1 / utle™" qu — p®t2e " = —1.448940255¢ 103°662
0

and

K1(w) = —42897 Ko(w) =5117153  Ka(n) = 130731728
By the proof of Theorem 4.1 we have

0< B11<Ui < B12< B23<10231< Uz < 10232< B3 4.

It follows that condition (iii) of Theorem 2.2 is satisfied.
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Remark 4.3. By the proof of Theorem 4.1 we know that> U; satisfies (4.5) and (4.6) if and
only if Uz < 1 < B3z 4. Reversely, if there exists;a> Uj such that

2 w
/ug(u) du=(p+1) / u e " du — p2t2e 1 <0,
0 0

K1(n) <0, K2(n) > 0, andK3z(u) < 0, thenBs 4 < u < Uz and (4.18)—(4.20) imply that (A3)
cannot be checked by Theorem 2.2. For exampley let2 ando = 1CP. If 2 = 100800, then

n
(r+1 / ut e gy — @21 = —6.58640075% 1096578
0

K1(u) = —538398,K>(11) = 268563204 and& 3(u) = —51984713592.
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