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Abstract

For over 100 years, researchers have attempted to predict transition to turbulence in fluid flows by analyzing the spectrum of the
linearized Navier–Stokes equations. However, for many simple flows this approach fails to match experimental results. Recently,
new scenarios for transition have been proposed that are based on the interaction of the linearized equations of motion with small
disturbances to the flow system. These new “mostly linear” theories have increased our understanding of the transition process, but
the role of nonlinearity has not been explored in detail. This paper is the first of a two part work in which sensitivity analysis is
used to study the effects of small disturbances on transition to turbulence. In this part, we study a highly sensitive one-dimensional
Burgers’ equation as a motivating problem. Sensitivity analysis is used to predict the large changes in solutions in the presence of
a small disturbance. Also, sensitivity analysis is shown to provide more information about the disturbed nonlinear problem than
a purely linear analysis of the problem. In the second part of this work, this analysis will be extended to the three-dimensional
Navier–Stokes equations to show that small disturbances have great potential to trigger transition to turbulence.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the longstanding problems in fluid dynamics is to predict when a flow will transition from a laminar
to turbulent state. This problem has been investigated experimentally, numerically, and analytically for well over a
century. Experiments have shown for various flow configurations that when the Reynolds number reaches a certain
critical value, the flow becomes turbulent. However, when classical linear stability analysis is applied to this problem,
the method fails to predict the experimentally determined critical Reynolds number for many simple flows [1].

During the past twenty five years nonclassical linear stability techniques have been developed to attack the transi-
tion problem (see [2] for a review). These methods produced new insights into the transition process and generated
two new “mostly linear” theories on the mechanism of transition. First, researchers discovered that certain small per-
turbations to a laminar flow can cause an extremely large transient energy growth in the linearized system [3–6]. This
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energy growth was found to be caused by the nonnormality of the linearized operator (see [7, Chapter IV] for a more
general study). It has been suggested that when the transient growth becomes “sufficiently large,” the flow is “mixed”
by the nonlinearity, producing turbulence [8]. This approach can be roughly summarized by saying that flow systems
are extremely sensitive to small perturbations in the initial flow. This scenario (or a slight modification thereof) has
been proposed by several research groups [3,8–10].

In this transition scenario, it is thought that certain small perturbations to the laminar flow can trigger transition. If
the linearized flow operator is stable, then (under suitable hypotheses) small enough perturbations to the laminar flow
cannot transition [11]. Researchers have hypothesized that as the Reynolds number increases, the perturbations must
be extremely small in order to guarantee that the flow will remain near the base flow [8,9]. If this is true, then it is
possible that the energy in very small initial flow perturbations can grow and cause transition.

Another new approach to transition uses ideas from robust control theory to study the effects of small forcing
on flow systems. The forcing could arise from slight imperfections in a flow experiment, small neglected terms in
the mathematical flow model, microscopic wall roughness, etc. Researchers studied the input/output properties of
linearized flow systems with certain types of small random (forcing) input and found that the energy in the system
could be amplified on the order of the Reynolds number cubed [12,13]. This energy amplification is again due to the
nonnormality of the linearized operator. Transition is also thought to be caused by the nonlinearity mixing the energy
in the system. This transition scenario can be roughly summarized by saying that flow systems are extremely sensitive
to small forcing. In particular, it is possible that the small forcing interacts with the nonlinearity to cause movement
or bifurcation of equilibria leading to transition. This “bifurcation under uncertainty” scenario is studied in [14–16].
This phenomenon will appear in this work in our study of a one-dimensional Burgers’ equation.

Remark. We emphasize that all of these classical and modern approaches to transition have developed out of the study
of the linear Orr–Sommerfeld/Squire equations. These equations are obtained by applying a certain transformation
to the linearized Navier–Stokes equations. This transformation is widely used, but the author is not aware of any
theory guaranteeing that properties of the linearized Navier–Stokes equations (e.g., the spectrum of the linear operator,
transient growth of solutions, etc.) are unchanged after the transformation. Therefore, it is possible that one loses
important information in the transformation. However, we do not consider this possibility here and we assume that
the Orr–Sommerfeld/Squire operator provides valuable insight into the linearized Navier–Stokes operator.

Both of these modern theories have greatly increased our understanding of the transition process, however they have
not yet provided a complete theory explaining the mechanism of transition. In particular, the role of the nonlinearity
in transition is not well understood. This is due to the fact that these new theories are primarily concerned with energy
growth and the nonlinearity in the Navier–Stokes equations conserves energy in many flow situations. It is the linear
term that causes the great increase in energy and therefore much of the work has focused on the linearized system.
A complete picture of the actual mechanism of transition would be a great advance in our understanding of turbulence.
In particular, this knowledge could lead to improved methods for feedback flow control.

This paper is the first of a two part work in which sensitivity analysis is used to analyze the impact of small
disturbances on the transition process in the three-dimensional Navier–Stokes equations. In this paper, we examine
a relatively simple model problem in order to (1) emphasize that extremely small disturbances can cause very large
changes in solutions of nonlinear partial differential equations; and (2) demonstrate that sensitivity analysis can be
used to predict the effects of a small disturbance without solving the full disturbed nonlinear problem. Specifically,
we study a highly sensitive one-dimensional Burgers’ equation whose solutions are known to change drastically if
there is a small disturbance in the boundary conditions. Sensitivity analysis is used to measure the change in the
solution with respect to the small disturbances. In particular, the continuous sensitivity equation method is used to
differentiate the solution of the undisturbed problem with respect to the disturbance parameter. Numerical results
predict the large sensitivity of the solution with respect to the small disturbance. Also, we use high order sensitivities
to give an indication of how the nonlinearity interacts with the small disturbance to create the large change in the
solutions.

In part two of this work ([17], hereafter referred to as Part II), the analysis presented below is extended to study
the role of small disturbances and nonlinearity in transition to turbulence in the Navier–Stokes equations. We use
sensitivity analysis to show that the change in a laminar flow with respect to small variations in the initial data
or small forcing acting on the system is large when the linearized operator is stable yet nonnormal. Therefore, the
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solution of the disturbed flow problem can be large (and possibly turbulent) even if the linearized operator is stable
and the disturbances are extremely small. This analysis extends the “mostly linear” transition scenarios described
above to the nonlinear case. Furthermore, the sensitivity analysis is used to obtain bounds on the magnitudes of the
disturbed solutions which could potentially be used to estimate the size of the disturbances that trigger transition.

We note that sensitivity analysis can be applied to study the effects of many types of small disturbances on many
different nonlinear problems. The new “mostly linear” approaches to stability analysis discussed above give an indi-
cation of the behavior of a nonlinear system under certain general classes of disturbances by studying the linearized
system; however, these approaches are not able to provide specific information about the behavior of a perturbed
nonlinear system. In contrast, the sensitivity analysis approach presented here is able to anticipate the behavior of
a nonlinear system in the presence of specific disturbances. These disturbances are not limited to be of a particular
type or class; the only requirement is that the disturbance enter the equation in a differentiable manner. Moreover, this
sensitivity analysis approach can also be used to gain insight into the response of a nonlinear system to general classes
of disturbances. This is the approach used on the Navier–Stokes equations in Part II of this work.

To begin, we introduce the highly sensitive Burgers’ equation in Section 2 and study the transition of solutions in
Section 3. In Section 4, we recall theoretical results for sensitivity analysis of semilinear parabolic problems. This the-
ory allows us to prove the differentiability of solutions of Burgers’ equation with respect to the disturbance parameter.
In Sections 5 and 6, the sensitivities are shown to predict transition. We close with conclusions, applications, and a
brief overview of the results contained in Part II.

2. Motivating problem: Burgers’ equation

The one-dimensional Burgers’ equation has long been used as a simplified model of fluid flow. This is due to the
fact that Burgers’ equation shares with the Navier–Stokes equations a second-order diffusion term balanced against a
quadratic first-order convection term. In this work, we study the one-dimensional Burgers’ equation

vt (t, x) + v(t, x)vx(t, x) = μvxx(t, x), (1)

with constant nonhomogeneous Dirichlet boundary conditions

v(t,−1) = 1, v(t,1) = −1, (2)

and initial condition

v(0, x) = v0(x). (3)

The subscripts t and x denote partial derivatives with respect to time and space, respectively, and μ is a positive
constant which plays the role of the flow viscosity (or the inverse of the Reynolds number). The focus of this work
is to use sensitivity analysis to study the change in solutions of this system with respect to a small disturbance, i.e.,
we will differentiate the solution with respect to the disturbance parameter. In order to do this in a rigorous fashion,
in this section we give an abstract formulation of the problem and show global existence and uniqueness of solutions.
This abstract framework is used in Sections 5 and 6 to prove the parameter differentiability results.

This Burgers’ equation is known to have a unique smooth steady solution [18], i.e., there is only one smooth
solution of the boundary value problem

U(x)Ux(x) = μUxx(x), U(−1) = 1, U(1) = −1, (4)

which is given by

U(x) = c tanh(−cx/2μ). (5)

The constant c ≈ 1 is chosen so that U satisfies the boundary conditions [18]. The function U plays the role of the
“laminar flow” for this problem. We investigate the fluctuations u about the equilibrium state U defined by v(t, x) =
U(x) + u(t, x). Then u satisfies the fluctuation Burgers’ equation

ut + uux = μuxx − (Uu)x, (6)

u(t,−1) = 0 = u(t,1), (7)

u(0, x) = u0(x) := v0(x) − U(x). (8)
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If the fluctuations u remain small, then the solution v(t, x) of the Burgers’ equation (1)–(3) will remain near the base
flow U , i.e., solutions will not “transition.”

Remark. A fluid flow is normally said to transition if it changes from a laminar (nonchaotic) state to a turbulent
(chaotic) state. In this work, we generalize this concept to other types of systems and say that a solution transitions
from one state to another if the distance between the states is large in some norm. We do not require the latter state to
be chaotic; also, the states may be stationary or time-varying. This notion of “transition” allows us to draw parallels
between the behavior of a relatively simple model problem (Burgers’ equation) and the Navier–Stokes equations.

This fluctuation Burgers’ equation can be formulated abstractly as a differential equation over an infinite dimen-
sional Hilbert space of the form

ẇ(t) = Aw(t) + B
(
w(t),w(t)

)
, w(0) = w0.

Let X be the Hilbert space of square integrable functions, L2(−1,1), with the standard inner product and norm. Define
V = H 1

0 (−1,1), the Hilbert space of functions v ∈ H 1(−1,1) satisfying the boundary conditions v(−1) = 0 = v(1),
with the inner product (u, v)V = ∫

uxvx dx. The linear operator A is given by

Au = μuxx − (Uu)x,

and is defined for all u ∈ D(A) = H 2 ∩ V . We show below that this linear operator generates an analytic C0-
semigroup, denoted eAt , and that the fractional power X1/2 = D((−A)1/2) of the state space is given by V . The
bilinear operator B given by

B(u, v) = −uvx

maps V ×V into X and satisfies B(u, v) � C‖u‖V ‖v‖V for some constant C > 0. In this way, the fluctuation Burgers’
equation can be written as the abstract differential equation above over X, or, equivalently, it can be written as the
nonlinear integral equation

w(t) = eAtw0 +
t∫

0

eA(t−τ)B
(
w(τ),w(τ)

)
dτ

over V . Furthermore, the nonlinearity also conserves energy since

(
B(v, v), v

)
X

=
1∫

−1

(
v3/3

)
x
dx = 1

3

(
v(1)3 − v(−1)3) = 0

for all v ∈ V . In Part II, we give a very similar formulation of the fluctuation Navier–Stokes equations.
Since we are considering the effects of small disturbances on Burgers’ equation, we want to consider the disturbed

equation

ẇ(t) = Aw(t) + B
(
w(t),w(t)

) + f, w(0) = w0, (9)

where w0 ∈ V , f ∈ X, and the operators A and B are defined above. One can use standard methods to show that for
any smooth U , A generates an analytic semigroup, and this equation has a unique solution that exists for all time.

Theorem 2.1. Let U be any function in C1([−1,1]).

(1) The linear operator −A is sectorial, A generates an analytic semigroup, and X1/2 = D((−A)1/2) = V .
(2) For any T > 0, w0 ∈ V , and f ∈ X, there exists a unique solution on [0, T ] to the disturbed fluctuation Burgers’

equation (9).
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Proof. The operator −A can be used to define a continuous sesquilinear form a : V × V → C through integrating by
parts: for u,v ∈ V ,

a(u, v) := (−Au,v)H =
1∫

−1

μux(x)vx(x) − U(x)u(x)vx(x) dx.

Since L∞(−1,1) is continuously embedded in V and U ∈ C1([−1,1]), it is easily shown that there exists positive
constants C, c, and λ such that for all u,v ∈ V ,∥∥a(u, v)

∥∥ � C‖u‖V ‖v‖V , Rea(v, v) + λ‖v‖2
H � c‖v‖2

V .

It is well known that this implies that X1/2 = D((−A)1/2) = V , −A is sectorial, and A generates an analytic semi-
group [19,20].

To show the local existence of a unique solution to the fluctuation Burgers’ equation (9), we use the existence
theory for semilinear parabolic equations [19–21]. Since A generates an analytic semigroup, we need only show that
F(w) = B(w,w) is a locally Lipschitz continuous mapping from Xα to X for some α ∈ (0,1). This is easily done in
the case α = 1/2 where X1/2 = V (for details, see the example in Section 3.3 in [21]). Therefore, there exists T ∗ > 0
so that there exists a unique solution to the problem on [0, T ∗].

The unique solution w(t) will exist on any interval [0, T ] if we show that ‖w(t)‖V = ‖w(t)‖1/2 remains bounded
for 0 � t � T [21, Theorem 3.3.4]. We give a brief sketch of how this can be done. In [22], it is shown that Burgers’
equation falls into a general class of flow equations considered in Section III.3.1 of Temam’s book [23]. Energy
estimates for the solution of the fluctuation Burgers’ equation can be derived in a similar fashion as estimates for the
two-dimensional Navier–Stokes equations with nonhomogeneous Dirichlet boundary conditions (see Section III.3.2
in [23]). In particular, this procedure can be used to show that the solution w of the fluctuation Burgers’ equation is
contained in L∞(0, T ;V ) for any T > 0, and therefore the solution exists on all of [0, T ]. �
3. Transition in Burgers’ equation

To study transition in the Burgers’ equation (1)–(3), we want to know whether the fluctuations about the “laminar
flow,” U , remain small. If we take the classical approach to transition, we would examine the spectrum of the linear
operator A. In this case, the spectrum is known to consist entirely of negative real eigenvalues that are bounded away
from the imaginary axis [18,24]; this is true regardless of the constant μ. Therefore, the linear operator is stable and
solutions of the fluctuation equation (9) with no forcing (i.e., f = 0) and small enough initial data in V will converge
to zero (see [16,19,21]); i.e., there is no transition for any μ, or, analogously, any Reynolds number. In this way, this
Burgers’ problem is similar to Couette or Hagen–Poiseuille (pipe) flow where the Orr–Sommerfeld/Squire operators
are stable for all Reynolds numbers (see [25,26] and [27,28], respectively).

Now we employ the two modern approaches to transition outlined in Section 1. First, we examine the sensitivity of
the problem to the initial data, i.e., we want to know if certain “relatively small” initial data can produce solutions that
transition to another state. For this problem, numerical simulations (not presented here) suggest that solutions of the
fluctuation Burgers’ equation (6)–(8) converge to zero for any initial data. In [24], this is proved for any initial data
that is continuous and satisfies the zero boundary conditions. Thus, transition will not occur for this problem even for
certain very large perturbations of the base flow U .

Next, we examine if the problem is sensitive to small forcing. In particular, we examine the effect of a small dis-
turbance in the boundary conditions on the solution of the Burgers’ fluctuation problem. As mentioned in Section 1,
it is well known that solutions to Burgers’ equation can be “supersensitive” with respect to small disturbances in
the equation and boundary conditions [29–33]. For the most part, this phenomenon has been studied using asymp-
totic analysis. However, we examine this problem from a different point of view using sensitivity analysis and make
connections with the transition problem. For this problem, we will see that the small disturbance effectively moves
the base flow which causes solutions to transition to another state. For more details on this transition scenario, see
[14–16].

Remark. Due to the relative simplicity of the one-dimensional Burgers’ equation, solutions will not transition to a
turbulent state. However, solutions of the fluctuation Burgers’ equation (6)–(8) will “transition” to another state that is
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not near the zero state. This is equivalent to solutions of Burgers’ equation (1)–(3) diverging away from the “laminar
flow.” When we say solutions to Burgers’ equation transition, we refer to this behavior and not to any turbulent
phenomenon.

For the computations in this section, the group finite element method [34,35] is used for the spatial discretization
of the fluctuation Burgers’ equation. This method provides a major computational advantage over the standard finite
element method for many nonlinear partial differential equations. Although the author is unaware of any convergence
theory for this method applied to Burgers’ equation, computational studies suggest that the accuracy of the group
formulation equals, or exceeds, the standard method for both Burgers’ equation and other flow equations [34–36].
Matlab’s ode23s solver is used to approximate the solution of the resulting approximating system of ordinary dif-
ferential equations.

Consider the fluctuation Burgers’ equation with a perturbed boundary condition

ut + uux = μuxx − (Uu)x, (10)

u(t,−1) = 0, u(t,1) = ε, (11)

u(0, x) = u0(x) := v0(x) − U(x), (12)

where ε is a small positive constant. We study the effect of the small boundary disturbance ε on the solution u. To
simplify the analysis, we make a change of variables to homogenize the boundary conditions. Let ψ(x; ε) = ε(x+1)/2
and y(t, x; ε) = u(t, x; ε) − ψ(x; ε). Then y satisfies

yt + yyx = μyxx − (ky)x + f, (13)

y(t,−1) = 0, y(t,1) = 0, (14)

y(0, x) = y0(x) := u0(x) − ψ(x), (15)

where k(x; ε) = U(x) + ψ(x; ε) and f (x; ε) = −(U(x)ψ(x; ε))x − ψ(x; ε)ψx(x; ε). An application of Theorem 2.1
shows that both of these problems have a unique solution.

Proposition 3.1. For any T > 0, ε ∈ R, and y0 ∈ H 1
0 , the transformed equation (13)–(15) and the disturbed Burgers’

fluctuation equation (10)–(12) each have a unique solution on [0, T ].

Proof. As before, set X = L2(−1,1), V = H 1
0 (−1,1), and define the operators Ay = μyxx − (ky)x with D(A) =

H 2 ∩ H 1
0 , and B(y, z) = −yzx . The transformed equation can then be written

ẏ(t) = Ay(t) + B
(
y(t), y(t)

) + f, y(0) = y0,

where f ∈ X and y0 ∈ V . This problem falls into the general form of the disturbed fluctuation Burgers’ equation
considered in Theorem 2.1; therefore, there exists a unique solution to this problem on any time interval [0, T ].
Inverting the change of variables shows that there is a unique solution u on any time interval [0, T ] to the fluctuation
Burgers’ equation (10)–(12). �

Assume u0(x) = 0 for all x so that initially there is no fluctuation to the base flow U . Without the disturbance
(i.e., ε = 0), the solution to the fluctuation Burgers’ equation (10)–(12) remains zero for all time. This implies that the
“flow” does not fluctuate around the laminar flow U , and therefore transition does not occur in this case. However,
when ε 	= 0, the zero function no longer satisfies the disturbed boundary condition and solutions with initial data
u0(x) = 0 cannot remain at the zero state. Figure 1(a) shows time snapshots of the approximate solution with ε = 10−3

and μ = 0.1. The small disturbance causes the approximate solution to “transition” to an order one steady state.
Decreasing μ increases the sensitivity. Figure 1(b) shows the smaller disturbance of ε = 10−4 cause the solution to
transition. Similar behavior has been observed for a wide variety of initial data. The small disturbance causes the zero
equilibrium state to move and this causes the “transition” [16]. If we let μ = 1/R, then these examples (and other
computations not presented here) suggest that a boundary disturbance ε on the order of R−3 causes the solution to
transition to an order one steady state. This is analogous to the results mentioned earlier for energy amplification in
the Orr–Sommerfeld/Squire system.
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(a) μ = 0.1, u0(x) = 0, and ε = 10−3 (b) μ = 0.05, u0(x) = 0, and ε = 10−4

Fig. 1. Approximate solution of the disturbed fluctuation equation (10)–(12) with U defined in Eq. (5).

4. Sensitivity analysis for semilinear parabolic equations

In the remainder of this paper, we focus on using sensitivity analysis to predict the effects of the small bound-
ary disturbance on the solution of the fluctuation Burgers’ equation (10)–(12). Sensitivity analysis is the process of
measuring how solutions of a differential equation change with respect to parameters of interest. The change in the
solution can be quantified by computing the derivative of the solution with respect to the parameters. In our case, we
are interested in computing the derivatives of the zero solution of the fluctuation Burgers’ equations with respect to
the disturbance parameter ε.

Since the sensitivity is a derivative, one could use finite differences to approximate the sensitivity. However, this
approach can lead to difficulties in practice. First, one has the problem of finding a good step size for the finite differ-
ence calculation. Also, if the evaluation of the state is computationally expensive as is the case in many applications
(such as in flow problems), this method can be very inefficient.

Another approach is to approximate the sensitivity by solving an auxiliary sensitivity equation. There are two ap-
proaches to deriving a sensitivity equation: a discretize-then-differentiate method and a continuous sensitivity equation
method. In the former method, one first discretizes the problem and then differentiates the discrete system with respect
to the parameters of interest to obtain the linear sensitivity equations. Once the state equation has been solved, the
state information is used to solve the sensitivity equations. Since this method only involves solving a linear system,
it is much more computationally efficient than finite difference computations. The method can also be automated to
differentiate through existing code [37]. The main drawback of this approach is that there is no guarantee that the
computed sensitivity is near the true sensitivity.

In this work, we use the latter approach, the continuous sensitivity equation method (CSEM), to approximate
sensitivities. Here, the infinite dimensional state equation is implicitly differentiated with respect to the parameters
leading to linear equations for the sensitivities. Since the state and sensitivity equations are both infinite dimensional,
different numerical schemes or levels of refinement can be used for each equation. In particular, one can take advantage
of the linear nature of the sensitivity equations and solve them at a relatively low computational cost. This is especially
advantageous if the original equation is nonlinear and requires a large amount of computational effort to solve. For
details on the CSEM and applications to flow problems, see [38–40] and references therein.

An important feature of the continuous sensitivity equation method is that in many cases the sensitivities can
be shown to exist and satisfy the appropriate sensitivity equations. For ordinary differential equations, this type of
result is classical [41]. Parameter differentiability theory for various infinite dimensional evolution equations has been
obtained more recently [42–48]. These theoretical results are important since they can provide insight for choosing
appropriate numerical methods to approximate the sensitivities. In this work, we utilize the differentiability theory for
semilinear parabolic problems found in Henry’s text [21, Theorem 3.4.4 and Corollary 3.4.5].
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Theorem 4.1 (Henry). Suppose X and Y are Banach spaces, −A is sectorial on X, α ∈ (0,1), U is open in Xα , and
Q is open in Y . Suppose also that F : U × Q → X is k times continuously Fréchet differentiable or analytic over
U × Q. For x0 ∈ U and q ∈ Q, let x = x(t;x0, q) be the solution of the parameter dependent semilinear parabolic
problem

ẋ(t) = Ax(t) + F
(
x(t);q)

, x(0) = x0, (16)

on the interval 0 < t < T (x0, q). Then on the interval 0 < t < T (x0, q), x(t;x0, q) is k times continuously Fréchet
differentiable or analytic with respect to x0 and q as a mapping from Xα × Q into Xα .

Henry proves this result using a parameter dependent version of the contraction mapping theorem due to Hale
[49,50]. This theorem has been extended to include a time dependent nonlinear term and a parameter and/or time
dependent linear operator [21,51]; however we do not require these cases here.

Since the solution x(t;x0, q) of the differential equation (16) satisfies the integral equation

x(t;x0, q) = eAtx0 +
t∫

0

eA(t−τ)F
(
x(τ ;x0, q);q)

dτ, (17)

an immediate consequence of this theorem is that equations can be derived for the derivatives of the solution with
respect to the initial data, x0, and parameter, q . Define the first-order sensitivity operators S1(t) = Dx0x(t;x0, q) and
S2(t) = Dqx(t;x0, q), and sensitivities s1(t) = S1(t)x0 and s2(t) = S2(t)q .

Corollary 4.1 (Henry). Under the assumptions of Theorem 4.1, the sensitivities s1(t) and s2(t) satisfy the integral
equations

s1(t) = eAtx0 +
t∫

0

eA(t−τ)
[
DxF

(
x(τ ;q);q)]

s1(τ ) dτ,

s2(t) =
t∫

0

eA(t−τ)
([

DxF
(
x(τ ;q);q)]

s2(τ ) + [
DqF

(
x(τ ;q);q)]

q
)
dτ,

and are mild solutions of the linear initial value problems

ṡ1(t) = As1(t) + [
DxF

(
x(t;q);q)]

s1(t), s1(0) = x0,

ṡ2(t) = As2(t) + [
DxF

(
x(t;q);q)]

s2(t) + [
DqF

(
x(t;q);q)]

q, s2(0) = 0.

Differentiating the integral equation (17) with respect to x0 and q gives integral equations for higher order sensitivi-
ties.

Each higher order sensitivity satisfies an integral equation that directly corresponds to a linear differential equation.
In general, the sensitivities are only mild solutions of these differential equations; i.e., they may not be classical
solutions [21]. Note that the differential sensitivity equations can be obtained by formally differentiating the original
differential equation (16) with respect to the parameter (either x0 or q), interchanging the order of differentiation, and
using the chain rule.

5. Using sensitivity analysis to predict transition

In the next sections, we use the abstract framework presented above to rigorously derive equations for the sensitivi-
ties with respect to the disturbance parameter ε of the zero solution of the fluctuation Burgers’ equation. We show that
the computed sensitivities predict the large change in the zero solution with respect to the small disturbance. Also,
higher order sensitivities are used to study the interaction of the nonlinearity and the small disturbance.

Let u(t, x; ε) be the solution of the disturbed fluctuation Burgers’ equation (10)–(12). Note that we have made
explicit the dependence of the solution on the disturbance parameter ε. Recall that the transformed equation can be
written abstractly (see Proposition 3.1) as
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ẏ(t) = A(ε)y(t) + B
(
y(t), y(t)

) + f (ε), y(0; ε) = y0(ε). (18)

The following simple lemma shows that the nonlinear term is analytic in y.

Lemma 5.1. Let U and Y be Banach spaces and suppose B : U ×U → Y is a continuous bilinear form on U , i.e., B is
linear in each argument and there exists a positive constant C such that ‖B(u, v)‖Y � C‖u‖U‖v‖U for all u,v ∈ U .
The function F : U → Y defined by F(u) = B(u,u) is analytic at every point u ∈ U . The first two Fréchet derivatives
of F are given by[

DuF(u)
]
v = B(u, v) + B(v,u),

[
D2

uF (u)
]
(v,w) = B(v,w) + B(v,w)

for all u,v,w ∈ U , and all higher order derivatives are zero. The function F and its derivatives are continuous in
u ∈ U .

Proof. Since B is bilinear, B(u,u) − B(v, v) = B(u,u − v) − B(v − u,v) for all u,v ∈ U . All of the results now
follow directly from the definitions and the continuity of the bilinear form. �

Since the initial condition of the transformed equation depends on the parameter ε, we require a slight extension
of Theorem 4.1.

Lemma 5.2. Assume the hypotheses of Theorem 4.1 and let x(t;q) be the solution of the parameter dependent problem

ẋ(t) = Ax(t) + F
(
x(t);q)

, x(0;q) = x0(q),

on 0 < t < T (q). If the initial data x0 : Q ⊂ Y → Xα is k times continuously differentiable or analytic in a neigh-
borhood of q0, then for 0 < t < T (q) the solution x(t;q) is k times differentiable or analytic as a mapping from Q

into Xα . Sensitivity equations for the derivatives are given in a similar fashion to Corollary 4.1.

Proof. The proof follows by the same methods used to prove Theorem 4.1 (see [21]). �
With this framework in place, we can now prove that the solution u(t, x; ε) of the disturbed fluctuation Burgers’

equation (10)–(12) is analytic with respect to ε.

Theorem 5.1. Let T > 0 and suppose u0(ε) ∈ H 1(−1,1) with u0(−1) = 0 and u0(1) = ε. If u0(ε) is analytic in ε,
then the solution u(t, x; ε) of the disturbed fluctuation Burgers’ equation (10)–(12) on [0, T ] is analytic with respect
to ε.

Proof. This result follows if the solution y of the transformed equation (13)–(15) is analytic with respect to ε. Re-
call the abstract formulation of the transformed equation given in (18). To apply the sensitivity theory presented in
Lemma 5.2 (and Theorem 4.1), we rewrite this problem so that the parameter ε does not appear in the linear opera-
tor A. Note A(ε) can be split as A = A0 + A1(ε), where A0y = μyxx − (Uy)x and A1(ε)y = −(ψ(ε)y)x . Therefore,
y satisfies

ẏ(t) = A0y(t) + F
(
y(t); ε), y(0; ε) = y0(ε), (19)

where F(y; ε) = A1(ε)y + B(y, y) + f (ε). Theorem 2.1 shows that −A0 is sectorial and F(y; ε) is analytic in y by
Lemma 5.1. Due to the assumptions on u0(ε), y0(ε) is in V and is analytic in ε. Also, it is easy to check that F(y; ε)
is analytic in ε. Therefore, the requirements of Theorem 4.1 and Lemma 5.2 are satisfied and the solution y(t; ε) is
analytic in ε. �

Define the sensitivity S(t, x; ε) to be the derivative of the fluctuations u with respect to ε,

S(t, x; ε) = ∂u

∂ε
(t, x; ε). (20)

Theorem 5.1 allows us to derive a sensitivity equation for S by formally differentiating the disturbed fluctuation
Burgers’ equation (10)–(12) with respect to ε, interchanging the order of differentiation, and using the chain rule
(again, see Corollary 4.1).
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Corollary 5.1. Under the assumptions of Theorem 5.1, the sensitivity S(t, x; ε) defined above is the unique solution
of the linear partial differential equation

St (t, x; ε) = μSxx(t, x; ε) − (
U(x)S(t, x; ε))

x
− (

u(t, x; ε)S(t, x; ε))
x
, (21)

S(t,−1; ε) = 0, S(t,1; ε) = 1, (22)

S(0, x; ε) = 0. (23)

The solution S(t, x; ε) = ∂εu(t, x; ε) of the sensitivity equation should be understood through the change of vari-
ables y(t, x; ε) = u(t, x; ε) − ψ(x; ε). Once we have an equation for ∂εy(t, x; ε), we derive the equation for S by
inverting the transformation; this explains the incompatibility of the initial and boundary condition in the S sensitivity
equation.

Proof of Corollary 5.1. We again work with the transformed problem. The integral form of the equation is given by

y(t; ε) = eA0t y0(ε) +
t∫

0

eA0(t−τ)F
(
y(τ ; ε); ε)dτ.

Differentiating through this equation with respect to ε and using the chain rule gives an integral equation for the
derivative yε(t; ε). It can be checked that the corresponding differential equation gives the above partial differential
equation (21)–(23) after inverting the transformation. �

Notice that the sensitivity equation is linear and depends on the solution u(t, x; ε) of the disturbed fluctuation
Burgers’ equation.

We are particularly interested in examining how the base flow U changes with respect to ε. If the sensitivity of the
base flow is large, then it is possible that a very small disturbance can cause the solution to transition to another state.
Since the base flow corresponds to the zero solution of the Burgers’ fluctuation equation, we are interested in the case
where initial fluctuations in (12) are zero (i.e., u(0, x) = u0(x) = 0) and we want to evaluate the sensitivity S at ε = 0.
Let s(t, x) be the sensitivity at ε = 0, i.e.,

s(t, x) = S(t, x; ε)|ε=0.

With zero initial data and ε = 0, the term involving u(t, x; ε) vanishes in the S sensitivity equation (21)–(23) which
gives

st (t, x) = μsxx(t, x) − (
U(x)s(t, x)

)
x
, (24)

s(t,−1) = 0, s(t,1) = 1, s(0, x) = 0. (25)

Again, if the solution of this equation is large, then the zero solution of the Burgers’ fluctuation equation will go
through a large change in response to the small boundary disturbance ε.

To approximate the sensitivity numerically we use standard finite elements with N equally spaced nodes for the
spatial discretization and Matlab’s ode23s to solve the resulting approximating ordinary differential equation system.
Figure 2 shows the finite element approximation to the sensitivity s(t, x) with N = 64 and μ = 0.1 over the time
interval 0 � t � 4. The sensitivity is increasing and is already fairly large at t = 4. This shows that the solution to
the disturbed Burgers’ fluctuation equation can undergo a large change. Integrating further in time shows that the
computed sensitivity continues to increase and it eventually becomes exceptionally large, especially near x = 0 (see
the time snapshots in Fig. 3). The size of the sensitivity for μ = 0.01 is much more dramatic. Figure 4 shows that
as time increases, the sensitivity slowly increases until reaching a steady state of magnitude approximately 1014. The
main support of the sensitivity is over the small interval [−0.1,0.1]. The sensitivity is similar to a delta function
centered at x = 0. Due to the large gradients in the solution, it is unclear even with 1028 evenly spaced mesh points
that the solution has numerically converged. This behavior indicates that the solution of the disturbed fluctuation
Burgers’ equation with zero initial data can change drastically near x = 0.

These results show that the sensitivity predicts that a small boundary disturbance ε will cause the zero solution
of the Burgers’ fluctuation equation to undergo a drastic change. Of course, we already observed this behavior above
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Fig. 2. Approximate sensitivity of the zero solution of the disturbed Burgers’ fluctuation equation with respect to ε over the time interval [0,4].
The sensitivity is computed using the sensitivity equation (24)–(25) with μ = 0.1 and N = 64.

Fig. 3. Approximate solution of the sensitivity equation (24)–(25) with μ = 0.1, N = 64 and u(t, x;0) = 0.

through direct numerical simulation of the disturbed problem. It is important to note that sensitivity analysis can be
used to predict transition when direct numerical simulation of the disturbed problem is costly or unfeasible. If one
suspects that a certain small disturbance is causing transition in a flow system, sensitivity analysis can be used to
determine the effect of the disturbance on the flow at a relatively low computational cost.

6. Higher order sensitivities

The two modern approaches to transition discussed in the introduction are primarily based on the study of a lin-
earized flow system. In this section, we use sensitivity analysis to distinguish the behavior of solutions to the linearized
and nonlinear fluctuation systems. In particular, higher order sensitivities with respect to the disturbance parameter
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Fig. 4. Approximate solution of the sensitivity equation (24)–(25) with μ = 0.01, N = 1028 and u(t, x;0) = 0. The sensitivities are nearly zero for
x outside of [−0.1,0.1]. Note the scales on the vertical axes.

are used to obtain estimates of the size of the disturbance that will cause transition. We show that this information is
unavailable through the study of the linearized problem.

Consider the disturbed Burgers’ fluctuation equation (10)–(12) with zero initial fluctuation, u(0, x) = u0(x) = 0.
If we drop the nonlinear term uux , we obtain the linearized fluctuation system

zt (t, x; ε) = μzxx(t, x; ε) − (
U(x)z(t, x; ε))

x
,

z(t,−1; ε) = 0, z(t,1; ε) = ε, z(0, x; ε) = z0(x) = 0.

We use z to denote the solution of the linearized fluctuation problem and keep u as the solution of the nonlinear
problem. Sensitivity analysis is performed on this problem to study how the linearized solution z changes with respect
to the small disturbance ε.

Since the equation is linear in z and ε enters the linearized fluctuation equation in a linear manner, the sensitivity
p = ∂εz(t, x; ε) will not depend on the solution z or the disturbance ε. This is seen by differentiating through the
linearized sensitivity equation to show that p = p(t, x) is the mild solution of

pt (t, x) = μpxx(t, x) − (
U(x)p(t, x)

)
x
,

p(t,−1) = 0, p(t,1) = 1, p(0, x) = 0.

Again, this can be made rigorous using the methods described above. There are two important details to note here.

(1) The sensitivity p of the solution of the linearized fluctuation system satisfies the same equation (24)–(25) as the
sensitivity s of the zero solution of the nonlinear fluctuation system evaluated at ε = 0.

(2) All of the higher derivatives ∂n
ε z(t, x; ε) must be zero for all t and x.

Here are two implications of these observations.
First, since p(t, x) equals s(t, x), the change in the zero solution of the nonlinear fluctuation system is, in a sense,

completely governed by the linearized fluctuation system. This gives an idea of why the recent exploration of linear
flow systems has provided so much new insight into the transition problem. In contrast, however, the second observa-
tion shows that the linearized fluctuation system is also lacking important information about the transition problem.
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This can be seen as follows. If we expand the solution of the disturbed linearized fluctuation equation in a Taylor
series in the parameter ε, we obtain

z(t, x; ε) = z(t, x;0) + ε
∂z

∂ε
(t, x;0) + ε2

2!
∂2z

∂ε2
(t, x;0) + · · ·

= z(t, x;0) + εp(t, x),

since all of the higher order derivatives of z with respect to ε are zero. This shows that the solution z of the disturbed
linearized fluctuation system is completely determined by the solution of the undisturbed linearized system and the
p sensitivity equation. In contrast, the solution of the disturbed nonlinear fluctuation problem depends on much more
information.

Return to Eq. (21)–(23) for the sensitivity S(t, x; ε) of the solution of the nonlinear fluctuation equation. In contrast
to the linearized fluctuation system, the higher derivatives with respect to ε all depend on ε (and therefore are nonzero)
due to the differentiation with respect to ε of the “quadratic” term (u(t, x; ε)S(t, x; ε))x . By differentiating through
the sensitivity equation, we can rigorously derive equations for the higher order sensitivities Sn(t, x; ε) = ∂n

ε u(t, x; ε).
Again, we are interested in the sensitivity of the zero solution, so define

sn(t, x) = ∂nu

∂εn
(t, x; ε)

∣∣∣
ε=0

.

Since u(t, x; ε) is analytic in ε, we can expand u(t, x; ε) in a Taylor series consisting of the sensitivities sn(t, x).

Theorem 6.1. The solution u(t, x; ε) of the disturbed fluctuation Burgers’ equation (10)–(12) can be expanded in
Taylor series by

u(t, x; ε) = u(t, x;0) + ε
∂u

∂ε
(t, x;0) + ε2

2!
∂2u

∂ε2
(t, x;0) + ε3

3!
∂3u

∂ε3
(t, x;0) + · · ·

= εs1(t, x) + ε2

2! s2(t, x) + ε3

3! s3(t, x) + · · ·
since u(t, x;0) = 0. The first-order sensitivity s1(t, x) is the mild solution of (24)–(25). Equations for the higher order
sensitivities sn(t, x) can be derived by differentiating equation (21)–(23) for the sensitivity S(t, x; ε) with respect to ε

and setting u(t, x;0) = 0. For example, the differential sensitivity equations for s2(t, x) and s3(t, x) are given by

∂

∂t
s2(t, x) = μ

∂2

∂x2
s2(t, x) − ∂

∂x

(
U(x)s2(t, x)

) − 2s1(t, x)
∂

∂x
s1(t, x), (26)

s2(t,−1) = 0 = s2(t,1), s2(0, x) = 0, (27)

and

∂

∂t
s3(t, x) = μ

∂2

∂x2
s3(t, x) − ∂

∂x

(
U(x)s3(t, x)

) − 3
∂

∂x

(
s1(t, x)s2(t, x)

)
, (28)

s3(t,−1) = 0 = s3(t,1), s3(0, x) = 0. (29)

Proof. The analyticity of u(t, x; ε) with respect to ε was proved in Theorem 5.1. The sensitivity equations are derived
by applying Lemma 5.2 to the transformed fluctuation Burgers’ equation (18). �

If the higher order sensitivities are large, then the Taylor expansion shows that solutions to the disturbed fluctuation
Burgers’ equation (10)–(12) can be large even when ε is small. Furthermore, the size of the higher order sensitivities
can be used to estimate how large the disturbance ε must be in order to cause the solution u(t, x; ε) to reach a certain
magnitude. This is information that the linearized fluctuation problem does not provide.

To illustrate this procedure with the nonlinear fluctuation Burgers’ equation, we numerically approximate the
second and third-order sensitivities s2(t, x) and s3(t, x) using the sensitivity equations (26)–(27) and (28)–(29), re-
spectively. To solve these equations we must also approximate s1(t, x) which we have done above using the first-order
sensitivity equation (24)–(25). For the spatial discretization, we use standard finite elements with N equally spaced
nodes for all three sensitivity equations. For the time integration, we use Matlab’s ODE solver ode23s to give ap-
proximate values of s1 at various (discrete) times. The trapezoid rule is then used to approximate s2 and s3 at these
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same set of time values. The approximation methods used here were chosen mainly for simplicity; if desired, one
could use different spatial discretizations, different meshes, time integrators, etc. on the three different sensitivity
equations.

Figure 5 shows the finite element approximation to the solution s2(t, x) of the second-order sensitivity equation
with μ = 0.1 and N = 128. Note that the magnitude of the sensitivity is quite large. Therefore, the second term in the
Taylor series expansion can be large even if ε is small. Figure 6 shows the approximation to s3(t, x). Again, since
this sensitivity is so large, the third term in the Taylor expansion may not be negligible even if ε is extremely small.

Fig. 5. Approximate solution of the second-order sensitivity equation (26)–(27) with μ = 0.1 and N = 128. Note the scales on the vertical axes.

Fig. 6. Approximate solution of the third-order sensitivity equation (28)–(29) with μ = 0.1 and N = 128. Note the scales on the vertical axes.
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As with the first-order sensitivity s(t, x) = s1(t, x), numerical experiments (not presented here) show that decreasing
μ causes these sensitivities to become much larger. Therefore, if μ is small, ε can be quite small and still cause the
solution to transition.

One may use these sensitivities to estimate the size of the disturbance ε that causes the solution to the disturbed
problem to become “large.” In particular, one can compute each term in the Taylor series expansion to estimate the
size of the solution to the disturbed problem. As a simple example, when ε = 0.1 the first three sensitivities reach a
magnitude of (roughly) 103, 106, and 1010, respectively. Using a Taylor expansion and neglecting any remainder term,
when t is large we have

∥∥u(t, x; ε)∥∥
L∞ ≈ ε103 + ε2

2
106 + ε3

6
1010.

To keep the magnitude of u(t, x; ε) less than 10−p for some p, ε must be approximately 10−3p . This method could be
extended to other nonlinear problems to provide an efficient way to estimate the size of the solution to the disturbed
system.

7. Conclusion

In this first paper in a two part work, we used the continuous sensitivity equation method to study the effects of
a small disturbance on solutions of a highly sensitive Burgers’ equation. We showed that the computed sensitivities
predict the large change in solutions in the presence of the disturbance. Also, higher order sensitivities were used
to distinguish the effects of the small disturbance on solutions of the linearized and nonlinear fluctuation problems.
In particular, the linearized problem was shown to completely determine the first-order sensitivity but not provide
information on any of the higher order sensitivities. These higher order sensitivities can be used in a Taylor series to
efficiently estimate the solution of the disturbed problem.

In the second part of this work, we extend the methods introduced here to study the effects of small disturbances on
transition to turbulence in the three-dimensional Navier–Stokes equations. We consider the equations for fluctuations
about a laminar flow and treat nonzero initial data and forcing as disturbances. Roughly, we show that if the linearized
operator A is stable, yet either

(1) the C0-semigroup eAt is “large” over some finite period of time (which occurs when A is nonnormal), or
(2) the spectrum of the linear operator A is “close” to the imaginary axis,

then these small disturbances can cause a large change in the zero solution of the fluctuation equation. Furthermore,
we use a Taylor series expansion to give rigorous estimates on the size of the solution of the fluctuation Navier–Stokes
equations in the presence of these small disturbances. The estimates for the fluctuations w(t;w0, f ) as a function of
a small initial fluctuation w0 and a small forcing f take the form

∥∥w(t;w0,0)
∥∥

α
� e−ωt

∞∑
n=1

1

n!cn(t;α,ω)M2n−1‖w0‖n
α,

∥∥w(t;0, f )
∥∥

α
�

∞∑
n=1

1

n!dn(t;α,ω)M2n−1‖f ‖n
Hσ

.

Here, the constant M is large if eAt is large and the coefficients cn and dn are large if A has spectrum near the imaginary
axis. The analysis extends the “mostly linear” transition theories discussed in Section 1 by showing that very small
disturbances have the potential to trigger transition to turbulence in the full nonlinear Navier–Stokes equations.
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