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Abstract

A first order differential inequality technique is used on suitably defined auxiliary functions to determine lower bounds for
blow-up time in initial-boundary value problems for parabolic equations of the form

ut = div
(
ρ(u)gradu

) + f (u)

if blow-up occurs. In addition, conditions which ensure that blow-up occurs or does not occur are presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent paper [10], Payne and Schaefer considered an initial-boundary value problem for the semilinear heat
equation

ut = �u + f (u) (1.1)

in a bounded domain Ω ⊂ R
3 under a homogeneous Dirichlet boundary condition and a prescribed nonnegative initial

condition. The nonnegative nonlinear function f was subject to suitable constraints which permitted, for instance,
f (s) = sp , p > 1, and f (s) = 2(coshγ s − 1), γ > 0, and provided that the solution may blow up in finite time.
In [10], a differential inequality technique was used to determine a lower bound for blow-up time if blow-up occurs.
A second method based on a comparison principle was also presented in [10].

There is a vast literature on global existence or nonexistence and the blow-up in finite time of solutions to semilinear
and nonlinear parabolic and hyperbolic equations and systems. We refer the reader to [1–8,10,11] and the many
references cited therein. These papers deal with the questions of blow-up in finite time, blow-up rate, blow-up set,
global existence, asymptotic behavior and so forth as well as a variety of methods used to study these questions.
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In this work we extend the results in [10] to more general parabolic equations where the Laplacian is replaced by
an elliptic differential operator in divergence form, i.e.,

ut = div
(
ρ(u)gradu

) + f (u). (1.2)

In Section 2 we impose conditions on f and a condition which relates the nonlinearities ρ and f (see (2.2)) and
determine a lower bound on blow-up time if blow-up occurs as well as determine when blow-up cannot occur. We
then consider an “easier to verify” set of conditions on functions ρ and f in Section 3 (see (3.1)) for which analogous
results may be determined. We then present a sufficient condition in Section 4 which guarantees that blow-up will
occur in finite time as well as an upper bound for the blow-up time. These results are obtained by a differential
inequality technique on suitably defined auxiliary functions. A forthcoming paper will treat the nonlinear differential
equation where the function ρ in (1.2) depends on the square of the gradient of the solution.

2. General case

Let Ω be a bounded domain in R
3 with sufficiently smooth boundary ∂Ω . We consider the nonlinear initial-

boundary value problem

ut = (
ρ(u)u,i

)
,i

+ f (u) in Ω × (0, t∗),
u(x, t) = 0 on ∂Ω × (0, t∗),
u(x,0) = g(x) � 0 in Ω, (2.1)

where ut denotes the partial derivative of u with respect to t , the comma i denotes partial differentiation with respect
to xi , i = 1,2,3, and we use the summation convention on any pair of repeated indexes. The functions ρ and f satisfy
the following conditions:

(i) f (0) = 0, f (s) > 0 for s > 0,

(ii)

∞∫
s

dη

f (η)
is bounded for all s � s0 > 0,

there exist positive constants n � 2 and β such that

(iii) f (s)

( ∞∫
s

dη

f (η)

)n+1

→ ∞ as s → 0+,

(iv) f ′(s)
∞∫
s

dη

f (η)
� n + 1 − β for s � 0,

and ρ and f are related by

(v) ρ(s) � K

( ∞∫
s

dη

f (η)

)−γ

for s > 0, (2.2)

where γ and K are positive constants. In addition, we assume that g satisfies the compatibility condition g(x) = 0 for
x ∈ ∂Ω. It follows from the parabolic maximum principle that u is nonnegative in x for t ∈ [0, t∗).

For certain classes of functions ρ(u) and f (u), it is known that the solution of (2.1) can fail to exist globally only
if it blows up at some finite time (e.g., when ρ(u) = 1 see [1,6]). Whether the solution blows up depends on the form
of f (u), the smoothness and form of the positive function ρ(u), the initial data g(x), and the geometry of the domain.
We assume the existence of a positive solution that is classical except for the possibility that it might blow up at some
finite time t∗. If blow-up occurs, we aim to find a lower bound on the blow-up time; otherwise we seek conditions
which ensure that the solution does not blow up.
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We define the auxiliary function

ϕ(t) =
∫
Ω

vn
(
u(x, t)

)
dx, v(s) =

( ∞∫
s

dη

f (η)

)−1

, (2.3)

and compute

ϕ′(t) = n

∫
Ω

vn−1v2[f (u)
]−1

ut dx = n

∫
Ω

vn+1
[

1 + (ρ(u)u,i),i

f (u)

]
dx

= n

∫
Ω

vn+1 dx + n

∫
Ω

[(
vn+1

f (u)
ρ(u)u,i

)
,i

− (n + 1)vn+2

[f (u)]2
ρ(u)u,iu,i + vn+1

[f (u)]2
f ′(u)ρ(u)u,iu,i

]
dx

� n

∫
Ω

vn+1 dx − nβ

∫
Ω

vn+2

[f (u)]2
ρ(u)u,iu,i dx,

where we used the divergence theorem, the Dirichlet condition on u, and (2.2)(iv). We now use (2.2)(v) and∣∣∇v
n+γ

2
∣∣2 =

(
n + γ

2

)2

vn+γ+2 1

[f (u)]2
|∇u|2,

where ∇ is the gradient operator, to obtain

ϕ′(t) � n

∫
Ω

vn+1 dx − 4nKβ

(n + γ )2

∫
Ω

∣∣∇v
n+γ

2
∣∣2

dx. (2.4)

We will now consider two cases for γ in (2.2)(v), namely, 0 < γ < 1 and γ > 1.
In the first case, 0 < γ < 1, we let

α = n + γ

2
(2.5)

and obtain by Hölder’s inequality∫
Ω

vn+1 dx �
(∫

Ω

v4α dx

) 1
4
(∫

Ω

v
4
3 (n+1−α) dx

) 3
4

. (2.6)

Using q = 6 and p = 2 in the Sobolev inequality [12](∫
Ω

|w|q dx

) 1
q

� C

(∫
Ω

|∇w|p dx

) 1
p

, (2.7)

where

C = 4
1
3 · 3− 1

2 · π− 2
3 , (2.8)

we have by Schwarz’s inequality and (2.7)∫
Ω

v4α dx �
(∫

Ω

v2α dx

) 1
2
(∫

Ω

(
vα

)6
dx

) 1
2

� C3
(∫

Ω

v2α dx

) 1
2
(∫

Ω

∣∣∇vα
∣∣2

dx

) 3
2

. (2.9)

We note that an estimate for the optimal constant in an inequality like (2.9) is given by Levine in [9]. Upon substitution
in (2.6), we have∫

vn+1 dx � C
3
4

(∫
v2α dx

) 1
8
(∫ ∣∣∇vα

∣∣2
dx

) 3
8
(∫

v
4
3 σ dx

) 3
4

, (2.10)
Ω Ω Ω Ω
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where we let σ = n + 1 − α. We now use the Rayleigh principle∫
Ω

v2α dx � 1

λ1

∫
Ω

∣∣∇vα
∣∣2

dx, (2.11)

where λ1 is the first eigenvalue in the fixed membrane problem

�w + λw = 0, w > 0 in Ω, w = 0 on ∂Ω, (2.12)

and Hölder’s inequality∫
Ω

v
4
3 σ dx �

(∫
Ω

vn dx

) 4σ
3n |Ω|1− 4σ

3n , (2.13)

where |Ω| denotes the volume of Ω , on the right side of (2.10). Thus, we have from (2.10), (2.11), and (2.13)∫
Ω

vn+1 dx � C
3
4 λ

− 1
8

1 |Ω| 3
4 − σ

n

(∫
Ω

vn dx

) σ
n
(∫

Ω

∣∣∇vα
∣∣2

dx

) 1
2

and from (2.4)

ϕ′(t) � K1

(∫
Ω

vn dx

) σ
n
(∫

Ω

∣∣∇vα
∣∣2

dx

) 1
2 − 4nKβ

(n + γ )2

∫
Ω

∣∣∇vα
∣∣2

dx,

where

K1 = nC
3
4 λ

− 1
8

1 |Ω| n−4+2γ
4n . (2.14)

We now use the fundamental inequality

arbs � ra + sb, r + s = 1, a, b � 0, (2.15)

with a positive undetermined weight factor θ , to write

ϕ′(t) � K1

2
θ

∫
Ω

∣∣∇vα
∣∣2

dx + K1

2
θ−1

(∫
Ω

vn dx

) 2σ
n − 4nKβ

(n + γ )2

∫
Ω

∣∣∇vα
∣∣2

dx

and choose θ to be

θ = 8nKβ

K1(n + γ )2
. (2.16)

Thus, we obtain the differential inequality

ϕ′(t) � K2
[
ϕ(t)

] 2σ
n , (2.17)

where

K2 = 1

2
K1θ

−1,
2σ

n
= n + 2 − γ

n
> 1. (2.18)

We now integrate (2.17) from 0 to t and obtain

−[
ϕ(t)

]−( 2σ
n

−1) + [
ϕ(0)

]−( 2σ
n

−1) �
(

2σ

n
− 1

)
K2t.

Consequently, as t → t∗, we have the lower bound for t∗

t∗ � n

K2(2 − γ )

[∫
Ω

( ∞∫
g(x)

dη

f (η)

)−n

dx

] γ−2
n

(2.19)

in terms of the initial data and parameters. We summarize the result in this case in the following theorem.
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Theorem 1. If γ ∈ (0,1) and u is a nonnegative classical solution of (2.1), (2.2) which becomes unbounded in the
measure ϕ given by (2.3) at time t∗, then t∗ is bounded below by (2.19), where K2 is given by (2.18).

An example for which Theorem 1 holds is given by

ρ(s) = 1 + c1s
q, f (s) = c2s

p, (2.20)

where p > 1, 0 < q < p − 1, γ = q
p−1 , n � (p − 1)−1 + β , c1 and c2 are positive constants and K = c1[c2(p − 1)]γ .

We also note that the result in Theorem 1 is valid when the equality in the differential equation in (2.1) is replaced by
the less than relation.

We now consider the second case when γ > 1. We recall that ϕ given by (2.3) satisfies the inequality (2.4) and by
the Rayleigh principle∫

Ω

∣∣∇v
n+γ

2
∣∣2

dx � λ1

∫
Ω

vn+γ dx

from (2.12). It follows by Hölder’s inequality that∫
Ω

∣∣∇v
n+γ

2
∣∣2

dx � λ1

(∫
Ω

vn+1 dx

) n+γ
n+1 |Ω| 1−γ

n+1

and by (2.4) that

ϕ′(t) � n

∫
Ω

vn+1 dx

{
1 − 4Kβλ1

(n + γ )2
|Ω| 1−γ

n+1

(∫
Ω

vn+1 dx

) γ−1
n+1

}
. (2.21)

Since by Hölder’s inequality we have∫
Ω

vn+1dx �
(∫

Ω

vn dx

) n+1
n |Ω|− 1

n ,

the inequality (2.21) becomes

ϕ′(t) � n

∫
Ω

vn+1 dx

{
1 − 4Kβλ1

(n + γ )2
|Ω| 1−γ

n
[
ϕ(t)

] γ−1
n

}
. (2.22)

It now follows from (2.22) that the function u cannot blow up. For suppose contrariwise that u → ∞ at some finite
time t∗. Then v(u) → ∞ would imply that ϕ(t) → ∞ as t → t∗. But from (2.22), we would conclude that ϕ′(t) is
negative for t sufficiently large which leads to a contradiction.

We formulate this result in the following theorem.

Theorem 2. If γ > 1 and u is a nonnegative classical solution of the problem (2.1), (2.2), then u cannot blow up in
the measure ϕ in finite time.

The previous example (2.20) exemplifies Theorem 2 where now q > p − 1 and γ = q
p−1 . In the threshold case

γ = 1, it follows from (2.22) that if

4Kβλ1

(n + γ )2
� 1, (2.23)

then the solution of (2.1), (2.2) will not blow up. However, if (2.23) is violated, then there may or may not be blow-up.

3. Special case

In the previous section we required that the functions ρ and f be related by the condition (2.2)(v) which may be
difficult to verify because we are unable to evaluate v in (2.3). In this section, we consider another set of conditions
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on the functions ρ and f which are easier to verify and which lead to analogous results. We again consider problem
(2.1) and ask that

0 < f (s) � a1 + a2s
p, ρ(s) � b1 + b2s

q > 0, for s > 0, (3.1)

where p > 1 and q > 0 and a1, a2, b1, and b2 are positive constants. We shall consider the two cases, q > p − 1 and
q < p − 1. We note that if the equality signs hold in (3.1) and a1 = 0, then the conditions on ρ and f satisfy (2.2) and
if a1 = 0 = b2, the conditions on ρ and f are basically those covered in [10].

In the case q > p − 1, we define the auxiliary function

Φ(t) =
∫
Ω

u2 dx (3.2)

and compute

Φ ′(t) = 2
∫
Ω

u
[(

ρ(u)u,i

)
,i

+ f (u)
]
dx = −2

∫
Ω

ρ(u)|∇u|2 dx + 2
∫
Ω

uf (u)dx

� −2
∫
Ω

(
b1 + b2u

q
)|∇u|2 dx + 2

∫
Ω

u
[
a1 + a2u

p
]
dx

= 2

[
−b1

∫
Ω

|∇u|2 dx + a1

∫
Ω

udx

]
+ 2

[
−b2

∫
Ω

uq |∇u|2 dx + a2

∫
Ω

up+1 dx

]
= I1 + I2, (3.3)

where I1 and I2 have the obvious meaning.
By the membrane inequality and Schwarz’s inequality, we bound I1 by

I1 � 2
[
Φ(t)

] 1
2
{
a1|Ω| 1

2 − λ1b1
[
Φ(t)

] 1
2
}
. (3.4)

To bound I2, we use∣∣∇u
q+2

2
∣∣2 =

(
q + 2

2

)2

uq |∇u|2,

the Rayleigh principle, and Hölder’s inequality to obtain

I2 = 2

[
− 4b2

(q + 2)2

∫
Ω

∣∣∇u
q+2

2
∣∣2

dx + a2

∫
Ω

up+1 dx

]

� 2

[
− 4b2λ1

(q + 2)2

∫
Ω

uq+2 dx + a2

(∫
Ω

uq+2 dx

) p+1
q+2 |Ω| q+1−p

q+2

]

= 2

(∫
Ω

uq+2 dx

) p+1
q+2

{
a2|Ω| q+1−p

q+2 − 4b2λ1

(q + 2)2

(∫
Ω

uq+2 dx

) q+1−p
q+2

}

� 2

(∫
Ω

uq+2 dx

) p+1
q+2

{
a2|Ω| q+1−p

q+2 − 4b2λ1

(q + 2)2

([
Φ(t)

] q+2
2 |Ω|− q

2
) q+1−p

q+2

}
. (3.5)

It is clear that if u blows up in the Φ measure, then by (3.3), (3.4), and (3.5) it follows that Φ ′(t) � 0 which leads
to a contradiction. Thus u cannot blow up in this case and we have the following theorem. We note, in fact, that the
theorem is not restricted to three dimensions.

Theorem 3. If q > p − 1 and u is a nonnegative classical solution of (2.1), (3.1), then u cannot blow up in the
measure Φ in finite time.
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We now consider the problem (2.1), (3.1), in the case 0 < q < p − 1. We define the function

ψ(t) =
∫
Ω

un(p−1) dx, (3.6)

where p > 1 and n > 2
p−1 . As in the previous computations for (2.4) and (3.3), we obtain

ψ ′(t) � −n(p − 1)
[
n(p − 1) − 1

] ∫
Ω

un(p−1)−2|∇u|2(b1 + b2u
q
)
dx

+ n(p − 1)

∫
Ω

[
a1u

n(p−1)−1 + a2u
(n+1)(p−1)

]
dx. (3.7)

We may drop the b1 term on the right side of (3.7) and use Hölder’s inequality to bound the a1 term by

n(p − 1)a1

∫
Ω

un(p−1)−1 dx � C1

(∫
Ω

un(p−1) dx

)1− 1
n(p−1)

, (3.8)

where

C1 = n(p − 1)a1|Ω| 1
n(p−1) . (3.9)

We now need to consider the remaining two terms in (3.7), i.e.,

n(p − 1)

{
−[

n(p − 1) − 1
]
b2

∫
Ω

un(p−1)−2+q |∇u|2 dx + a2

∫
Ω

u(n+1)(p−1) dx

}
. (3.10)

For simplicity, we let

v = up−1, α = 1

2

(
n + q

p − 1

)
, (3.11)

and rewrite (3.10) as

n(p − 1)

{
−[n(p − 1) − 1]

α2(p − 1)2
b2

∫
Ω

∣∣∇vα
∣∣2

dx + a2

∫
Ω

vn+1 dx

}
. (3.12)

Now by Hölder’s inequality, we have∫
Ω

vn+1 dx �
(∫

Ω

v4α dx

) 1
4
(∫

Ω

v
2
3 (n+2− q

p−1 )
dx

) 3
4

and ∫
Ω

v
2
3 (n+2− q

p−1 )
dx �

(∫
Ω

vn dx

) 2
3 (1+ 2

n
− q

n(p−1)
)

|Ω| 2
3 ( 1

2 − 2
n
+ q

n(p−1)
)
,

and by the Sobolev inequality (see (2.7), (2.9), and (2.11))∫
Ω

v4α dx � C3λ
− 1

2
1

(∫
Ω

∣∣∇vα
∣∣2

dx

)2

.

It follows that

a2

∫
vn+1 dx � C2

(∫ ∣∣∇vα
∣∣2

dx

) 1
2
(∫

vn dx

)τ

(3.13)
Ω Ω Ω
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where

C2 = a2C
3
4 λ

− 1
8

1 |Ω| 1
4 − 1

n
+ q

2n(p−1) , (3.14)

τ = 1

2
+ 1

n
− q

2n(p − 1)
. (3.15)

We make use of (2.15) with an, as yet, undetermined positive weight factor δ to obtain

a2

∫
Ω

vn+1 dx � 1

2
C2δ

∫
Ω

∣∣∇vα
∣∣2

dx + 1

2
C2δ

−1
(∫

Ω

vn dx

)2τ

(3.16)

and then choose δ so that

1

2
C2δ = n(p − 1) − 1

α2(p − 1)2
b2. (3.17)

It follows from (3.7), (3.8), (3.12), and (3.16) that

ψ ′(t) � C1
[
ψ(t)

]1− 1
n(p−1) + C3

[
ψ(t)

]1+ 2
n
− q

n(p−1) , (3.18)

where

C3 = 1

2
n(p − 1)C2δ

−1. (3.19)

An integration of (3.18) leads to

ψ(t)∫
ψ(0)

dη

C1η
1− 1

n(p−1) + C3η
1+ 2

n
− q

n(p−1)

� t

and if u blows up in the measure ψ, then we obtain a lower bound for t∗ given by

t∗ �
∞∫

ψ(0)

dη

C1η
1− 1

n(p−1) + C3η
1+ 2

n
− q

n(p−1)

, (3.20)

where

ψ(0) =
∫
Ω

[
g(x)

]n(p−1)
dx.

We summarize this result in the follows theorem.

Theorem 4. If 0 < q < p − 1 and u is a nonnegative classical solution of the problem (2.1), (3.1) which becomes
unbounded in the measure ψ given by (3.6) at time t∗, then t∗ is bounded below by (3.20), where C1 and C3 are given
by (3.9) and (3.19), respectively.

We remark again that the results in this section are valid in the case that equality is replaced by the less than relation
in the differential equation in (2.1).

4. Criterion for blow-up

We are now interested in determining a criterion that ensures blow-up of the solution in the problem (2.1) when

ρ(s) = b1 + b2s
q, f (s) = asp, s � 0, (4.1)

for 0 < q < p − 1 and a, b1 and b2 positive constants.
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We define the function

χ(t) =
∫
Ω

uw2 dx, (4.2)

where (w,λ) is the first eigenpair in the fixed membrane problem (2.12) and w is normalized by the condition∫
Ω

w2 dx = 1. (4.3)

We compute

χ ′(t) =
∫
Ω

w2[b1�u + b2
(
uqu,i

)
,i

+ aup
]
dx

= −2λb1

∫
Ω

w2udx + 2b1

∫
Ω

w,iw,iudx − 2λb2

q + 1

∫
Ω

w2uq+1 dx

+ 2b2

q + 1

∫
Ω

w,iw,iu
q+1 dx + a

∫
Ω

w2up dx

on integrating by parts. We drop the second and fourth terms on the right side and use Hölder’s inequality and (4.3)
on the third term to obtain

χ ′(t) � −2λb1χ(t) − 2λb2

q + 1

(∫
Ω

w2up dx

) q+1
p + a

∫
Ω

w2up dx,

which we rewrite as

χ ′(t) � −2λb1χ(t) +
(∫

Ω

w2up dx

) q+1
p

{
a

(∫
Ω

w2up dx

)μ
p − 2λb2

q + 1

}
, (4.4)

where μ = p − q − 1 > 0. Since∫
Ω

w2udx �
(∫

Ω

w2up dx

) 1
p

,

from (4.4), we have

χ ′(t) � −2λb1χ(t) +
(∫

Ω

w2up dx

) q+1
p

{
a

(∫
Ω

w2udx

)μ

− 2λb2

q + 1

}

=
(∫

Ω

w2up dx

) q+1
p

{
a
[
χ(t)

]μ − 2λb2

q + 1
− 2λb1χ(t)

(
∫
Ω

w2up dx)
q+1
p

}

�
(∫

Ω

w2up dx

) q+1
p

{
a
[
χ(t)

]μ − 2λb2

q + 1
− 2λb1

[χ(t)]q
}
. (4.5)

As the expression in the brace in (4.5) is increasing in χ , we deduce that a sufficient condition for blow up is

a

(∫
Ω

gw2 dx

)μ

− 2λb2

q + 1
− 2λb1

(
∫
Ω

gw2 dx)q
> 0 (4.6)

and that
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χ ′(t) �
[
χ(t)

]q+1
{
a
[
χ(t)

]μ − 2λb2

q + 1
− 2λb1

[χ(t)]q
}

= a
[
χ(t)

]p − 2λb2

q + 1

[
χ(t)

]q+1 − 2λb1
[
χ(t)

]
. (4.7)

On integrating (4.7) from 0 to t , we have

t �
χ(t)∫

χ(0)

dη

aηp − 2λb2
q+1 ηq+1 − 2λb1η

�
∞∫

χ(0)

dη

aηp − 2λb2
q+1 ηq+1 − 2λb1η

= M. (4.8)

It follows that the solution u blows up in the measure χ since (4.8) cannot hold for all time t , i.e.,

t∗ � M. (4.9)

We formulate this result in the following theorem.

Theorem 5. If u is a nonnegative classical solution of the problem (2.1), (4.1), where 0 < q < p − 1 and the initial
data g(x) satisfies condition (4.6), then u blows up in the measure χ at some finite time t∗ � M , where M is given by
(4.8).

We remark that the advantage of using χ(t) rather than the first Fourier coefficient is two fold. First, the inequalities
are “cleaner” unless one uses the unconventional normalization

∫
Ω

w dx = 1 and second, if (w,λ) is unknown for the

domain Ω in (2.12), then one may choose an interior domain Ω̃ for which (w̃, λ̃) are known and follow the some
procedure with

χ̃(t) =
∫
Ω̃

w̃2udx.

Finally, we remark that Theorem 5, as was Theorem 3, is not restricted to a domain Ω in R
3 but is valid for Ω in R

n,
N � 2.
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