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In this paper we are concerned with the compactness properties of remainder terms of the
Dyson–Phillips expansion of perturbed semigroups on general Banach spaces. More specif-
ically, we derive conditions which ensure the compactness of the remainder term Rn(t) for
some integer n. Our result applies directly to discuss the time asymptotic behaviour (for
large times) of the solution of a one-dimensional transport equation with reentry boundary
conditions on L1-spaces without regularity conditions on the initial data.
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1. Introduction

Let T be the generator of a strongly continuous semigroup (U (t))t�0 on a Banach space X and let L(X) denote the set of
all bounded linear operators in X . If K ∈ L(X), by the classical perturbation theory, T + K generates a strongly continuous
semigroup (V (t))t�0 given by the Dyson–Phillips expansion

V (t) =
∞∑
j=0

U j(t) (1)

where U0(t) = U (t), U j(t) = ∫ t
0 U (s)K U j−1(t − s)ds ( j � 1) and the series (1) converges in L(X) uniformly in bounded

times. The remainder term of order n, Rn(t) = ∑∞
j=n U j(t), is given by

Rn(t) =
∞∑
j=n

U j(t) =
∫

s1+···+sn�t, si�0

U (s1)K · · · U (sn)K V

(
t −

n∑
i=1

si

)
ds1 · · ·dsn. (2)

So the Cauchy problem

dψ

dt
= (T + K )ψ(t), ψ(0) = ψ0 (3)

has a unique classical solution given by ψ(t) = V (t)ψ0 provided that ψ0 belongs to D(T ). In general this result follows
from the Hille–Yosida theorem. This procedure is not constructive, so in order to get more information on the solution, in
particular, its behaviour for large times, the knowledge of the spectrum of T + K or (V (t))t�0 plays a central role.
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Let W ∈ L(X). The essential spectral radius of W is defined by

re(W ) := sup
{|λ|; λ ∈ σ(W ) but λ is not an eigenvalue of finite algebraic multiplicity

} (
see [17]).

Let ω(U ) denote the type of the semigroup (U (t))t�0. It follows from [17, Lemma 2.1] that there exists ωe ∈ [−∞,ω(U )]
such that

re
(
U (t)

) = etωe(U ) (t � 0).

The number ωe(U ) is called the essential type of (U (t))t�0.
It is well known that, if some remainder term of the Dyson–Phillips expansion Rn(t) is compact, then the operators U (t)

and V (t) have the same essential type [8,20]. Therefore there are only isolated points in the spectrum of the perturbed
semigroup V (t) outside the circle |μ| = etω(U ) , all these points being eigenvalues with finite algebraic multiplicity. Assuming
the existence of such eigenvalues, the semigroup (V (t))t�0 can be decomposed into two parts: the first containing the time
development of finitely many eigenmodes, the second being of faster decay. Using the spectral mapping theorem for the
point spectrum, we infer that, for any ω > ω(U ) we have σ(T + K ) ∩ {λ ∈ C such that Reλ � ω} consists of finitely many
isolated eigenvalues {λ1, . . . , λq}. Let β1 = sup{Reλ, λ ∈ σ(T + K ), Reλ < ω}, and β2 = min{Reλ j, 1 � j � q}. The solution
of the problem (3) satisfies∥∥∥∥∥ψ(t) −

q∑
j=1

eλ jteD jt P jψ0

∥∥∥∥∥ = o
(
eβ∗t) for every β∗ with β1 < β∗ < β2, (4)

where ψ0 ∈ D(T + K ), P j and D j denote, respectively, the spectral projection and the nilpotent operator associated with λ j,

j = 1,2, . . . ,q.

There are much works in this direction motivated by various problems arising in mathematical physics, bio-mathematics
and, in particular, the time dependent neutron transport equation (see, for example, [1,4,5,8,9,11,10,12,14–16,18,20] and
the references therein). For transport equations, the compactness of some order remainder term of the Dyson Phillips
expansion in L p-spaces, 1 � p < +∞, was established only for no-reentry boundary conditions (i.e. with zero incoming
flux in the spacial domain) [7,9,14,18,20] and recently for bounce-back boundary conditions in bounded geometry for 1 <

p < +∞ [5]. However, when dealing with reentry boundary conditions, except the one-dimensional case with reflective or
periodic boundary conditions, the problem is open because it is difficult to compute Rn(t) and its expression involves the
boundary conditions.

Since the compactness of Rn(t) is equivalent to that of Un(t) [8, p. 16], Brendle [1] characterizes the compactness
of Rn(t) in terms of the norm continuity of Un(t) and the compactness of (λ − T )−1(K (λ − T )−1)n , n ∈ N. Extending
Brendle’s analysis, Sbihi [10] established that, if X is a Hilbert space, T is dissipative and there exists α > w(U ) such that

(α + iβ − T )−1 K (α + iβ − T )−1 is compact for all β ∈ R,

and

lim
β→∞

(∥∥K ∗(α + iβ − T )−1 K
∥∥ + ∥∥K (α + iβ − T )−1 K ∗∥∥) = 0,

then R1(t) = V (t) − U (t) is compact on X for all t � 0. This implies that, for each t > 0, U (t) and V (t) have the same
essential spectrum.

Even though Sbihi’s result is a Hilbertian one, using approximation arguments and an interpolation result, it was applied
successfully to transport equations for 1 < p < ∞ [6,10,5].

Another approach based on the resolvent was used in [7]. It yields a similar description of the solution as Eq. (4)
provided that the initial data ψ0 belongs to D((T + K )2). In [11], Song showed that, for B-convex spaces, the condition
ψ0 ∈ D((T + K )2) may be weakened, and (4) holds true for all ψ0 belonging to D(T + K ). Since L p-spaces for 1 < p < ∞
are B-convex spaces, this result was applied to a transport equation in one-dimensional geometry [4] (we refer also to this
paper for the definition of B-convex spaces and more information on this approach). Despite all these efforts, the case of
transport equations with reentry boundary conditions in L1-spaces lies outside the scope of these works.

In this paper we are concerned with compactness properties of the remainder term Rn(t) of the Dyson–Phillips expansion
for some integer n on Banach spaces. Our result apply directly to discuss the time asymptotic behaviour (for large times) of
the solution of one-dimensional transport equations on L1-spaces. Our main result is the following:

Theorem 1.1. Assume that there exist m ∈ N, ω > ω(U ) and C > 0 satisfying

(ı) (λ − T )−1(K (λ − T )−1)m is compact for all λ such that Reλ � ω;
(ıı) |Imλ|‖(λ − T )−1(K (λ − T )−1)m‖ � C for every λ ∈ Rω ,

where Rω := {λ ∈ C such that Reλ � ω}. Then R2m+1(t) is compact on X for each t > 0 and therefore, U (t) and V (t) have the same
essential type.
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The next corollary is useful in applications.

Corollary 1.1. Assume that there exist m ∈ N and ω > ω(U ) satisfying

(ı) (λ − T )−1(K (λ − T )−1)m is compact for all λ such that Reλ � ω;
(ıı) lim|Imλ|→∞|Imλ|‖(λ − T )−1(K (λ − T )−1)m‖ = 0 for every λ ∈ Rω .

Then R2m+1(t) is compact on X for each t > 0 and therefore U (t) and V (t) have the same essential type.

The outline of this work is as follows. In Section 2 we present the proofs of Theorem 1.1 and Corollary 1.1. In Section 3
we apply our result to discuss the time asymptotic behaviour of the solution to the Cauchy problem governed by a one-
dimensional transport equation with reentry boundary conditions on L1-spaces.

In a forthcoming paper we will apply Theorem 1.1 and its corollary to discuss the time asymptotic behaviour for large
times to the Rotenberg model (a transport equation arising in growing cell populations) on L1-spaces. The analysis of this
model on L p-spaces with 1 < p < ∞ was already done in [6].

2. Proofs

Before proceeding to the proofs we first recall some facts from functional analysis required below.

Definition 2.1. (See [3, Definition 6.4.1].) Let X be a Banach space and let ϑ(.) denote an X-valued function defined on the
half-plane {λ ∈ C: Reλ > α} where α ∈ R. We say that ϑ(.) belongs to the class H p(α, X) if the following conditions are
satisfied:

(a) ϑ(.) is a function on complex numbers to X which is holomorphic for Reλ > α;

(b) supγ >α{∫ γ +i∞
γ −i∞ ‖ϑ(λ)‖pdλ} 1

p < ∞;
(c) limγ →α ϑ(γ + i
) = ϑ(α + i
) exists for almost all values of 
 and

α+i∞∫
α−i∞

∥∥ϑ(λ)
∥∥p

dλ < ∞. (5)

The following result shows that every function in H p(α, X) may be represented by a generalized Laplace integral.

Proposition 2.1. (See [3, p. 230].) Let ϑ(.) ∈ H p(α, X) where α � 0. Let γ > α and βq > 1 where 1
p + 1

q = 1. Then

θβ(t) = 1

2π i

γ +i∞∫
γ −i∞

eλtλ−βϑ(λ)dλ

defines a continuous function on (0,∞) to X and

ϑ(λ) = λβ

∞∫
0

e−λtθβ(t)dt

the integral being absolutely convergent for Reλ > α.
For p = 1 (see [3, p. 230]), we may take β = 0, obtaining

ϑ(λ) =
∞∫

0

e−λtθ0(t)dt.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Set

ϑ(λ) := (λ − T )−1[K (λ − T )−1](2m+1)
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for λ ∈ Rω . It follows from the hypothesis (ıı) that there exists χ > 0 such that∥∥ϑ(λ)
∥∥ � χ

|Im λ|2 uniformly on Rω.

Using the last estimate and the fact that ϑ(.) is holomorphic in the interior of Rω , we infer from Definition 2.1 that
ϑ(.) belongs to H1(α, X) (with α > max(ω,0)). This implies, via Proposition 2.1, that there exists the continuous function

θ(t) = 1

2π i

γ +i∞∫
γ −i∞

eλtϑ(λ)dλ, γ > α, t � 0, (6)

satisfying

∞∫
0

e−λtθ(t)dt = ϑ(λ),

where the integrals are considered in the strong sense. On the other hand, for any λ satisfying Reλ > ω(U ), one can write

∞∫
0

e−λt U2m+1(t)dt = (λ − T )−1[K (λ − T )−1]2m+1 = ϑ(λ).

The uniqueness of the Laplace transform yields U2m+1(t) = θ(t). Next, using the hypothesis (ı) we conclude that ϑ(λ) is
compact for all λ such that Reλ � α. Applying the convex compactness property [19] to (6), we infer that θ(t) (and
then U2m+1(t)) is compact for all t > 0. Now the use of Theorem 2.6 in [8] concludes the proof. �
Proof of Corollary 1.1. For λ ∈ Rω set �m(λ) = ‖(λ − T )−1(K (λ − T )−1)m‖. According to the assumption (ıı) there exists
ν > 0 such that

|Im λ|�m(λ) � 1 uniformly on
{
λ ∈ C: Reλ � ω and |Im λ| > ν

}
. (7)

On the other hand, for Reλ � ω, we have

|Im λ|�m(λ) � |Im λ|‖K‖m
∥∥(λ − T )−1

∥∥m+1
.

Since the operator T generates a strongly continuous semigroup on X , there exists M > 0 such that

∥∥(λ − T )−1
∥∥ � M

Reλ − ω
for Reλ > ω.

This together with the boundedness of K implies the existence of a real τ > 0 such that

|Im λ|�(λ) � 1 uniformly on
{
λ ∈ C: Reλ � τ and |Im λ| � ν

}
. (8)

Next, using (7) and (8) together with the continuity of the map λ �→ |Imλ|�(λ) on the compact set {λ ∈ C: ω � Reλ � τ
and |Imλ| � ν} we infer that | Imλ|‖(λ − T )−1(K (λ − T )−1)m‖ is uniformly bounded on Rω. Now the result follows from
Theorem 1.1. �
3. Application to a transport model

The goal of this section is to apply our result to the following neutron transport equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ

∂t
(x, ν,μ, t) = −νμ

∂ψ

∂x
(x, ν,μ, t) − σ(x, ν,μ)ψ(x, ν,μ, t) +

∫
D

∫
V

κ(x, ν, ν ′,μ,μ′)ψ(x, ν ′,μ′, t)dν ′ dμ′,

ψ(−a, ν,μ, t) = α(ν,μ)ψ(−a, ν,−μ, t), 0 < μ � 1,

ψ(a, ν,−μ, t) = γ (ν,μ)ψ(a, ν,μ, t), 0 < μ � 1,

ψ(x, ν,μ,0) = ψ0(x, ν,μ),

x ∈ Q := [−a,a], ν ∈ V := (0, νM ], μ ∈ D := [−1,1], t > 0,

(9)

where a > 0, 0 < νM < +∞, α(ν,μ) and γ (ν,μ) are reflection coefficients, ψ(x, ν,μ, t) is the particle density within the
slab of thickness 2a, σ(x, ν,μ) is the total cross section frequency, κ(x, ν, ν ′,μ,μ′) is the scattering fission kernel, and
ψ0(x, ν,μ) is the initial distribution.
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Let us now introduce the following hypotheses:

(H)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• α(ν,μ) and γ (ν,μ) are measurable functions satisfying 0 � α(ν,μ) = α(ν,−μ) � 1,

0 � γ (ν,μ) = γ (ν,−μ) � 1.

• σ(x, ν,μ) is an essentially bounded real measurable function.

• κ(x, ν, ν ′,μ,μ′) is a real measurable function satisfying
∣∣κ(x, ν, ν ′,μ,μ′)

∣∣ � C
(
ν|μ|)−δ

,

where C and δ are nonnegative constants, 0 � δ < 1.

• α(ν,μ), γ (ν,μ), σ (r, ν,μ) and κ̃(x, ν, ν ′,μ,μ′) := (
ν|μ|)δ

κ(x, ν, ν ′,μ,μ′)
are partially differentiable with respect to μ,μ′ ∈ D a.e.,

and the corresponding partial derivatives (∂α/∂μ), (∂γ /∂μ), (∂σ/∂μ),

(∂κ̃/∂μ) and (∂κ̃/∂μ′) are essentially bounded.

Set G = Q × V × D , and define the streaming operator T on the complex Banach space L1(G) as follows:

(T ψ)(x, ν,μ) = −νμ
∂ψ

∂x
(x, ν,μ) − σ(x, ν,μ)ψ(x, ν,μ),

with

D(T ) = {
ψ ∈ L1(G): T ψ ∈ L1(G), ψ(−a, ν,μ) = α(ν,μ)ψ(−a, ν,−μ)

and ψ(a, ν,−μ) = γ (ν,μ)ψ(a, ν,μ) for every μ ∈ (0,1]}.
The integral part of Eq. (9) defines the collision operator. It is a bounded operator on L1(G) given by

(Kψ)(x, ν,μ) =
∫
D

∫
V

κ(x, ν, ν ′,μ,μ′)ψ(x, ν ′,μ′)dν ′ dμ′,

while the transport operator is the bounded perturbation of T by K , i.e. A := T + K with D(A) = D(T ). Now Eq. (9) can be
written as

dψ

dt
(t) = Aψ(t), ψ(0) = ψ0.

Let λ∗ be the real defined by

λ∗ = ess-inf
(x,ν,μ)∈G

σ(x, ν,μ).

Recall that the half-plane {λ ∈ C: Reλ > −λ∗} is contained in the resolvent set of T [13] and, for any λ such that Reλ > −λ∗
and ψ ∈ L1(G), we have

(
(λ − T )−1ψ

)
(x, ν,μ) = P1ψ + α(ν,μ)P2ψ + α(ν,μ)γ (ν,μ)P3ψ

1 − α(ν,μ)γ (ν,μ)exp[−(2/νμ)
∫ a
−a �(λ)ds]

for μ > 0, and

(
(λ − T )−1ψ

)
(x, ν,μ) = P4ψ + γ (ν,μ)P5ψ + α(ν,μ)γ (ν,μ)P6ψ

1 − α(ν,μ)γ (ν,μ)exp[−(2/νμ)
∫ a
−a �(λ)ds]

for μ < 0, where �(λ) = λ+σ(s, ν,μ), the symmetry of α, γ has been employed, and P1, P2, . . . , P6 are bounded operators
on L1(G) given by [13, p. 105]

(P1ψ)(x, ν,μ) = 1

νμ

x∫
−a

ψ(x′, ν,μ)exp

[
− 1

νμ

x∫
x′

�(λ)ds

]
dx′,

(P2ψ)(x, ν,μ) = 1

νμ

∫
Q

ψ(x′, ν,−μ)exp

[
− 1

νμ

( x∫
−a

�(λ)ds +
x′∫

−a

�(λ)ds

)]
dx′,

(P3ψ)(x, ν,μ) = 1

νμ
exp

[
− 2

νμ

∫
�(λ)ds

] a∫
x

ψ(x′, ν,μ)exp

[
− 1

νμ

x∫
′

�(λ)ds

]
dx′,
Q x
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(P4ψ)(x, ν,μ) = 1

νμ

a∫
x

ψ(x′, ν,μ)exp

[
− 1

νμ

x′∫
x

�(λ)ds

]
dx′,

(P5ψ)(x, ν,μ) = − 1

νμ

∫
Q

ψ(x′, ν,−μ)exp

[
1

νμ

( a∫
x

�(λ)ds +
a∫

x′
�(λ)ds

)]
dx′,

(P6ψ)(x, ν,μ) = − 1

νμ
exp

[
2

νμ

∫
Q

�(λ)ds

] x∫
−a

ψ(x′, ν,μ)exp

[
1

νμ

x′∫
x

�(λ)ds

]
dx′.

It is well known that the streaming operator T generates a strongly continuous positive semigroup (S(t))t�0 on L1(G)

(see, for example, [2]). Since the collision operator K is bounded and positive, the transport operator A generates also a
strongly continuous positive semigroup ( S̃(t))t�0 on L1(G) given by the Dyson–Phillips expansion (see the Introduction).

Theorem 3.1. Assume that (H) holds true, then the semigroups (S(t))t�0 and ( S̃(t))t�0 have the same essential type ωe , that is,

re
(

S̃(t)
) = re

(
S(t)

) = eωet � e−tλ∗
for all t � 0.

To prove this result it suffices to establish that a remainder term of the Dyson–Phillips expansion Rn(t), for some inte-
ger n, is compact. So, we have only to check that the conditions (ı) and (ıı) of Corollary 1.1 are satisfied. This will be done
in the following lemmas.

Lemma 3.1. If the hypotheses of Theorem 3.1 are satisfied, then, for every λ ∈ C with Reλ > −λ∗ and m � 3, the operator
(λI − T )−1[K (λ − T )−1]m is compact on L1(G).

Proof. Since (H) is satisfied, Theorem 3.8 in [12] implies that, for Reλ > −λ∗ , the operator [K (λ − T )−1]2 K is compact
on L1(G). Now the result follows from the fact that, for m � 3, the operator (λ − T )−1[K (λ − T )−1]m can be written in the
form

(λ − T )−1[K (λ − T )−1]m−3([
K (λ − T )−1]2

K
)
(λ − T )−1. �

Lemma 3.2. Let ω be a constant satisfying ω > −λ∗ and assume that the hypotheses of Theorem 3.1 hold true. Then, for m > (1−δ)−1 ,
we have

lim|Imλ|→∞|Imλ|∥∥(λ − T )−1(K (λ − T )−1)2m∥∥ = 0

for every λ in Rω = {λ ∈ C such that Reλ � ω}.

Proof. If (H) is satisfied, then, according to Lemma 3.1 in [12], there exist constants Ξ0 > 0 and τ̃ such that∥∥K (λ − T )−1 K
∥∥ � Ξ0

∣∣ω + λ∗ + iτ
∣∣δ−1

ln
∣∣ω + λ∗ + iτ

∣∣
uniformly on {λ = β + iτ : β � ω, |τ | � τ̃ }. Further, for every λ with Reλ > −λ∗ we have∥∥(λ − T )−1

∥∥ �
(
Reλ + λ∗)−1

.

Accordingly, putting ζ(λ) = ‖(λ − T )−1(K (λ − T )−1)2m‖, we get

ζ(λ) �
∥∥(λ − T )−1

∥∥m+1∥∥K (λ − T )−1 K
∥∥m � Ξ1

[ln |ω + λ∗ + iτ |]m

|ω + λ∗ + iτ |m(1−δ)

uniformly on {λ = β + iτ : β � ω, |τ | � τ̃ }, where Ξ1 = Ξ0
m

(ω+λ∗)m+1 .

Next, since m(1 − δ) > 1, it follows that there exists δ′ > 0 such that

|Im λ|ζ(λ) � Ξ1
[ln |ω + λ∗ + iτ |]m

|ω + λ∗ + iτ |δ′

uniformly on {λ = β + iτ : β � ω, |τ | � τ̃ }. This implies

lim|Imλ|→∞|Imλ|∥∥(λ − T )−1(K (λ − T )−1)2m∥∥ = 0

uniformly on Rω which ends the proof. �
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Proof of Theorem 3.1. Since the semigroup (S(t))t�0 is positive and the spectral bound of T is equal to −λ∗ (see [12]
or [13]), it follows from [21] that ω(S) = −λ∗ . Hence the essential type ωe(S) of (S(t))t�0 satisfies ωe(S) � −λ∗ and
therefore

re
(

S(t)
) = eωe(S)t � e−λ∗t for all t � 0.

Now, using Lemmas 3.1 and 3.2 together with Corollary 1.1 we conclude the result for m > max{3,2(1 − δ)−1} and
ω > −λ∗ . �
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