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1. Introduction

In the past decades, the nonlinear evolution equations (NLEEs) with variable coefficients have attracted extensive consid-
eration in the physics and mathematics field [1-5]. Especially, due to the swift development of symbolic computation and
wide potential applications of optical soliton in the long distance communication and all-optical ultrafast switching devices
[6-10], various variable-coefficient nonlinear Schrédinger (NLS) models have been paid much attention to by a great many
of researchers in various branches of physical and engineering sciences [11-21].

Recently, the variable-coefficient higher-order NLS (HNLS) models of various styles have become more and more interest-
ing for optical fibers [13-18]. For the ultrashort pulse propagating in a realistic optical fiber [22-24], in addition to the group
velocity dispersion (GVD) and self-phase modulation (SPM), it also suffers from other higher-order effects influenced by the
spatial variations of the fiber parameters such as the third-order dispersion (TOD), self-steepening (also called dispersion
Kerr) and self-frequency shift resulting from stimulated Raman scattering (SRS) [3]. Based on this consideration, the propa-
gation of such ultrashort pulse with loss and/or gain effect can be governed by the following generalized variable-coefficient
HNLS equation [24,25]

iu; + A@ug + Blul*u + iM1 (2)uee + Q1 (Jul*u), + (P + iPy)u(|ul?), + iH1(z. Ou + [C(z. 1) +iC Ju =0, (1)
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where u(z,t) is the complex envelope of the electrical field in the comoving frame, z and t respectively represent the
normalized propagation distance along the fiber and retarded time, while all the variable coefficients are real analytic
functions. A(z), B and Mq(z) denote the GVD, SPM and TOD, respectively. Q1 is the self-steepening and P; is related to the
delayed nonlinear response effects. Hy(z,t) is the inverse of group velocity vg, C(z,t) accounts for the phase modulation
and C; represents the amplification or absorption coefficient. For Eq. (1), some special examples can be listed as below:

e In a weakly inhomogeneous plasma, the governing equation modelling the propagation of envelope solitons is the
following modified NLS equation [26],

iqy + g+ [2191% — F(x,t))]Jg =0, )

where F(x,t") is the inhomogeneity effect, which is a special case of Eq. (1) with u=gq, z=t',t=x%, A(z) =1, B=2,
C(z,t) = —F(x,t') and M1(z) = Q1 =P = Py =H(z,t) =C; =0. When F(x,t') =x, Eq. (2) is also applicable for the
description of the low-frequency plasma dynamics in the case of resonant absorption of electromagnetic waves in fully
ionized inhomogeneous plasmas [27] and soliton excitation by an incident electromagnetic wave in an inhomogeneous
overdense plasma [28].

e In arterial mechanics [29], treating the arteries as thinwalled, linearly tapered, prestressed elastic tubes and blood as an
incompressible viscous fluid, the propagation of weakly nonlinear waves in such a fluid-filled elastic tube with variable
radiuses obeys the dissipative NLS equation with variable coefficients [26,30],

iUt +k1Ugs + 12|UPU + ik30TUg + [k202T% + k508 — k60> TE +ik7|U =0, (3)

where U denotes the dynamical radial displacement upon such initial static deformation, T and & are the stretched
coordinates from the time and axial coordinates after static deformation. ® accounts for the tapering angle, 1 and
Kk are the arterial-system parameters, k3, k4, k5 and kg stand for the contribution of variable radiuses, while k7 gives
the contribution of dissipation resulting from the viscosity of the fluid. When u=U, z=r1, t =&, A(z) = k1, B =k3,
Hi(z,t) = k307, C(z,t) = k40*1% + k5O& — kO?TE, C1 =Kk7 and M1(z) = Q1 = P = P1 =0, Eq. (3) becomes a special
case of Eq. (1).

o In view of various effects of higher-order, the ultrashort pulses propagating inside an optical fiber can be described by
the following HNLS equation [22],

iz + o + o2 ul®u + iosu + iogue + asu(jul®), + iag(jul®u), =0, (4)

where «; (i=1,2,...,6) correspond to GVD, SPM, amplification or absorption coefficient, TOD, delayed nonlinear re-
sponse effects and self-steepening, respectively. It can be found that Eq. (4) also is a special case of Eq. (1). As seen in
Ref. [31], investigations on Eq. (4) for admitting soliton solutions under certain constraint conditions have become very
fruitful.

Additionally, the Cauchy problem for Eq. (1) with Hi(z,t) = C(z,t) = C; = 0 has been considered [25]. The authors in
Ref. [24] have investigated Eq. (1) by the Painlevé analysis method [32] and obtained the following integrable constraint
conditions,

P =0, Q1 =—-2P1 =018, M1(2) = 01A(2)/3,
Hi(z,t) =01K (@)t + K1(2), C(z,t) =K@t + Kz (2), (5)

where K(z) = C1/01 + A’(2)/[201A(2)] with o7 as an arbitrary constant, K1(z) and K,(z) are two arbitrary analytic func-
tions. With this constraint conditions, a Lax pair (also called zero-curvature representation) for Eq. (1) has been presented
in the 3 x 3 matrix form [24]. However, it is found that the entries of the principal diagonal in the ‘time’ part of the Lax
pair are the same parameters, which implies that this linear eigenvalue problem is not suitable for constructing the Darboux
transformation.

It is well known that the Lax pair plays a fundamental and important role in the soliton theory [33]. The Lax pair not
only gives a scheme to solve the initial problem of a given NLEE through the inverse scattering method, but also is of
vital importance in investigating the integrable properties of NLEEs such as the Hamiltonian structures, conservation laws,
symmetry classes and Darboux transformations [2,23,34-39]. It is possible that there exist different Lax pairs for a given
NLEE such as the modified Kadomtsev-Petviashvili equation [40,41], Gardner equation [42] and generalized dispersive long
wave equation [40].

In this paper, utilizing the Ablowitz-Kaup-Newell-Segur (AKNS) procedure [34], a new Lax pair for Eq. (1) with con-
straints (5) will be constructed. Based on this Lax pair, we will further construct the Darboux transformation and derive
the nth-iterated potential transformation formula for Eq. (1) by iterating the Darboux transformation n times. Through the
one- and two-soliton-like solutions of Eq. (1), the graphical discussions about the features of ultrashort pulse propagating
in inhomogeneous optical fibers will be addressed at last.
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2. Symbolic computation on the Lax pair and Darboux transformation

The Darboux transformation method, as an effective and computerizable procedure, has been widely applied to a class of
variable-coefficient NLEEs [14-17] to derive a series of analytic solutions including the multi-soliton solutions from an initial
solution. As demonstrated in Refs. [34-39], an obvious advantage of the Darboux transformation lies in that the iterative
algorithm is purely algebraic and very computerizable by virtue of symbolic computation. In order to construct abundant
analytic soliton-like solutions for Eq. (1), we will firstly derive a new Lax pair for Eq. (1) under constraints (5) and then
construct its Darboux transformation, which can give rise to a general procedure to recursively generate abundant analytic
solutions.

2.1. Lax pair
According to constraints (5), it can be found that the linear eigenvalue problem for Eq. (1) is of the form [2,3,34-36]
& =U0=0Ug+UN®, &, =V®=1Vo+22V;+1Vs+V3)®, (6)

where @ = (¢1, ¢2, #3)7, T denotes the transpose of the matrix, and A is a spectral parameter, while the matrices U; and
Vj(i=1,2; j=1,2,3) can be presented as

B —-i 00 B 0 pu  p*u*
Ug=e O17 (o i o), Uy = (—,o*u* 0 o0 > (7)
200\ v o 200\ L, 0 o

11 +io1/B/RADIu? pra  —p*r}

1
Vy = §Be_Clz —p*r} ri —p*r ], (8)
pr pPrs 1
0 pra p*r; 2 2
V3= —,O*TZ rs 0 s Vo= §B€_2C120] Uy, V= §B€_2C120’1 Uy, 9)
—pry 0 r
with
o= e~ il/[-2A@) 301K (2)+302K2(2)1dz+301t}/(3o2)
r= I [24(2)2 +201A@)[Cit + K1 (2)] + 01 A (D)t} + 01,/ B/[2A@) | |ul?,
2V2BA(2)3204

ra=u+ioy,  r3=—io1\/B/[2A@)]u’

ra =/ B/[2A(2)][2iA(@)u¢ — 201 Blul*u — 01A(2)ue ] /3
V2B

~ Ao [4A(2)* + 601A(2)[C1t + K1(2)] + 301 A (D)t }u,

B .
r5 = g(alu*ut — oquuf — 21|u|2),

where K1(z) and K,(z) have been explained before. It is easy to prove that the compatibility condition U, —V; + [U,V] =0
can give rise to Eq. (1) with constraints (5).

2.2. Darboux transformation with symbolic computation

Using the knowledge of the Darboux transformation [36], we can construct the Darboux transformation for Eq. (1) as
below,

A

o=ro, (10)
where " is a 3 x 3 nonsingular matrix to be determined. It requires that & should also satisfy the linear eigenvalue
problem (6), i.e.,

& =00 =Ug+UnNd, &,=Vd=(13Vo+2r2V; +aVy + V3)d, (11)

where U; and Vj (i=1,2;j=1,2,3) have the same forms as U; and V; except that the old potential u(z,t) is replaced
by the new potential ii(z,t). In order to assure the invariance of the linear eigenvalue problem (6) under the Darboux
transformation (10), we can get the following system
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I+ Tru—0r=o, (12)
I,+TV—VI=0. (13)

Based on the investigation in Refs. [36-39], the Darboux transformation can be presented as

I=x-S5, (14)

where [ is the 3 x 3 identity matrix, S is a nonsingular matrix and its entries s;; (1 <1i, j <3) are all analytic functions to
be determined. ‘

Combining expressions (12)-(14) and equating the coefficient matrices of the terms A' (i =0, 1,2, 3,4) to be zero, give
rise to

Uo=Up,  Vo=Vo. (15)

U1 =U1 + [Uo. S1. (16)

St +[S. UoS + U] =0, (17)
j—1

U=Vt Y sist G=1.2.3), (18)
k=0

Sz +[S, VoS + V152 + V25 + V3] =0. (19)

From expression (16), we can derive

il =—2is;p e % 4 u, (20)
$31 =S12,  S21 =513 = —S],, (21)

where expression (20) denotes the relation between the old potential and new one. In view of the set of strict constraints
on the entries of S matrix, the nonsingular matrix S can be taken as the following form

S=HAH™', (22)
with
P11 (A1) —d21(A1) 0 M 0 0
H= <¢>21(M) $11(21) —¢11(M)) ., A= ( 0 A7 O ) , (23)
$31(A1) 0 d11(X1) 0 0 A

where Re(A1) =0, ¢31(A1) = ¢21 (A1) and the first column of above matrix is the real vector solution of the Lax pair for the
initial potential u(z,t) with A = Aq. It can be found that the construction of the Darboux transformation for the 3 x 3 Lax
pair (6) is consistent with that in Ref. [3].

With the aid of symbolic computation, it is easy to verify that expressions (21) is satisfied automatically and the identity
of expressions (17)-(19) can also be proved. Therefore, the relation between the new potential {i(z,t) and old potential
u(z,t), i.e., expression (20), turns out to be

4e=C1% Im(A1)p11 (A1) 21 (A1)
P ¢H00) +2¢300)

from which, we know that a series of analytic solutions including the soliton-like solutions for Eq. (1) under constraints (5)
can be derived by solving the linear eigenvalue problem (6) with an initial potential and performing tedious but not com-
plicated algebraic operations [37-39].

In illustration, substituting the initial solution u(z,t) =0 into Lax pair (6), we can obtain

U=u+

(24)

= \/EKlefcleri{f[fZA(z)fBU] K1(2)+302K2(2)]dz+301t}/(302) sechf, (25)

2B 1 2B
0= | —Kie C1Fr— — = k1 C%[2Bk202e 2017 4 301K (2) + 3A(2)] dz,
‘,A(z) 1 30, "A(z) 1 [2Bk7o; +301K1(2) + 3A(2)]

where A1 =ikq and k7 is an arbitrary real constant. It can be seen that the optical pulse width and soliton amplitude are
both related to the amplification or absorption coefficient C1, and the velocity of the ultrashort optical soliton is associated
with Cq, A(z) and Kq(2).

with
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When n =2, the two-soliton-like solution for Eq. (1) can be presented as
Uz, t) = \/iefcleri{f[fZA(z)f&n K1(2)+302K2(2)]1dz+301t}/(302)

[K1 cosh(2¢2) — K2 cosh2p1) (k7 — &3)
X s
—2k1k2[sinh(2¢1) sinh(2¢,) + 1] + cosh(2¢7) cosh(2y) (k2 + k3)

B —C 1 2B -C 2 .2,-2C
¢j=,/mx,»e ﬂt_ﬁ/ /m;cje ?[2Bkfofe 1% 4+ 301K1(2) + 3A(2)] dz,

where «; are the imaginary part of spectral parameters A; (j =1, 2). It is shown that the pulse width and group velocity of
each soliton in the two-soliton-like solution are both related to the variable-coefficient parameters in the ultrashort soliton
control system, which implies that abundant ultrashort soliton structures can be obtained by adjusting these distributed
parameters.

Analogously, we can also derived the nth-iterated potential transformation formula through continuously iterating the
Darboux transformation

with

n

4e=C2 o Imj) 1, j(A a2, j ()
0 Z Aj ’

j=1
with

B.
bm.jt1 = (Ajr1 = 25)mj(hj1) — A—;(x,- — A m.j(A)),

Aj =67 ;0. +2¢5 (M),
Bj=¢1,j(Apo1,j(Aj+1) + 262, j(A )2, j(Aj+1),

where m=1,2,3, ¢3j(1j) = ¢ j(%j) and [¢1,j(kj),¢2,j(kj),¢3J(Aj)]T corresponds to the real vector solution of the Lax
pair with A; =ik (kj # kj; i # j) for potential uj_q(z,t) (j=1,2,3,...,n). In conclusion, we have constructed the Darboux
transformation for Eq. (1) with constraints (5) and further obtained the relationship between the new and old potentials.
Consequently, the multi-soliton-like solutions of Eq. (1) can be explicitly derived through the general procedure presented
by expression (27).

3. Discussions

For the ultrashort optical soliton propagating in a realistic optical fiber, in order to simulate the particular applications
and analyze physical properties of these multi-soliton-like solutions of Eq. (1) often requires an advisable choice of the free
parameters and functions involved in the ultrashort soliton control systems such as the GVD, TOD, SPM, self-steepening
and amplification (absorption) parameters. In the following picture drawing and qualitative analysis, we can choose some
special values for those parameters in line with the nonuniform backgrounds of the variable-coefficient HNLS model under
investigation.

In virtue of these various variable coefficients and functions in expressions (25) and (26), abundant ultrashort optical
soliton structures can be presented through appropriately adjusting these distributed parameters. From expression (25), we
know that the soliton amplitude is invariant with C; = 0. However, when C; # 0, the amplification or absorption coefficient
has a great effect on the wave profile [43]. As studied in the realistic optical systems, based on the realization of the
decreasing GVD in a fiber [43], we can choose the parameters like GVD, nonlinearity and TOD according to the results in
Refs. [14,17].

For expression (25), if parameter C; < 0, the fiber media is dispersion increasing, and C1 > 0 corresponds to dispersion
decreasing case, which can be clearly caught from Fig. 1. Due to the influence of the amplification (absorption) coeffi-
cient Cy, it is shown that the soliton amplitude exponentially grows (attenuates) with the velocity v = e%1Z (v = ¢~0-17)
(see Fig. 1). Otherwise, the optical soliton width exponentially compresses (expands) in Fig. 1(a) (Fig. 1(b)). Fig. 2(a), with
proper parameters and functions chosen as listed in its caption, exhibits a special case of the compress optical pulse with
changeless width. Fig. 2(b) displays the effect of coefficient function K;(z) on the one-soliton pulse solution surface with-
out amplification or absorption coefficient, from which we can see that the velocity is periodically variable with the pulse
soliton propagating in the fiber media.

Considering the effect of C1 and K1(z) synchronously, Fig. 3 provides us with the visual evolution plot of expression (25)
with different signs of the parameter C;. For expression (26), abundant ultrashort two-soliton pulses structures can also
be presented. For instance, when choosing the coefficient K;(z) with different values, Fig. 4 shows the elastic interactions
between two ultrashort optical pulse solitons.
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Fig. 1. The evolution plot of one pulse soliton given by expression (25) with A(z) =«x1 =01 =1 and K;(z) = K(2) =0.(a) B=0.1and C; =—-0.1; (b) B=1
and C; =0.1.

Fig. 2. The evolution plots show the effect of A(z) and K;(z) on the ultrashort pulse soliton profile. (a) 01 =B =K1(2) =1, k1 = «/5/10, C1 =0.01,
A(2) =e 20172, and K (2) =202 /(302); (b) A() =k1 =01 =1, B=0.2, C; = K2(2) =0 and K;(2) = 55in(0.22).

4
80
lul ]
0
10
80
150
t 0
(a) (b)

Fig. 3. The evolution plot of one ultrashort pulse soliton given by expression (25) with periodic influence for B = 0.2, K1 (z) = 5sin(0.2z), A(z) = k1 =01 =1
and K3(z) =0. (a) C; =—0.01; (b) C; =0.01.

Z
0 8 11
4 6
-8 =25
) [ul [u]
18 80 0
0 0
-18 t -80 t
(a) (b)

Fig. 4. The evolution plot of two ultrashort pulse solitons via expression (26) with k; =1, k =2.5, C;1 = K3(z) =0 and o1 = A(z) = 1. (a) B=1 and
K1(z) =0; (b) B=0.6 and K;(z) =5sin(0.22).
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4. Conclusions

In this paper, we have symbolically studied the integrable properties of a generalized variable-coefficient HNLS model
describing the propagation of ultrashort pulse in the real inhomogeneous fiber. Through employing the Ablowitz-Kaup-
Newell-Segur procedure, a 3 x 3 Lax pair for this equation has been obtained under the corresponding Painlevé constraint
condition. It is shown that the above Lax pair is different with that in the existing literature [24], which is not suitable
for constructing the Darboux transformation. Based on the 3 x 3 Lax pair presented in this paper, the multi-soliton-like
solutions for Eq. (1) have been obtained by the Darboux transformation method. The corresponding potential applications
in the inhomogeneous ultrashort soliton control system have been graphically discussed by the one- and two-soliton-like
solutions through controlling the GVD, TOD, SPM, self-steepening and amplification (absorption) parameters.
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