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1. Introduction

A first result concerning the approximation of iterated stochastic integrals has been given in [1]. Consider (X%)¢-o
a family of semimartingales with paths in the Skorohod space D([0, 1]) that converges weakly in this space to another
semimartingale X, as ¢ tends to zero. It has been proven in [1] that the couple (X¢, [X¢, X®]) converges weakly in D([0, 1])
as € — 0 to the couple (X, [X, X]) ([X, X] denotes the usual semimartingale bracket) if and only if for every m > 1 the
vector (J1(X%),..., Jm(X%)) converges weakly in D([0,1]) as € — 0 to the vector (J1(X),..., Jm(X)). Here J1(X); = X;
and for k > 2, Jx(X); = f(; Jk—1(X)s— dXs (and similarly for J,(X¢)). This result shows that in order to obtain (joint) weak
convergence of iterated It6 integrals we need the convergence of X¢ to X but also the convergence of the second order
variations. When our semimartingale is the Wiener process, there are many examples of families of processes with abso-
lutely continuous paths converging weakly to it in the topology of C([0, 1]). In this case it is obvious that we do not have
convergence of the quadratic variations of such families to the quadratic variations of the Brownian motion. This led to the
problem of approximating iterated stochastic integrals with respect to the Browniam motion and later, with respect to the
fractional Brownian motion.

Let us recall some relatively recent results concerning the approximation of iterated integrals with respect to a standard
Brownian motion by a family of processes with continuous paths. Consider a family of stochastic processes (p¢)s~0 of the
form
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0
such that (pg)e~0 converges weakly in Co([0, 1]) (the space of continuous function on [0, 1] which are null at zero) to the

Wiener process. We will discuss two main examples: the case when 6. (s) := % Y eeq Skl[k—l,k)(s%), where {&} is a sequence

of independent, identically distributed random variables satisfying E(§1) =0 and Var(é1) =1 (these kernels are traditionally
called Donsker kernels) and the case when

1 N(ZX
(0 = —(=1) G2,

where N = {N(s); s > 0} is a standard Poisson process (these kernels are usually called Stroock kernels or Kac-Stroock kernels
because they were introduced by Kac in [6] and used by Stroock, [10], in order to obtain weak approximations of the
Brownian motion). In [2] the authors proved that, for a suitable function f defined on [0, 1]®", the family of multiple
integrals (I}lg(f))wo with respect to p, given by

= [ @ dpet) - dpste
[0,e]"

= / f(tls---stn)oa(tl)"'ea(tn)dtl"'dtn (1)

(0.0

converges weakly in Co([0, 1]) to the nth multiple Stratonovich integral of f 1%’}] with respect to the standard Brownian
motion. This is somehow expected because the Stratonovich integral usually satisfies the differential rules of the determin-
istic calculus. In order to obtain as a limit a multiple It6 integral (which has zero expectation) one needs to subtract the
“trace” of I,L(f), that means, to suppress the values on the diagonals. This following result has been obtained in [4]: for

any f € L*([0, 1]"), the family (IZ_(f))e-0 given by

L ()= / f(xi,%2, ..., %) ]_[ Hjxi—xj1>) dPs (X1) - - - d g (Xn)

n i,j=1
(0. i)
n n
= / f(X1,X2,---,Xn)l_[9£(Xi) 1_[ Ijxi—xj|>e} X1 - - - dxn, (2)
n i=1 i,j=1
(0. i

converges weakly, in the sense of finite dimensional distributions (and in Co([0, 1]) for n = 2), to the nth multiple It6 integral
In(f 1%’}]). Let us consider now the problem of approximating the fractional Brownian motion (BF )tefo,1] and the multiple
integrals with respect to it. Recall that the fractional Brownian motion is a centered Gaussian process with covariance
R(t,s) = 2" +s2H — |t — s2H) with H € (0, 1). It can be also expressed as a Wiener integral with respect to a Wiener

process W by B = fot Ky (t,s)dWs where Ky is a deterministic kernel defined on the set {0 <s <t} and given by

t l—H
Ky(t,s) = cp(t —s)—32 +cH<%—H>/(u—s)H_%<1 - (%)2 )du, (3)

2HI (3 —H)
r(H+1)re-2H)
W it follows that (see [3]) for any H € (0, 1) the family of processes (7s)e~0 With

. L. 1 . .
where cy is the normalizing constant cy = ( )2. From this representation and the weak convergence of p. to

t

Ne(t) = / Ky(t,s)0:(s)ds, tel0,1]
0

converges weakly as € — 0 in Co([0,1]) to B". When H > % the paths of n, are even absolutely continuous. Moreover, if
H > % the multiple integral with respect to 1,

L (fe= / fltr, o ) dne(tr) - dne(tn) (4)
[0qt]®n
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converges as € — 0 in Co([0, 1]) to the multiple Stratonovich integral of order n of the function f]‘[%?t] with respect to BH.

The purpose of this work is to give an approximation result for the multiple Wiener-1td integrals I} (f 1%”[]) with respect to

the fractional Brownian motion, for the integrand f in a rather general class of functions. Note that, as we recall in Section 2,
the multiple fractional integral I,’j can be expressed as a multiple Wiener-It6 integral with respect to the Brownian motion.

In fact, we have Ifl(f1{3)) = In(I; o f 137, where " is a transfer operator. Concretely, we show here that the family
(In. (f))e>0 defined by

1 n

1 n
Ing(f)t:/‘"'/(ri.(]n)flf%?t])(xls--»axn)<l_les(xi)> ]_[ 1{\xi—xj|>s}dx1 - -dxp
0 i=1

0 i,j=1; i#j
converges, in the sense of finite dimensional distributions, to (I,’;’ (fl[%"”))te[g,]]. Due to the rather complicate expression of

the operator 1",5") this result cannot be deduced from the result in [4] since the transfer principle for multiple fractional
integrals actually implies that Ifl’(fl‘%’ft]) is equal to I,(g(t, ~)1[%f’t]) with some function g depending on f. Because of the
appearance of the variable t in the argument of g, the main result in [4] cannot be directly applied. Another particularity
of the multiple fractional integrals is that the expectation EI{*(l A)I{’(l g) is not zero when A and B are disjoint subsets of
[0, 1] and this fact makes the proofs considerably more complex than in the standard Brownian motion case.

We structured our paper in the following way. Section 2 contains some preliminaries on multiple Wiener-Itd integrals
and multiple integrals with respect to the fractional Brownian motion. In Section 3 we prove our approximation result. We
first regard the case when the integrand is a step function. We separated the cases n =2 and n > 3 because in the first case
the proof is less complex and more intuitive and it helps to understand the general case. Finally we extend our result from
simple functions to a bigger class of functions.

2. Preliminaries
2.1. Multiple Wiener-It6 integrals

In this paragraph we describe the basic elements of calculus on Wiener chaos. Let (W¢)¢c[o,17 be a classical Wiener
process on a standard Wiener space (£2, F,P). If f € L?([0,1]") with n > 1 integer, we introduce the multiple Wiener-Itd
integral of f with respect to W. We refer to [7] for a detailed exposition of the construction and the properties of multiple
Wiener-Itd integrals.

Let f € S; be an elementary functions with m variables that can be written as

f: Z Ci] ..... imlA,'1X~~~XAim
i i

11,00 m

where the coefficients satisfy c;, .. i, =0 if two indices i; and i; are equal and the sets A; € B([0, 1]) are pairwise-disjoints.
For a such step function f we define

where we put W ([a, b]) = W), — Wg. It can be seen that for every m > 1 the application I; constructed above from Sy, to
L%(£2) is an isometry on S, i.e.

E[In(f)lm(g)]Zn!(f,g)LZ([oJ]n) ifm=n (5)

and

E[In(f)lm(g)] =0 ifm#n.
It also holds that

In(f) = In(f)
where f denotes the symmetrization of f defined by f(x1,...,%,) = %Zaes" FQGoy, - Xom)-
Since the set S, is dense in L2([0, 1]") for every n > 1 the mapping I, can be extended to an isometry from L2([0, 1]")

to L2(£2) and the above properties hold true for this extension. Note also that I, can be viewed as an iterated stochastic
integral

1 t ty
In(f)zn!ff“'/f(ﬁ,m,fn)th]-'-thn;
00 0
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here the integrals are of Itd type; this formula is easy to show for elementary functions f, and follows for general
fe L2([0, 11™) by a density argument.

The product for two multiple integrals says that (see [7]): if f € L?([0,1]") and g € L?([0, 1]™) are symmetric functions,
then

mAn
m\ /n
In(H)Im(g) = ,Zo:“( | ) ( l>1m+n—21(f ®1 8) (6)
where the contraction f ®; g belongs to L2([0, 1]™*"~2) for [=0,1,...,m An and it is given by
(f @181, Snt bty tme) = / fGa, o snopur, o upgen, o b i, o up dug - - duy. (7)
[0.13

When [ = 0, we will denote, throughout this paper, by f ® g:= f ®¢ &.
2.2. Multiple fractional integrals

Let us introduce here the multiple integrals with respect to the fractional Brownian motion. We follow the approach
in [8] (see also [7,9]). Let f e L1([0, 1]") and for every 0 <« < 1 define the operator

a,n ft1, ..., tn)
I Yoy Xn) dty---dt,
()6, x (r(a»"/ /n] LG —xpre

for every x1,...,X; € [0,t] with t € [0, 1].
We have the following properties:

oIf f=f1®---® fy with f; € L1([0, 1]) then
(1" )Gy = (I 1) 1) -+ (12 f) (x0)

for every x1,...,x, € [0, t].
o If H> ] then

1\ 1y, H-31, 41
CHF<H + 5)52 HZ 2 (X" 2110,9))(5) = Ku(t, 5) (8)
where Kp is the standard kernel of the fractional Brownian motion (3).

We introduce the space |7|®" of measurable functions f : [0, 1]* — R such that

\f(u1,...,un)f(v1,...,vn)|< l_['(/f(u]',Vj))dU‘l"'dundV]"'an <00

[O,]JZ” j=1
where ¥ (s, t) = HQH — 1)|s — t|*1—2,
Remark 1. For any H > % we have (see [7,8])

L2([0,11") € L7 ([0, 11") C [H|®".

Define the operator F,_(,") CIHI® — L2([0, 11

1 ,1,1 moh_1
(R D)t = [enr (145 )} r[tf o (f<X1,--~aXn>fo Z)ma---’fnl ©)
i=1

Then the operator F,_(,") is an isometry between |H|®" and L?([0, 1]") where we endow the space |H|®" with the following
inner product

(f, &) pen = / fur, ... up)gve, ... Vn)(l_[lﬁ(uj» ]))dul -dupdvy---dvy (10)

[o, -1]2n Jj=1
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Note that:

o If f =10 then by (8)
1\ 1_y H-11, y_1
(F;,1>1[0,b])(s)=cHr(H+E)sz H 2 (M2 159.)) (5) = K (b, ).

o If f=T(p then (I 1ap)(s) = Ku (b, s) — Ku(a,s).
o If fie|H| (i=1,...,n) then

IP1®- 0 =Ty ey fi (11)

Let f e |H|®". Then we define the multiple Wiener-Itd integral of f with respect to the fractional Brownian motion by

() =(0 f) (12)

V\;here I, denotes the standard Wiener-Itd integral with respect to the Wiener process as defined above. Note that FF(I") fe
L=([0, 11M).

3. Approximation of multiple fractional Wiener integrals

Let us introduce some notation. We set
t

ng(t):fKH(t,s)Hg(s)ds, te[0,1] (13)
0

where 6, is such that fé 0 (s)ds converges weakly in the topology of the space Cy([0, 1]) to the standard Brownian motion.

Lemma 1. Let 6, be either the Kac-Stroock kernels or the Donsker kernels. Then the family of processes n. converges weakly in
Co([0, 1]) as € — O to the fractional Brownian motion BH forany H € (0, 1).

Proof. It has been proved in [3, Proposition 2.1]. O

Denote, for every ¢ > 0

n

8e(X1, ..., %) = 1_[ 1{|Xiij\>5} (14)
i,j=1; i#]j
and
1 1 n
Ing(f)f=/-~-/(F,§")f1%’fﬂ)(xl,...,xn)(]_[Ge(xi)>ge(xl,...,xn)d><1 - dxn. (15)
0 0 i=1

Remark 2. Note that it follows from a result in [9] that, if f € LI([0, 1]) for some q > % then the function t — I (f); is
continuous. Indeed, for every s <t
|I‘l

I (e = In, (f)s] < iug]|9€(r) (T P @) — (T P18 (. )| dxy - dxg
r

O\\
[0,1]®n
1
n M ¢1®n M) £1®n 2 ’
< sup [6:(0)| [(Fg” FI) G xn) = (T FIT) Xa,  X)|“ dxa - - dxg
0<r<i1 0,16

= sup [0 0" (B[ (F13) — 1 (F1R5)[)

'

N—=

n H-1
<CHp sup |6e(r)| [t —s]" "3,
0<r<1

where for the last inequality we used Theorem 3.2 in [9].
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We first prove the following result.

Lemma 2. Let f be a simple function of the form

m
Fa, ) =) arlag i, Xn) (16)
k=1
wheremeN, ap € R foreveryk=1,...,mand Ay = (a1 b1 - x (ay, byl such that foreveryk=1,...,m, (a;;, bL] are disjoint
intervals (i =1, ..., n). Then the finite dzmenstonal dlstrlbutlons of the process (Y€ (f)t)tef0.1] given by

YE(f)e _/ / P F1gh) (xl,...,xn)<1_[9£(x,-)> dx; - - - dxn,
i=1

converge as € — 0 to the finite dimensional distributions of

m
H H H
( ZO[kh (l(al bl [0,t] ) I (l(ar’l bn [ ])) = < Zak(Bbll{/\t Ba /\t) (an/\t Bak/\t)> .
k=1 k=1 tel0,1]

te[0,1]

Proof. We have, by using the property (11) of the operator rm,

1

YE(f)e = / /F(")flmt] (x1,...,xn)<1_[95(x,'))dx1~~dxn
i=1

0

Il
T Ms
o”\~

1 n
/ (al bl]x--~><(aﬁ,b2]1<[§(§)l,1t])(xl yeens Xn)( nea(xi)> dxq - - - dxy
0

i=1

Il
NE

L
P

(1}(,1)1(a;‘{,bi]l[o,t])(xi)Qs(Xi)dXi

(KH (b;c At, Xi) — Ky ((1;< AL, Xi))9£ (%;) dx;

=
Il
_
Il
-

Il
Ms

2
.

=

Il

KN

T

-
o O~ _

[ T0re (B 7 0) = e (@ A1),

Il
Ms
::

1

=
Il
Il
-

and then for every fixed tq,...,t; € [0,1] the vector (Y®(f)s,,...,Y?(f)) converges as in the statement because by
Lemma 1 7, converges weakly to the fractional Brownian motion. 0O

Remark 3. Let f be a simple function. It can be seen that (here 0Ky denotes the partial derivative of Ky with respect to
the first variable)

B n
Yo = f dX1"'dxn(/"'/31KH(C1,X1)"’311<H(fn,xn)f(f1,---,fn)dﬁ"'dtn)<n9s(xi)>
X1 Xn i=1

[0,e]"
— [ Ftr e tdna)-dne o),
[O’t]ﬂ
Therefore Y¢(f) coincides with 138 defined by (4).

Note also that in the case of multiple Wiener-It6 integrals (H = %) the random variable Y¢(f); coincides with I, (f);
for ¢ small enough if f is a simple function.



700 X. Bardina et al. / ]. Math. Anal. Appl. 369 (2010) 694-711

3.1. Thecasen =2

Let us consider first the case of a multiple integral in the second Wiener chaos. Suppose that f is a simple function of
two variables of the form

m
Fy) =)o g1 (012 42y ()
k=1

where for every k, (a1 bl] and (a2 b2] are disjoint intervals. In this case, by using the product formula for multiple stochas-
tic integrals (6), the multiple integral of f with respect to B can be expressed as

m
H ®2
12 (fllo tJ) Zo‘klz (1(a,1(,b,1<]1(aﬁ,bf]1[0,tj)
k=1
m m
H H
= Z (Bbl/\t Bak/\t) (Bbz/\[ Ba /\t Zak“(ﬂ}(,b;]‘l[o’t]’ 1(ﬂ£~,b£]][0’t])H' (17)

k=1 k=1

The main difference with respect to the case of the standard Brownian motion is given by the fact that the scalar product
in H of two indicator functions of disjoint intervals is not zero anymore (recall that this scalar product is given by the
formula (10)).

Let us show that the sequence

1

2
b, (F)e = / g <x1,xz><Heg(xo)l{x]_xzm}dxldxz (18)
i=1

0

converges in the sense of finite dimensional distributions to the process I Hr 1[0 1)- We can write

1

L (P = / [ s, X2)<1_[95(X1 )dxlde
i=1

0

11 )
—// (z)fl[o A (XLXZ)(l—[es(xi))l{lxl—xz<5}dxl dx. (19)
00

i=1

Note that, using the properties of the transfer operator FIf,z), the first term can be written as

1 1
> / T (g1 piyego,e) ()0 (x1) dx / T (g2 p210j0.0) (2)0e (x2) dxy
k 0 0
= Y at(me (b A ) = e (a; A1) (me (b A £) = 16 (0} A 1))
k

and by Lemma 2, its finite dimensional distributions converge to those of the stochastic process

Zak bint BZ(M) (Bbz/\t BZ{/\t)

Next we will discuss the behavior as ¢ — 0 of the second term. We need the following lemma, which will play an
important role in the sequel.

Lemma 3. Consider two functions f, g € L*>([0, 1]) and denote by

11
Ye=//dxl dxy f(x1)&(X2)0g (X1)0e (X2) 1{jx; —x3] <e)
00
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where 0, are the Kac-Stroock kernels or the Donsker kernels. Then

1
YE—BY:/f(x)g(x)dx in L*(£2).
0

Proof. The case when 6, are the Kac-Stroock kernels. In this case, 0¢ (x) = %(—1)N(siz), where {N(t); t > 0} is a standard Poisson
process. We have

E(Ye — Y)2 = E(Y:)? — 2YE(Y,) + E(Y)2.

We first calculate,

11
1 = |x1—x2|
E(Ye)= dx1 dx; f(Xl)g(Xz)g—zef 1{jx; —xp) <€)
00
1

X1

1 =2, _
- / dxy f(x1) / dx2 £(2) e L P
0

0
1 X2

1 =2(x,—
+/dX2g(X2)/dX1f(X1)8—2€€2 e X1)1{0<xrx1<e}.
0 0
Note that

X1

2 =2(y,_
/dxz g(xz)g—ze@2 ta X2)1{0<x1—x2<8} =g* @e(x1)
0

_2z
where ¢¢(2) = 1(0,¢) (z)}ze ¢2 is an approximation of the identity. Therefore the convolution g * ¢ converges to g in
L2([0, 1]) because g € L2([0, 1]). We obtain

1
E(Ys)—B/f(X)g(X)dX=Y.
0

On the other hand,

E((Ye)?) = / dxq dxy dxz dxa f(x1)8(X2) f (X3)8(X4) E (05 (X1) - - - 0 (X4)) 1{1x, —xo 1 <e} 1 {1x3 —xa] <e}

(0,14
=1{+1
with
I = f dx; dx dx3 dxs f(X1)g(Xz)f(X3)g(X4);—4e3_22(‘xz_“')62_22("“‘_"3”
[0.1]4
X 1{|X2*X1\<€}1{|X4*X3\<8}(1{X1\/X2<X3AX4} + ]{X3VX4<X1/\X2})
and

1 2o —xa) 2 xa—xa)
I5= f dxi dxz dxs dxs f(x1)8(x2) f (x3)g (xa) 7€ ¢ @ e 2 TOTE)
[0,1]4
X Ty —x1|<e} T{xa—x3]<e) 14 (X1, X2, X3, X4)
where we denoted by A = {{x1 V X2 < x3 A x4} U{X3 V x4 < X1 A x2}}C. Here we used the fact that E(6s(x1)---0s(x4)) =
Z 2 iy Z 2 ea—
;—4e 22 %@ X)) = 5 %@ =X3) \yhara X(1), X(2), X(3), X4) are the variables X1, X2, x3, X4 in increasing order.
We begin studying the convergence of the term I§. In the set A, there are 16 possible orders for the variables
X1,X2, X3, X4. We will make the calculation for the case x;1 < X3 < X < x4 but for the other 15 possible orders we can
proceed in a similar way. In this case we have
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1 ;22(X3*X1) ;22(X4*X2)
dxq dxo dx3 dxy f(Xl)g(Xz)f(Xa)g(X4)8—4€ e ee Tixg <x3 <x <xa} Hixa—x1 1 <61 T{ixg—x3) <€)

(0,14
1 2 T 2(-x1) 2 (a—x)
< 3 dxy dxy [ f(x1)&8(X2) | 1ixy—xy ) <e) dx3 dx4 il ee Tixg <x3) 1 ixp <xa} T{jxa—x3] <€}
[0,1] [0,1]
d 2 1 F(x3—x1) 2 (Xa—x2)
+ dxz dxa [ f(x3)8(x4) ] 1{jx4—x3/<e) dxq dxz prid es Ty <x3) Vo <xa) Vo —x1 <€) | -
(0,1 (0,1

When we integrate the first integral with respect to dxs dx4 and the second integral with respect to dx; dx, we obtain that
the last expression can be bounded by

2
C / dxy dxy [ f(x1)8(x2) ] {jxy x| <e)-
[0,1]2

Proceeding in a similar way for the other 15 possible orders we obtain that

2
I5<c / dxy dx [ (1) 802) 1y <e)-
[0,1]2

This implies that I converges to 0, by using the dominated convergence theorem.
Let us regard the behavior of the term I{. This term will give the convergence of E(Y?)%. We have

¢ 1 Ze—xn, 7 (xa—x)
;=8 dxq dxz dx3 dxa f(x1)g(Xz)f(X3)g(X4)8—4€s ee T{ixy—x1 1<e} ixa—x31<e} 1 xg <xp <x3 <x4}
[0,1]4
1 X2 2
=2 (s
=2/ dxz g(XZ)l{X2<X4}/ dxy f(x”g_zesz e X])1{0<x2—x1<8}

0 0
1 X4

2 2y,
X/dX4g(X4)/dX3 f(X3)8—2€€2 e X3)1{O<X4—X3<s}-
0 X2
We obtain that I converges to 2[[01 fol fg®) f(¥)g(M)1ix<yy dxdy]. Thus I converges to [fol fx)gx) dx)? =Y2.

The case when 6, are the Donsker kernels. In this case, 6;(x) = %Z,fil §k1[k71,k)(8%) where (&) is a sequence of inde-

pendent, identically distributed random variables satisfying E(&1) = 0 and E(Sf) =1 with E(éf") < 4o00. In this case we
have

11
1 X1 X
=3) / f dx, def(xl)g(xZ>1[k_1,,<)z<€—§, 8—§>
00

1 o ke?
1
=/ dxy f(x1) Z l[(kfl)sz,kaz)(xl)g_z / dx2 g(x2)
0 k=1 (k—1)¢?
1 [51+1 ke?
g 1
2/ dx1 f(x1) Z ][(k—l)sz,ksz)(xl)? / dx; 8(x2)
0 k=1 (k—1)&?
1
=[x rowGeca

0
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where
[eiz]+] ke?
1
Gey:i= ) Tge-neker) 0 23 / dy g(y).
k=1 (k—1)e2
Fix x1 € (0, 1). Then for every € > 0 close to zero, there exists a k(x1,¢€) € {1, ..., [612] + 1} such that (k(x1, &) —1)e2 <x1 <

k(x1, €)e2. Then 0 < x; — (k(x1,€) — 1)e% < &2 and this implies that (k(x1, &) — 1)e2 — x; as € — 0. Thus

k(x1,8)e2
Ge(x1)=— / dxz g(x2)
&
(k(x1,8)—1)&2

converges to g(x1) as € — 0. Consequently

1
E(Ye) :()/f(xog(x])dx].
0
Now, we calculate E (YSZ). We have that,

l o0
E(0c(x1) - - 05 (xa)) = 8—4 D Vg nye2 ke2y2 (X1, X2) 11962, js2y2 (X3, Xa)
k#j=1
o0
1
T D T ne2 ke22 (1. X3) 11y o2y (X2, Xa)
k#£j=1
o0
1
+8_4 Z ][(k—l)ez,ksz)z(xl’X4)][(j—1)82,j32)2(x2’X3)
ks j=1
E(E]) &
v k; T k=1)e2 ke2)d (X1, X2, X3, X4)

. 1 2 3 4
= Gg(x1,X2, X3, X4) + Gg(X1,X2,X3,X4) + G5 (X1, X2, X3, X4) + G (X1, X2, X3, X4).

—+

Thus

E((Ya)z) = / dxq dxo dxs dxa f(x1)g(x2) f (X3) g (Xa) G L(X1, X2, X3, Xa) 1 {jx; —xo| <&} 1 {|x3—x4] <£)
(0,114
+ / dx1 dxa dxs dxa f(x1)g(X2) f (X3) g (Xa) G2 (X1, X2, X3, Xa) 1 {1y —xo | <&} 1 {Ixs—xa <e)
[0,1]4
+ f dx1 dxp dx3 dxa f(x1)g(X2) f (X3)g(Xa) G2 (X1, X2, X3, Xa) 1 {1y —x | <&} 1 {Ixs—xa <e)
[0,14
+ / dx1 dxy dx3 dxa f(x1)g(X2) f (X3) g (Xa) G (X1, X2, X3, Xa) 1 {1y —xs| <} 1 {{xs—xa|<é)
[0,114
=1+ 24+ 2+
The convergence of ];: Fix x; and x3 in [0, 1]. Then for every & > 0 close to zero, there exists k(x1,¢€) € {l,...,[;—z] + 1}
and j(x3, &) €{1,...,[5]+ 1} such that k(x1, ) # j(x3, ), (k(x1,€) — e? <x1 <k(x1,6)e? and (j(x3, &) — 1)e? <x3 <
j(x3,€)e2, this implies that (k(x1,&) — 1)2 — x; and (j(x3, €) — 1)e2 — x3 as ¢ — 0. Then we can write
k(x1,6)e2 Jj(x3,8)e?
1 1
/ dxy dx4 g(x2) g (x4)GL (X1, X2, X3, X4) = 2 / dxz g(x2) x 2 / dxs g(x4).
[0.112 (k(x1.,6)—1)g? (Jj(x3.6)—1)€?
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Moreover, this term converges to g(x1)g(x3). We conclude that

e—0

11
1t [ [ andn romgon seagea =2
00

The convergence of]g and ]2: Fix x1 and x; in [0, 1]. Then for every ¢ > 0 close to zero, there exists k(x1,

(20)

&) ell,..., [F1+1}

and j(xz,€) € {1,...,[8%] + 1} such that k(xq, &) # j(x2, €), (k(x1,&) — 12 < x1 < k(x1,€)e? and (j(x2,8) — g% < xp <

j(x2, £)€2, this implies that (k(x1, &) — 1)e2 — x; and (j(x2, &) — 1)e2 — x, as € — 0. Hence

/ dx3 dxq f(x3)g(Xa) G2 (X1, X2, X3, Xa) 1 {jx; —xs) <&} 1 {|x3—xa| <}
[0,1]2
k(x1,8)&% Jj(x2,6)€?
< 1{\X17x2|<£}8_2 dxs f(x3) x o2 dx4 g(x4).
(k(x1,8)—1)e? (j(x2,8)—1)e?

This last term converges to f(x1)g(x2)1x,=x,}, this implies that

J g — 0.
e—0
In the same way, we obtain that

]g — 0.
e—0

The convergence of ];‘: Fix x1 in [0, 1]. Then for every € > 0 close to zero, there exists k(xq, &) € {1, ...
(k(x1, &) — 1)e2 < x1 < k(x1, €)&2, this implies that (k(x;, &) — 1)e2 — x; as € — 0. Then we can write

E(§4) k(x1,6)e2
/ dxy dx3 dxq g(x2) f (X3)g(Xa) G (X1, X2, X3, X4) = 821 / dx; g(x2)
[0,1]3 (k(x1,8)—1)e?
k(xq,8)e2 k(xq,8)e
x5 [ dufowx
(k(x1,8)—1)e2 (k(x1,6)—1)&2

The last term converges to zero, thus
] g —> 0.
e—>0

Consequently, by combining the above convergences we obtain that

E((Ye)?) —6Y2. O

We will also need the following lemma.

(21)

(22)

) [;—2] + 1} such that

dxs g(Xq).

(23)

(24)

Lemma 4. Let us consider a family of stochastic processes (X¢)¢e[o,1] converging as € — 0 to (X¢)te[o,1] in the sense of finite dimen-
sional distributions and a family of stochastic processes (Y¢)tejo,17 such that for every t € [0, 1] the sequence of random variables
Y converges, as € — 0 to Y; in L?(£2) where Y, is a constant for every t. Then X + Y¢ converges to X + Y in the sense of finite

dimensional distributions.

Proof. Fix tq,...,t- €[0,1] and let us show that the vector
(XE, +YE. ... Xe +Y)

converges in law to the vector
Xey +Yey0 oo, Xe, + Y.

Take g € C}(R"), then
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|E(g(Xf 4+ Y. ... X +YE)) —E(8(Xey 4 Yeyo o ou Xep + Vo) |
<|E(g(XE, + Y. Xp +Y0)) — E(g(XE + Yoo X0+ Ye)|
+ |E(g(XE, 4 Yeyo oo XE +Ye)) — E(8(Xe, 4 Yoo ooou Xe, + Ye)|.-

The first term converges to zero due to the L2 convergence of Y¢ to Y since

1
[E(@(XE Y6 o XE HYE)) = E(@(XE 4 Yoo XE 4 Ye))| S KE[(Y = ¥e)" o (¥E = ¥)’)?

and the second one converges to zero as € — 0 because, by Slutsky’s theorem, X¢ + Y converges to X + Y in the sense of
finite dimensional distributions. O

We obtain the following result:

Proposition 1. Let f € S, and let I, (f); be given by (18). Then (I, (f)t)te[0,1] converges as € — 0 in the sense of finite dimensional
distributions to the process (I (f1557))tef0.1)-

Proof. Recall the expressions (17) and (19) of I?(fl[%ﬂ]) and I, (f);. By Lemma 2 the first term in (17) converges in

the sense of finite dimensional distributions to the first term in (19) and applying Lemma 3 for f = Fb(ll)l(a}( b]](]l[o_t] and

g= F151)1(a£,b£]1[04f] we obtain that the term

i=1

11 5
//(F;IZ)f]%,zt])(XlaXZ)< 1_[‘98()‘1')>1{x1—x2|<8} dxy dx;
00

converges in L2(£2) for every t € [0, 1] to

1
1 1
Zak/FISI )(1(a;,b;]1[0,r])(x)1ﬂ,5 )(](aﬁ,bﬁ]l[o,t])(x) dx = Zak(](a}(,b}(]l[o,t]a @2 p2y lo.e1) -
k 0 k

The above Lemma 4 gives the conclusion. O

3.2. Thecasen >3

In the case of multiple integrals of order n > 3, the structure of I, (f), is more complex because of the appearance of
all diagonals. The first step is to express the multiple integral of a tensor product of one-variable functions.

Lemma 5. Let f1,..., fn € |H|. Then

n [n/2] n
Hhehe =[]+ >d 0 > I1 Iﬁ’(fu))mq,fk2>H---<fk2,_1,sz,m.
i=1 =1 k] ..... k21=1; uefl,..., n}\{k1 ..... kZI}

k; distinct

(25)

Proof. We will prove the result by induction. For n = 1,2 it is trivial. Let us show how it works for n = 3 because it is
useful to understand the general case. We have, using (11), (12) and the product formula for multiple integrals (6)

e he =5 hLef))

(e IV (f) © IV (f)

LM er (e riP(f)7)

L (@ ) (g (f) — 21 (I (0@ (f2) @1 TP (f).

Note that

1

(rP (&Y (), t2) = 5(r:,”(ﬁ)(t])ré,”(fz)(rz) + P ()T (@)
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and thus
- 1
(r P ers (f)) @1 MYV (f3) = S (A, LSV (F2) + (far f3)n TV (F1)-
We obtain

H(f1® fa® f3) = (TGO (f2) = (f1, f202) 1 (F3) + ((F1, f3)rd (F2) + (2, Fa)nd T (f1)
=10 (O DI (f3) — ((F1, F)RIT(f2) + (o, ) IV (D) + (fr, f)md Y (f3).
Concerning the general case, assume that (25) holds for 1,2, ...,n — 1. Again by the multiplication formula (6),
HH® @ f)=la(TP ) ©- - @ TP o)) (TS ()
— =Dl (L D@ @ T (fae1) ™ @1 TV (f)

n—1 [(n—1)/2] n—1
=i [T+ > b ) ( I1 M (fn>)
i=1 I=1 k1,eoky=1; S ue{l,...,n—1}\{k1,....ky}

k; distinct

n—1
X {frys S Sy s Sro)H — Zlnfz((l“,y)(ﬁ) Qi ® F,i”(fnfl))w)m, fn)H

i=1
and this equal to
n—1 [(n—1)/2] n—1
W [T+ Y. <t > I1 If’(fu>1{*(fn>><fkl,fk2>H~--<fk2,,l,fk2,>H
i=1 I=1 Kook =15 S wefl,.,n—10\(k1,.... k)
k; distinct
n—1 n—1 [(n—2)/2] n—1
- < [T #un+ > b > ( I1 I{’(fu)>
i=1 \ j=1; j#i I=1 kisko =15 kil " et 0, n—10\{ky ... ko)

k; distinct

X (fk]v sz)H"' (kaI—l’ sz[)H)(fh fﬂ)H

and it is not difficult to see that the last quantity is equal to the right side of (25). O
The next auxiliary two lemmas will be used in the proof of the main result.

Lemma 6. Suppose that (X{)tejo0,1] is a family of stochastic processes whose finite dimensional distributions converges to the finite
dimensional distributions of a stochastic processes (X¢)¢>o. Suppose also that (Yi ¢)s,te[0,1] IS a two-parameter stochastic process such

that for every s, t € [0, 1] we have that ij converge in L2(£2) to as.t, when ¢ tends to 0, where as ; is a real constant. Then for every
t1,....t, €[0,11and s1,...,Sr,, U1, ..., ur, € [0, 1] the vector
&€ t3 &€ &
(XE e Xe Y e Yo )

try S1,U71? > 7 SrysUry

converges weakly to the vector
Xeys---s Xtr1 s sy uqs e s asrz,urz)-

Proof. Consider f € Cl} (R"1*72), We have

[ECF(XEs - Xe Yo Yo ) = E(F Xty Xy Gy sy )|

7 Syl
STE(F(XE o XE Y oo Yo, ) = E(F(XE o X sy Gy )) |
+ }E(f(xflv "'7X€_1 7a51,U17 «~~7asr2,ur2)) - E(f(tha ey Xtrlaasl,ula ~~~7as,2,ur2))|
2 241
< I(E[(YSELLH —as1,u1) +--+ (Y-frz,urz _asrz’ufz) ]2 + |E(f(Xfl’ ""Xfr]’asl'ul’ ""asrzsurz))

—E(f(Xtys s Xty Ospuys - -5 sy i) |-
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dimensional distributions of (X{)re[o,1] converge weakly to those of (X;)i>0. O

707
The first term converges to zero because Yj ¢ converge in L2(£2) to as,r and the second one converges to 0 because the finite
Lemma 7. Let f; € L2([0,1]) fori =1, ...,n and define

n
Fe= / fix1)--- fn(xn)l{xl—xz|<s}1{|x1—)<3|<s}( Hes(xj)>hs(x17 ooy Xp) dxy - - dxp
[0,11" i=1
where 0, are the Kac-Stroock’s or the Donsker’s kernels and we assume that for every € > 0, |hg (X1, ..., Xy)| < 1foreveryxq,...,x, €
[0, 1]. Then
E(F})— 0. (26)
e—0
—2X
Proof. (1) Assume that 6, are Kac-Stroock kernels. For € > 0 and x > 0, we set Q.(x) = ;—zes_z and f;:= f;_p for every
j=n+1,...,2n. We introduce some operators on the set of permutations. &, denote the set of permutations on 1,...,k
When 7 € 6y, and 0 € &, we note o x T the element of &y, defined by
oxT(2j—1)=1(20(j)—1) and o *1(2j)=1(20())).

We have id+*T =7 and ¢’ x (0 xT) = (0'0) x T, hence x: &y x Sy — Say defines a (right) group action of &, on Gopy.
For any T € Gy, the orbit of T has exactly m! elements. Consequently, the set O of the orbits under the group action » has
% elements and we have, by denoting 7; one particular element of the orbit 0; = o(t;) € O: for rq,

Tpvizj, ri#r i} = Z 1{r‘r(1)>"'>r‘r(2m)} = Z Z l{rr(1)>'“>rr(2m)}
1€Gom

0;€O T€0;
2m)!

..., T2m €[0,1],

mm
< H l_[]{rZIi(j)—l>r2ri(j)}~
i=1 j=1

Then for any & > 0, we have

(27)
E(F?) =

/ F1x1) -+ fanXan) Vixy —xal<e) iixi —x31<e) 1 {1xns1 —xas2l <€) L {Ixns1 —xns31<e)
[0’1]271

n
X E( ]_[ O (x))0e (Xjrn)he (X1, ..., Xn)he (Kjtn, - - . in)> dxq - - - dxan
j=1

2n
< / |f1(xl)|"’|f2n(X2n)|1{|x1—x2|<€}1{|x1—x3<s}E(Hes(xj))
i=1

[071]211
= Z Z / }f1(x1)| |f2”(x2")|1{|X1—X2\<8}]{|X1—X3\<€}

CIX] cee din

0;€O T€0; [0.1]2

n
X Vg gy > x7 amy} Qe ( Z(Xr(ijl) — Xr(zj))) dxq - - - dxap.
=

Among the addends of the last term there are two possible situations.

e On one hand we have terms of the type:

0,11

/ Tg=xa) | Forito—1 1) || far, ) (X2)| Qe (x1 — x2)

X 1{0<x;—xy <8} {0<x1—x3 <8} | f2rik)—1 (%3) || fory ) (X4) | Qe (X3 — X4) dX7 dXp dX3 dx4
n

X 1_[ T =x03 | For (=1 XD | fam(jy (2)| Qe (x1 — x2) dxq dxa,

J=1; j#k.k [0,1]2

where t;(k) > T (k") + 1.
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Notice that, using (27) (as in [5]), we obtain

1
f T =x} | fari(h =1 D || for() (%2)| Qe (%1 — x2) dxq dxy < §||f2r,-(j)—1 21l faz; iyl 2
[0,112

Moreover, given h; € L2([0,1]), i =1, ..., 4, we have that

/ |h1(x1) ||h2 (%2) ||h3(X3)| | ha (X4)| 1 {0 <x; —xp <&} 1{0<x1 —x3 <6} Qe (X1 — X2) Qe (X3 — X4) dX7 dXz dx3 dxg
[0,1]4

< / |h1(x1) || h2(x2) || 13 (x3)| |4 (x4) | 110 <x; —x, <6} 1{0<x1 —x3 <8} 1 {0<x3—xa <}
[0,114
X Qg (X] — Xz) Q¢ (X3 — X4) dX1 dXz dX3 dX4

+ / |h1(x1) ||h2(%2) ||h3(X3)| |4 (X4) | 1{0<x; —x, <6} 110<x1 —x3 <8} {6 <x3—xa}
[0.1]4
X Q¢ (X] — Xz)Qg (X3 — X4) dX1 dX2 dX3 dX4
=Al+ Ag.
The term A; converges to zero by using the same manner of the convergence of I§ in the proof of Lemma 3. For the
term A2 we have that

1
A2 < 5( / h2 (%1)h3(X3)1{0<x; —xs <&} Qe (X1 — X2) Q& (X3 — X4) dx1 dxa dx3 dx4

[0,174
+ / h3(x2)h3 (x4)1{0<x; —x3 <¢) 1 e <x3—x4} Qe (X1 — X2) Qe (X3 — X4) dx1 dx2 dx3 dx4>.
[0,114

Integrating with respect to x; and x4 in the first addend we obtain the convergence to zero by using the dominated
convergence theorem. Moreover, using the fact that for y > €, Q.(y) <e~2, and integrating after with respect to x3 and
x1 we can bound the second addend by

e / h3(x2)h3 (x4) dx dx4
[0,1]2

that clearly converge also to zero.
e We have also terms of the type:

/ T =xa} | Forito—1 XD | fari oy (Xa)| Qe (X1 — X4) 1y x5 | f2rt)—1(%2) || for ey (%5) | Qe (X2 — X5)
[0,116

X 16} | f2riten =1 (X3) || farykr) (X6) | Qe (X3 — X6) 1{0<x; —x, <6} 1{0<x1 —x3 <6} AX1 dX2 dx3 dX4 dX5 dXg
n
X H 1ix, >x2}|f2r,-(j)—1(xl)| |f2r,-(j)(X2)|Qs(x1 —Xx2) dx1 dx;,
=1k 0
where tj(k) > t;(k') +1 > (k") + 2.
But, using arguments similar to those presented in the previous situation it is not difficult to see that also this type of
terms converges to zero.

Combining the above convergences we conclude that E (Ff) converges to zero and thus Lemma 7 satisfied.
(2) Assume now that 0, are Donsker kernels. For any m > 3

E(E")
Gs,m(xl, ey xm) = 8—m Z 1[(k71)82,k82)m (X] s eeey Xm).
k=1
Fix x1 in [0, 1]. Then for every & > 0 close to zero, there exists k(x1,¢€) € {1,..., [siz] + 1} such that (k(x1,&) — e <x1 <

k(x1, &)e2, this implies that (k(x1, &) — 1)e2 — x; as ¢ — 0. Then we can write
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Jem = / fi(x1) fa(x2)--- fm(Xm)Ga,m(XL oo Xm) dXq - dX
[0,1]m

1

ol

= E(é{")sm_szl(xl)n[g—z
0 j=2

k(x1,8)e?
fi&x)) dei| dxq.
(k(x1,8)—1)e?

P 1 rk(x1.6)¢?
Moreover for each j=2,...,m, the term 22 Jikixy £)-1)¢2

obtain that

fi(xj)dx; converges to fj(x1). Combining this with m > 3, we

Jem—>0. (28)
£—0

On the other hand, if we denote by

-1 00
_ 1"
Goe(X1,...,Xon) = P n( Z k=12 ke2)2 (X 2j+1) X0(2j+2))>-

j=0 \ k=1
FiX X5 (2j+1) € [0, 1] for any j=0,...,n— 1. Then for every & > 0 close to zero, there exists k(xs2j+1),¢) € {1,..., [;—2] + 1}
such that
k(Xo2j+1): ) #k(Xg2ji41),€), Vj'#j and (k(Xo@2j+1).€) — 1)82 <Xoj+1) < k(Xo2j41), €)E%

This implies that (k(Xs2j+1), &) — e — Xo2j+1) as € — 0. Then we can write

Joe:= / f1x1) -+ fan(xon) G e (X1, - -+, X2n) 1 {1y —xo <6} Ly —x3|<e} dX1 - - - dXan
[O,lJZ”

n—1 ; k(X 2141),6)€*

< |:f(7(21+1)(x0(21+1))8_2 1%y —xa) <&} (1% —x3| <€}

[,1 =0 (k(Xg 1 1).8)—1)82

X fo@i+2) (X5 2142)) dXo(21+2)i| dXy (1) dX5 (3) - - - AXg (2n—1)-

Moreover, this last term converges to

N

1
[ Xy 1) =% a1 +1): for some k=#k'} 1_[ [ fo 1) %o @i41) fo @i42) Ko @141) | dX0 (1) dXg 3) - - dXg 2n—1) = 0. (29)
=0
[0,1]

From (28), (29) and the fact that the term E(]_[?:1 0¢(xj)) is written as a sum of terms of type Gg ;, or GU,S we conclude
that

E(Ff)—0. O

e—0
We can state now our approximation result for multiple fractional integrals when the integrand is a simple function.

Proposition 2. Let f be a simple function of the form (16). Then the finite dimensional distribution of the process (15) converge as
& — 0 to the finite dimensional distributions of(I#(fl%’ft]))te[m].

Proof. If f is a simple function of the form (16) then for every t € [0, 1]

m
H ®n \ _ H ®n
In (fljo) = Z“k]n (1(a,1,b,1] e x A Tioly)

k=1

m n [n/2] n

H 1 H
- [ 0guton s 0 > (T Hoguton)
k=1 i=1 =1 Jeenju=1 S ue{l o n\{j1,... jar}
ji distinct
X (1(0,1;1 ’bi1]1[0,t], 1(a,{2,b,{2]][0’t])H c (1(‘1;{2’71 ‘bizl—l]l[o,t]a 1(a£21,b,{2']1[0’t])H>'
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The approximation I, (f); can be expressed as

In. (e = f (rﬁ,")fl%}])m,...,xn)l'[egoc,-)( I1 (1—1{|Xi_xj|<g})>dx1-~-dxn

[0.1]" Jj=1 i,j=1; i#]
n
= / (I F1E) G x) [ e )
[0.1]" j=1
[n/2] n
x (1 + Z(_l)l< Z 1{\Xk1 Xy | <€} “'1{|X"2171_XI<2H<8}dx1 "'dxn>) +R.
=1 ke ook =1

k; distinct

The term R above contains terms of the type

n
( [T(r"1 (aiybi]1[o,q)(x,->es<xj)>1{|x1 —xal<e n—xs<e) 1A (K. - Xn) dXq - dxy
[0,1] j:]

where A is a Borel subset of [0, 1]®". It will converge to zero by using Lemma 7 for he(x1,...,%;) = 1a(X1,...,X,). The
behavior of I, (f): will be then given by the behavior of

n
/ (I FISR ) (o) [ ] 6 ()
(0.1 j=1

[n/2] n
X (1 + Z(—])l< Z 1{‘Xk1_xk2\<€}'”1{|Xk21*1 —Xl<2n<e}dx1 dxn>>
=1 k1

..... koj=1;
kj distinct

First we note that by Lemma 2 the first term in the above expression converges in the sense of finite dimensional distribu-
tions to

H H H H H H
>l oy lio) 17 A by 110.0) = Zak(Bbw - BG;M) e (Bbz“ - Baw).
k k

We will show that for every [=1, ..., [%] and for every ji,..., ju=1,...,n distinct the sequence

n
dxq - ‘dan;.(;n) (f1%’lt])(xl’ cees Xn)( Hes(xj)> 1{|xj1 —xj,l<e} - 1{|x}-21_1 —xj,l<&}

[0,11 j=1

converges in the sense of finite dimensional distributions to the stochastic process

Z%( I1 1 (1<a,g,b,g]1[o,q>)
k

uef{l,...n\{j1,.... jau}
X <1(a’i1 ’bh]][o,tL 1(ai2,bi2]1[0’t]>H te (1(a£21_1 ’bizz—lll[o,t], 1(a£2’,b,{2’]1[0’t])71'

Indeed, since
m
1 1
L (P Gz = o T 1 g 1) G0 - (T 1 ) ()
k=1

we can write, for every ji,..., joy=1,...,n distinct

n
dxy - dxn D7 (£ (1, .,Xn)< HGE(XJ')>]{|XJ1 —xjyl<e} " Vixjy_, —xj,1<e)

(0,117 =1

= Z%( l_[ / dxy (Fl-([w1(a;{',b;{‘Jl[O,t])("uW&("u))

uefl,...n\(j1,--.ja} [0, 1]



X. Bardina et al. / ]. Math. Anal. Appl. 369 (2010) 694-711 711

1 1
(P 0) i) (TP i 110.01) (%586 (Xj))8e (%)) T1x;, —x;, |<e) dXjy dXjy X -+
(@ b1 (@°.bi"1 L

(0,1
(1) (1)
X / (FH l(aizz—l,b£21—1]1[0,t])(xfzz—1)(FH l(aiZI’bl{zz]l[O,I])(ijz)et?(szm)98(X121)1{Ixj21,1 *Xj21‘<5}dszl—l dxjy
[0,1]?
m
=) « bYAL) —ne(al At Y¢. o —YE o YE . Ye _
Z "< l_[ ' (e (bi¢ A ) = e (0 ))>( AN TN S AN S YN S AN R EIN + al /\t,ﬂiz/\t)
k=1 ue{l,...n\{j1,-.. jau}
where, for v=1,...,] we denoted by

Yo = / (F;(I])l[O,t])(Xl)(F;E[])1[0,5])(X2)9£(X1)98(X2)1{|x17x2\<a}dxl dx;.
[0,1]2

The conclusion follows by using Lemma 6 and the results obtained for the case n=2. O
We state now our main result.

Theorem 1. Let f be a function in the space |H|®". Then the finite dimensional distribution of the process (15) converges as € — 0 to
the finite dimensional distributions of(I,f’(fl%'ft]))te[o,”.

Proof. It is a consequence of Lemma 2.1 and Theorem 2.3 in [4], of the isometry of multiple integrals and of the fact that
the simple functions are dense in |H|®" since for every t € [0, 1] it holds (see Section 2.2 in [4])

E|In, (f)e| < C”FI-(In)flﬁ))?t] |L2([0,1]®”) :CHfl([X(’)r,lt] |pen- O
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