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1. Introduction

In recent years progress in the study of inequalities and bounds for elliptic integrals was made. Emphasis was on
Legendre elliptic integrals, symmetric elliptic integrals, and recently on generalized complete elliptic integrals of the first
and second kind. The interested reader is referred to [1,3,4,6,9,13–15,17], and the references therein. A renewed interest in
families of elliptic integrals mentioned above stems from the fact that they play a prominent role in theory of conformal
mappings, astronomy, physics, and engineering, to mention the most important areas of applications.

The goal of this paper is to establish computable bounds for the generalized complete elliptic integrals of the first and
second kind. Bounds for some combinations and products of these integrals are also obtained. Several inequalities involving
integrals under discussion are also proven.

This paper is the fourth one in the series of papers devoted to the study of bounds and inequalities for elliptic integrals
(see [13–15]) and is organized as follows. Notation and some definitions which are used in the sequel are introduced in
Section 2. Computable lower and upper bounds for the Gauss hypergeometric function are included in Section 3. Most of the
main results of this paper are established in Section 4 (see Theorems 4.1, 4.3, 4.6, 4.10, 4.12). In Section 5 we present another
main result which provides a lower bound for the product of two zero-balanced generalized complete elliptic integrals of
the second kind is given.

2. Notation and definitions

In this section we introduce notation and definitions which will be used throughout the sequel.
In what follows the letter k (0 < k < 1) will stand for the modulus of the elliptic integral. The complementary modulus k′

is given by k′ = √
1 − k2. The parameters a,b and c of the elliptic integrals discussed in this paper are assumed to satisfy
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a > 0 and

c > b > 0 (2.1)

unless otherwise stated.

Definition 1. The generalized complete elliptic integrals of the first and second kind are defined, respectively, by

K ≡ Ka,b,c ≡ Ka,b,c(k) = B(a,b)

2
F
(
a,b; c;k2) (2.2)

and

E ≡ Ea,b,c ≡ Ea,b,c(k) = B(a,b)

2
F
(
a − 1,b; c;k2). (2.3)

(See [2, (1.9), (1.10), (1.3), (1.5)] and [12, (1.6), (1.7)].) Here

B(a,b) =
1∫

0

ua−1(1 − u)b−1 du (2.4)

(a > 0, b > 0) is the beta function (see, e.g., [9]) and

F (a,b; c; z) =
∞∑

n=0

(a,n)(b,n)

(c,n)n! zn (2.5)

(a,b, c ∈ R, c �= 0,−1, . . . , |z| < 1) is the celebrated Gauss hypergeometric function, which is also often denoted by
2 F1(a,b; c; z). In (2.5) the symbol (a,n) stands for the shifted factorial also called the Appell symbol which is defined
as (a,0) = 1 for a �= 0 and (a,n) = a(a − 1) · · · · · (a − n + 1) for n = 1,2, . . . (see, e.g., [9]).

For later use, let us record Euler’s integral formula

F (a,b; c; z) =
1∫

0

(1 − zt)−aμ(t)dt (2.6)

(z < 1), where

μ(t) = 1

B(b, c − b)
tb−1(1 − t)c−b−1 (2.7)

is the Dirichlet measure on (0,1) (see [9]).
Also, we will use the bivariate weighted power means of two positive numbers x1 and x2. The associated weights w1

and w2 are positive numbers which satisfy w1 + w2 = 1. With X = (x1, x2) and w = (w1, w2) the power mean of order p
(p ∈ R) is defined as follows

Ap(w; X) =
{

(w1xp
1 + w2xp

2 )1/p, p �= 0,

xw1
1 xw2

2 , p = 0.
(2.8)

It is well known that the function p 	→ A p increases with increase in p.

3. Bounds for Gauss’ hypergeometric function

The goal of this section is to present some known bounds for Gauss’ hypergeometric function F . These results will be
used in subsequent sections of this paper.

Assume that parameters b and c satisfy (2.1). We let

w =
(

b

c
,1 − b

c

)
and X = (

k′,1
)
. (3.1)

Assumption (2.1) guarantees positivity of weights w1 and w2 of the power mean A p(w; X). The lower bounds in

Ap(w; X)−2a < F
(
a,b; c;k2) < A0(w; X)−2a (3.2)

(0 < a < c � min(1 + 2a,2b), p � 2 c−a ) and
c+1
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Ap(w; X)−2a < F
(
a,b; c;k2) < A2(w; X)−2a (3.3)

(−1 < a < 0, c � max(1 + 2a,2b), p � 2 c−a
c+1 ) follow from (6) and (5), respectively, in [22] while the respective upper bounds

are special cases of (2.14), (2.15), and (3.4) in [8].
Also, we will need the following.

Proposition 3.1. Assume that the parameters b and c satisfy (2.1) and let w and X be the same as in (3.1). Then the inequality

Ap(w; X)2(1−2a) < F
(
2a − 1,b; c;k2) (3.4)

holds true if either

(i) 0 < a < 1
2 , c � max(4a − 1,2b) and p � 2 c−2a+1

c+1

or if

(ii) 1
2 < a < 1, 2a − 1 < c < min(4a − 1,2b) and p � 2 c−2a+1

c+1 .

Proof. Suppose that the conditions (i) are satisfied. Making use of the first inequality in (3.3) with a := 2a − 1, we obtain
the assertion (3.4). Similarly, if conditions (ii) are satisfied, then (3.4) follows from the left inequality in (3.2) when a is
replaced by 2a − 1. �
4. Bounds and inequalities for elliptic integrals K and E

Most of the main results of this paper are established in this section. We begin with the following.

Theorem 4.1. Assume that the parameters b and c satisfy (2.1) and let w and X be the same as in (3.1). If 0 < a < c � min(1 + 2a,2b)

and p � 2 c−a
c+1 , then

Ap(w; X)−2a <
2

B(a,b)
K < A0(w; X)−2a. (4.1)

If 0 < a < 1, c � max(2a − 1,2b) and p � 2 c−a+1
c+1 , then

Ap(w; X)2(1−a) <
2

B(a,b)
E < A2(w; X)2(1−a). (4.2)

Proof. Inequalities (4.1) follow from (2.2) and (3.2). For the proof of (4.2) we use (3.3) with a := a−1 followed by application
of (2.3). �

For Legendre complete elliptic integrals K = K 1
2 , 1

2 ,1 and E = E 1
2 , 1

2 ,1 inequalities (4.1) and (4.2) simplify to

Ap(w; X)−1 <
2

π
K < A0(w; X)−1

(p � 1
2 ) and

Ap(w; X) <
2

π
E < A2(w; X) (4.3)

(p � 3
2 ) where now w = ( 1

2 , 1
2 ). Alzer and Qiu [1] have obtained a tighter upper bound in (4.3)

2

π
E < Aγ (w; X),

where γ = ln(2)/ ln(π/2) = 1.53 . . . .
To this end we will assume that X is the same as defined in (3.1) and also that parameters b and c satisfy inequali-

ties (2.1).
Bounds for certain combinations of integrals under discussion are obtained in the following.

Theorem 4.2. Let 0 < b + 1 < c + 1 and let w = ( b+1
c+1 ,1 − b+1

c+1 ). If 0 < a < c + 1 � min(1 + 2a,2 + 2b), then

Ap(w; X)−2a <
2c K − E

2
< A0(w; X)−2a (4.4)
bB(a,b) k
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holds for all p � 2 c+1−a
c+1 . If 0 < b < c + 1 and if

0 < a < c + 1 < min(1 + 2a,2b), (4.5)

then for p � 2 c+1−a
c+2

Ap(w; X)−2a <
2c

(c − b)B(a,b)

E − k′2 K
k2

< A0(w; X)−2a, (4.6)

where now w = ( b
c+1 ,1 − b

c+1 ). If c + 1 > min(1 + 2a,2b), then

A2(w; X)−2a <
2c

(c − b)B(a,b)

E − k′2 K
k2

< A0(w; X)−2a, (4.7)

where the vector w is the same as in (4.6).

Proof. We shall establish (4.4) using known formula

2c

bB(a,b)

K − E
k2

= F
(
a,b + 1; c + 1;k2)

(see, e.g., [12]). Application of (3.2), with b := b + 1 and c := c + 1, to the right side of the last formula gives the asser-
tion (4.4). Let the middle term in (4.6) and (4.7) be denoted by Λ. It is known that

Λ = F
(
a,b; c + 1;k2) (4.8)

(see, e.g., [12]). Assume that the conditions (4.5) are satisfied. Using (3.2) with c replaced by c + 1 we obtain the two-sided
inequality (4.6). If, however, conditions (4.5) are not satisfied, then we apply (3.4) and (2.15) in [8] to the right side of (4.8)
to obtain (4.7). The proof is complete. �

Before we state and prove our next result, let us recall an important result which is commonly called Chebyshev inequal-
ity for integrals.

Let μ be a probability measure on an interval Ω and let f and g be integrable functions with respect to μ. If both f
and g are monotonically increasing or decreasing on Ω , then∫

Ω

f (t)μ(t)dt

∫
Ω

g(t)μ(t)dt �
∫
Ω

f (t)g(t)μ(t)dt.

The last inequality is reversed if either f is increasing and g is decreasing or vice versa and it becomes an equality if and
only if either f or g is constant almost everywhere (see [21, p. 197]).

We are in a position to prove the following.

Theorem 4.3. Let w be the same as in (3.1). If 0 < a < 1
2 , c � max(4a − 1,2b) and p � 2 c−2a+1

c+1 or if 1
2 < a < 1, 2a − 1 < c �

min(4a − 1,2b) and p � 2 c−2a+1
c+1 , then

[
2

B(a,b)

]2

K E > Ap(w; X)2(1−2a). (4.9)

Proof. It follows from (2.2), (2.3), and (2.6) that

[
2

B(a,b)

]2

K E =
1∫

0

(
1 − k2t

)−a
μ(t)dt

1∫
0

(
1 − k2t

)1−a
μ(t)dt, (4.10)

where the Dirichlet measure μ is defined in (2.7). Taking into account that the function t 	→ (1 − k2t)−a is an increas-
ing function on (0,1) while t 	→ (1 − k2t)1−a is a decreasing function on the same domain we obtain, using Chebyshev’s
inequality for integrals applied to (4.10), that

[
2

B(a,b)

]2

K E >

1∫
0

(
1 − k2t

)1−2a
μ(t)dt = F

(
2a − 1,b; c;k2). (4.11)

The equality in (4.11) follows from (2.6). A lower bound for the third member of (4.11) is obtained by use of Proposition 3.1.
The proof is complete. �
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Corollary 4.4. Under the assumptions of Theorem 4.3 the following inequality

K + E > B(a,b)Ap(w; X)1−2a (4.12)

holds true.

Proof. It follows from (4.9) that

(K E )1/2 >
B(a,b)

2
Ap(w; X)1−2a.

Application of the inequality of the arithmetic and geometric means to the left side of the last inequality gives the asser-
tion. �

We shall now prove the following.

Theorem 4.5. Let 0 < k, l < 1 and let p = √
1 − (u/v)2 , where u = min(k′, l′) and v = max(k′, l′). Then

Ka,b,c(k)Ka,c−b,c(l) <
B(a, c − b)

2v2a
Ka,b,c(p) (4.13)

and

B(a, c − b)

2
v2(1−a)Ea,b,c(p) < Ea,b,c(k)Ea,c−b,c(l) (4.14)

provided 0 < a < 1.

Proof. Let the numbers x and y be such that 0 < x, y < 1. If a > 0, then the following inequality

F (a,b; c;1 − x)F (a, c − b; c;1 − y) < y−a F

(
a,b; c;1 − x

y

)
(4.15)

follows from Theorem 4.1 in [10]. Inequality (4.15) is reversed if a < 0. Let 0 < l < k < 1. With x = k′ 2 and y = l′ 2 we have
0 < x < y < 1 and also that u = k′ , v = l′ and p2 = 1 − (u/v)2. Multiplying both sides of (4.15) by B(a,b)

2
B(a,c−b)

2 and next
using (2.2) we obtain the desired result when l < k. The case when k < l can be treated in an analogous manner. We omit
further details. This completes the proof of (4.13). In order to establish inequality (4.14) we let in (4.15) a := a − 1. Then the
reversed inequality to (4.15)

y1−a F

(
a − 1,b; c;1 − x

y

)
< F (a − 1,b; c;1 − x)F (a − 1, c − b; c;1 − y) (4.16)

is valid because a − 1 < 0. Again, assume that l < k. With x = k′ 2 and y = l′ 2 inequality (4.16) implies (4.14) with u = k′ ,
v = l′ and p2 = 1 − (u/v)2. The case when k < l can be established in a similar way. The proof is complete. �

Inequalities (4.13) and (4.14), when a = b = 1
2 and c = 1, are established in [14].

For later use, let α and β be positive numbers such that α + β = 1. In the subsequent results the vectors w and X are
defined as

w = (α,β), X = (k, l), (4.17)

where 0 < k, l < 1.
Our next result reads as follows.

Theorem 4.6. Let w and X be the same as in (4.17) and assume that k and l are not equal. Then for p � 2

K
(

Ap(w; X)
)
<

[
K(k)

]α[
K(l)

]β
(4.18)

and

αE (k) + βE (l) < E
(

Ap(w; X)
)
. (4.19)
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Proof. In the proof of (4.18) we shall utilize a fact that the function x → F (a,b; c; x) (|x| < 1) is strictly logarithmically-
convex (log-convex), i.e.,

F (a,b; c;αx + β y) < F (a,b; c; x)α F (a,b; c; y)β,

|y| < 1. This follows immediately by applying Theorem B.6 in [9] to (2.6) or by using Proposition 2.1 in [19] and for-
mula (5.9-11) in [9]. In the last inequality we let x = k2, y = l2. Next, we multiply both sides by B(a,b)/2 and apply (2.2)
to obtain (4.18) when p = 2. Taking into account that A p � A2 for p � 2 and also the fact that the function k 	→ K(k) is
nondecreasing we obtain the assertion (4.18).

In the proof of (4.19) we shall employ the inequality

α f
(

g(x)
) + β f

(
g(y)

)
� f

(
g(αx + β y)

)
which is valid if g is a convex function and f is a decreasing and concave function defined on the range of g . Letting in the
last inequality f (t) = F (a − 1,b; c; t), g(t) = t2, x = k, and y = l we obtain the inequality

αF
(
a − 1,b; c;k2) + β F

(
a − 1,b; c; l2

)
< F

(
a − 1,b; c;αk2 + βl2

)
which holds true because the function z 	→ F (a − 1,b; c; z) is decreasing and concave on its domain. The last statement
follows from (2.6)–(2.7). Multiplying both sides of the last inequality by B(a,b)/2 and next using (2.3) we obtain

αE (k) + βE (l) < E
(

A2(w; X)
)
. (4.20)

Since the function k 	→ E (k) is decreasing and A2 � A p for p � 2, E (A2(w; X)) � E (A p(w; X)). This in conjunction
with (4.20) gives the assertion. The proof is complete. �

A. Baricz [5] has established a special case of the inequality (4.18) for the Legendre complete elliptic integrals of the first
kind.

Before we state and prove the next theorem, let us recall the following result.

Proposition A. (See [18].) Let f : [0,1] 	→ R be a convex (concave) function on its domain. Then the function

g(x) = f (x) + f (1 − x)

is decreasing (increasing) on [0, 1
2 ] and increasing (decreasing) on [ 1

2 ,1].

This implies the following.

Corollary 4.7. If f : [0,1] 	→ R+ is a log-convex (log-concave) on its domain, then the function

h(x) = f (x) f (1 − x)

is decreasing (increasing) on [0, 1
2 ] and increasing (decreasing) on [ 1

2 ,1].
Here R+ = {x: x > 0}.

Before we state and prove the next theorem, let us introduce four subsets of the unit square [0,1] × [0,1]:

d11 =
{
(k, l):

1√
2

� k � l < 1

}
, d12 =

{
(k, l): 0 < l � k � 1√

2

}
,

d21 =
{
(k, l):

1√
2

� l � k < 1

}
, d22 =

{
(k, l): 0 < k � l � 1√

2

}
.

Theorem 4.8. If (k, l) ∈ d11 ∪ d12 , then the following inequalities

K(k) + K
(
k′) � K(l) + K

(
l′
)
,

K(k)K
(
k′) � K(l)K

(
l′
)
,

E (k) + E
(
k′) � E (l) + E

(
l′
)
,

E (k)E
(
k′) � E (l)E

(
l′
)

(4.21)

hold true. If (k, l) ∈ d21 ∪ d22 , then the reversed inequalities are valid.



E. Neuman / J. Math. Anal. Appl. 373 (2011) 203–213 209
Proof. We shall establish inequalities (4.21) only in the case when (k, l) ∈ d11 ∪ d12. This is due to the fact that when
(k, l) ∈ d21 ∪ d22 then interchanging k with l we see that d21 becomes d11 and d22 becomes d12. We shall prove now the
first inequality in (4.21). To this aim recall that the function f (x) = F (a,b; c; x) (a > 0, c > b > 0) is log-convex on (0,1).
This in turn implies that f (x) is also convex on (0,1). Thus by virtue of Proposition A a function f (x)+ f (1−x) is increasing
on [ 1

2 ,1). With x = k2 ( 1
2 � k2 < 1) we see that the function

k 	→ F
(
a,b; c;k2) + F

(
a,b; c;k′2) (4.22)

is increasing on [ 1
2 ,1). If (k, l) ∈ d11, then 1

2 � k2 � l2 < 1. Thus the following inequality

F
(
a,b; c;k2) + F

(
a,b; c;k′2) � F

(
a,b; c; l2

) + F
(
a,b; c; l′2) (4.23)

is satisfied. Multiplying both sides of (4.23) by B(a,b)/2 and next using (2.2) we obtain the first inequality in (4.21) for
(k, l) ∈ d11. If (k, l) ∈ d12, then 0 < l2 � k2 < 1

2 . In this case inequality (4.23) is still satisfied because the function defined
in (4.22) is decreasing on (0, 1

2 ]. Thus we conclude that the first inequality in (4.21) is also valid when (k, l) ∈ d12. The
second inequality in (4.21) can be established in an analogous manner using Corollary 4.7. We omit further details. The
proof of the remaining two inequalities in (4.21) goes along the lines introduced above and utilizes the fact that the function
f (x) = F (a−1,b; c; x) (0 < a < 1) is concave on (0,1) and therefore is also log-concave on (0,1). This completes the proof. �

Inequalities (4.21) for Legendre integrals K and E have been established in [14, Corollary 3.3].
In the proof of the next theorem we shall utilize the following result.

Proposition B. (See [16].) Let f : R+ 	→ R+ be a differentiable log-convex function. If 0 < q < 1, then the function

g(x) = [ f (x)]q

f (qx)

is an increasing function on its domain and is decreasing if q > 1.

Our next result reads as follows.

Theorem 4.9. Let 0 < k < l < 1 and let 0 < q < 1. Then

K(
√

ql)

K(
√

qk)
<

[
K(l)

K(k)

]q

. (4.24)

Inequality (4.24) is reversed if q > 1 and
√

qk <
√

ql.

Proof. Let 0 < q < 1. It follows from Proposition B that for a log-convex function f : R+ 	→ R+

f (qy)

f (qx)
<

[
f (y)

f (x)

]q

provided 0 < x < y. Letting above f (x) = F (a,b; c; x), x = k2 and y = l2 we obtain

F (a,b; c;ql2)

F (a,b; c;qk2)
<

[
F (a,b; c; l2)

F (a,b; c;k2)

]q

.

Application of (2.2) to the last inequality gives the assertion (4.24). The case q > 1 can be treated in an analogous manner.
We omit further details. �

To this end we will deal with inequalities in parameter a of Ka,b,c and Ea,b,c , where 0 < a < 1.
Our next result reads as follows.

Theorem 4.10. Elliptic integrals Ka,b,c and Ea,b,c are strictly log-convex functions of a, i.e., the inequalities

Kαa1+βa2,b,c < Kα
a1,b,c Kβ

a2,b,c (4.25)

and

Eαa1+βa2,b,c < E α
a1,b,c E β

a2,b,c (4.26)

are valid provided 0 < a1 , a2 < 1, a1 �= a2 .
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Proof. Firstly we apply Theorem B.6 in [9] to (2.6) to conclude that the Gauss function is strictly log-convex in a, i.e.,

F (αa1 + βa2,b; c; x) <
[

F (a1,b; c; x)
]α[

F (a2,b; c; x)
]β

. (4.27)

Secondly it follows from (2.7) and Theorem B.6 in [9] that the beta function is log-convex in each of its variables. Thus, in
particular,

B(αa1 + βa2,b) �
[

B(a1,b)
]α[

B(a2,b)
]β

(4.28)

(a1,a2,b > 0). Making use of (2.2), (4.27) and (4.28) we obtain

Kαa1+βa2,b,c = B(αa1 + βa2,b)

2
F (αa1 + βa2,b; c; ·)

<

[
B(a1,b)

2
F (a1,b; c; ·)

]α[
B(a2,b)

2
F (a2,b; c; ·)

]β

= Kα
a1,b,c Kβ

a2,b,c.

For the proof of (4.26) we use (2.3), (4.27), and (4.28) to obtain

Eαa1+βa2,b,c = B(αa1 + βa2,b, c)

2
F
(
α(a1 − 1) + β(a2 − 1),b; c; ·)

<

[
B(a1,b)

2
F (a1 − 1,b; c; ·)

]α[
B(a2,b)

2
F (a2 − 1,b; c; ·)

]β

= E α
a1,b,c E β

a2,b,c.

The proof is complete. �
A. Baricz has established logarithmic convexity of the zero-balanced integrals Ka,1−a,1 ≡ Ka and Ea,1−a,1 ≡ Ea (see [4,

Theorem 2.6]). In the same paper logarithmic convexity, of the functions a 	→ Ka,c−a,c and a 	→ Ea,c−a,c is established (see
Theorem 2.14).

In the proof of the next theorem we shall utilize the following result.

Proposition C. (See [20].) Let D be an interval with nonempty interior and let f : D 	→ R+ be a log-convex function. If u, v ∈ D
(u � v) and if a number λ > 0 is such that u + λ, v + λ ∈ D, then

f (u + λ)

f (v + λ)
� f (u)

f (v)
.

Theorem 4.11. Let 0 < a1 < a2 < 1 and let λ > 0 be such that 0 < a1 + λ < a2 + λ < 1. Then

Ka1+λ,b,c

Ka2+λ,b,c
� Ka1,b,c

Ka2,b,c
(4.29)

and

Ea1+λ,b,c

Ea2+λ,b,c
� Ea1,b,c

Ea2,b,c
. (4.30)

Proof. Inequalities (4.29) and (4.30) follow immediately from Proposition C and Theorem 4.10. �
Theorem 4.12. Let 0 < a2 < a1 < 1. Then

(
2

B(a2,b)
Ka2,b,c

) 1
a2

<

(
2

B(a1,b)
Ka1,b,c

) 1
a1

(4.31)

and

(
2

B(a1,b)
Ea1,b,c

) 1
1−a1

<

(
2

B(a2,b)
Ea2,b,c

) 1
1−a2

. (4.32)
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Proof. We shall utilize the following inequality

[
F (a2,b; c; x)

] 1
a2 <

[
F (a1,b; c; x)

] 1
a1 (4.33)

which follows from Theorem 3 in [7] and from formula (5.9-12) in [9]. Letting x = k2 in (4.33) and next using (2.2) we
obtain inequality (4.31). For the proof of (4.32) we let a2 := a2 − 1 and a1 := a1 − 1 in (4.33) and next apply formula (2.3).
This completes the proof. �

Before we state and prove the last theorem of this section let us recall Lyapunov’s inequality for integrals (see, e.g., [21]).
Let f ∈ C[0,1] and let μ be a probability measure on (0,1). If 0 < r < s < t , then

[ 1∫
0

f s(y)μ(y)dy

]t−r

<

[ 1∫
0

f r(y)μ(y)dy

]t−s[ 1∫
0

f t(y)μ(y)dy

]s−r

. (4.34)

Theorem 4.13. Let 0 < a1 < a2 < a3 < 1. Then[
2

B(a2,b)
Ea2,b,c

]a3−a1

<

[
2

B(a1,b)
Ea1,b,c

]a3−a2[ 2

B(a3,b)
Ea3,b,c

]a2−a1

. (4.35)

Proof. It follows from (2.6) that

F
(
a − 1,b; c;k2) =

1∫
0

f 1−a(y)μ(y)dy, (4.36)

where f (y) = 1 − k2 y and μ is the Dirichlet measure defined in (2.7). Letting in (4.34) r = 1 − a3, s = 1 − a2 and t = 1 − a1
we obtain using (4.36)[

F
(
a2 − 1,b; c;k2)]a3−a1

<
[

F
(
a3 − 1,b; c;k2)]a2−a1

[
F
(
a1 − 1,b; c;k2)]a3−a2

.

This in conjunction with (2.3) gives the assertion (4.35). �
Corollary 4.14. Under the assumptions of Theorem 4.13 the following inequality

Ea2,b,c <
a3 − a2

a3 − a1

B(a2,b)

B(a1,b)
Ea1,b,c + a2 − a1

a3 − a1

B(a2,b)

B(a3,b)
Ea3,b,c (4.37)

is valid.

Proof. Raising both sides of (4.35) to the power of 1/(a3 −a1) and next using inequality of arithmetic and geometric means
with weights we obtain desired inequality (4.37). �
5. A lower bound for Ea E ′

a

Recall that the zero-balanced generalized complete elliptic integrals of the first and second kind, denoted by Ka and Ea ,
respectively, are defined by

Ka ≡ Ka(k) = Ka,1−a,1(k) = π

2 sin(πa)
F
(
a,1 − a;1;k2) (5.1)

and

Ea ≡ Ea(k) = Ea,1−a,1(k) = π

2 sin(πa)
F
(
a − 1,1 − a;1;k2), (5.2)

where 0 < a < 1. See, e.g., [6, Section 5.5] where the factor sin(πa) is replaced by 1.
The main result of this section reads as follows.

Theorem 5.1. The following inequality

Ea E ′
a � π +

[
2kk′

(
Ka

(
1√

)
− Ea

(
1√

))]2

(5.3)

4(1 − a) sin(πa) 2 2
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is valid, where

Ka

(
1√
2

)
= 1

4
√

π
Γ

(
1 − a

2

)
Γ

(
a

2

)
(5.4)

(see [6, p. 191]) and

Ea

(
1√
2

)
=

[
π

4(1 − a) sin(πa)
+ K 2

a

(
1√
2

)]/(
2Ka

(
1√
2

))
. (5.5)

Inequality (5.3) becomes an equality if k = k′ = 1√
2

.

Proof. The following result

Ka − Ea = k2 π(1 − a)

2 sin(πa)
F
(
a,2 − a;2;k2) (5.6)

is known (see, e.g., [12]). Replacing k by k′ and next multiplying corresponding sides of the resulting equation and (5.6) we
obtain

(Ka − Ea)
(

K ′
a − E ′

a

) =
[

kk′ π(1 − a)

2 sin(πa)

]2

F
(
a,2 − a;2;k2)F

(
a,2 − a;2;k′2). (5.7)

Logarithmic convexity of Gauss’ function F in its variable implies the inequality

F
(
a,2 − a;2;k2)F

(
a,2 − a;2;k′2) �

[
F

(
a,2 − a;2; 1

2

)]2

(5.8)

which becomes an equality if and only if k = k′ = 1√
2

. This in conjunction with (5.7) gives

Ea E ′
a − (

Ka E ′
a + K ′

a Ea − Ka K ′
a

)
�

[
kk′ π(1 − a)

2 sin(πa)
F

(
a,2 − a;2; 1

2

)]2

. (5.9)

Application of generalized Legendre’s identity

Ka E ′
a + K ′

a Ea − Ka K ′
a = π

4(1 − a) sin(πa)

(see [6, (5.5.6)], [3, (5.8)]) to (5.9) gives

Ea E ′
a � π

4(1 − a) sin(πa)
+

[
kk′ π(1 − a)

2 sin(πa)
F

(
a,2 − a;2; 1

2

)]2

. (5.10)

To complete the proof of (5.3) we let k = 1/
√

2 in (5.6) to obtain

F

(
a,2 − a;2; 1

2

)
= 4 sin(πa)

π(1 − a)

[
Ka

(
1√
2

)
− Ea

(
1√
2

)]
.

This in conjunction with (5.10) gives the assertion. To prove formula (5.5) we let in (5.3) k = k′ = 1√
2

to obtain

E2
a

(
1√
2

)
= π

4(1 − a) sin(πa)

[
Ka

(
1√
2

)
− Ea

(
1√
2

)]2

.

Solving for Ea(
1√
2
) we obtain the desired result (5.5). The proof is complete. �

One can prove that

Ea

(
1√
2

)
= Γ (1 − a)

22−aπ

[
1

2
sin

(
πa

2

)
Γ 2

(
a

2

)
+ 1

1 − a
cos

(
πa

2

)
Γ 2

(
1 + a

2

)]
.

We omit further details.
For more results about the integrals Ka and Ea , the interested reader is referred to [23] and [11].
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[21] J.E. Pěcarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[22] K.C. Richards, Sharp power mean bounds for the Gaussian hypergeometric function, J. Math. Anal. Appl. 308 (2005) 303–313.
[23] G. Wang, X. Zhang, Y. Chu, Inequalities for the generalized elliptic integrals and modular functions, J. Math. Anal. Appl. 331 (2007) 1275–1283.


	Inequalities and bounds for generalized complete elliptic integrals
	Introduction
	Notation and deﬁnitions
	Bounds for Gauss' hypergeometric function
	Bounds and inequalities for elliptic integrals K and E
	A lower bound for EaE'a
	Acknowledgments
	References


