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1. Introduction

In this paper, we investigate the problem described by the system

ukt + f (u)ukx =
1
2

 x

0
fuk

n
i=1

u2
ix dx, (k = 1, 2, . . . , n) (1.1)

for all t ≥ 0, x ≥ 0, with the initial–boundary value conditions

u(0, x) = u0(x), u(t, 0) = 0, (1.2)

where u = (u1, . . . , un) is the unknown vector function defined for (t, x) ∈ R+
×R+, u0(x) = (u10, . . . , un0)(x), f : Rn

→ R
is a smooth function satisfying

f (0) ≥ 0, |∇f (u)− ∇f (v)| ≤ L|u − v|, ∀u, v ∈ Rn (1.3)

for a constant L.
System (1.1) can be derived from the following variational wave equations:

ψktt − c(ψ)[c(ψ)ψkx]x = c(ψ)
n

i=1

(cψiψkx − cψkψix)ψix, (k = 1, 2, . . . , n), (1.4)

which are the Euler–Lagrange equations of a variational principle arising in the theory of nematic liquid crystals; see [1,7,8].
As in [8], we look for a weakly nonlinear asymptotic solution of (1.4) of the form

ψ(t, x) = ψ0 + εu(εt, x − c(ψ0)t)+ O(ε2),

✩ This work is supported by the National Natural Science Foundation of China (11271105) and Zhejiang Provincial Natural Science Foundation of China
(LQ13A010024).

E-mail address: yanbo.hu@hotmail.com.

0022-247X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.06.056

http://dx.doi.org/10.1016/j.jmaa.2013.06.056
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmaa.2013.06.056&domain=pdf
mailto:yanbo.hu@hotmail.com
http://dx.doi.org/10.1016/j.jmaa.2013.06.056


726 Y. Hu / J. Math. Anal. Appl. 408 (2013) 725–732

where ψ = (ψ1, . . . , ψn), ψ0 is a constant vector and c(ψ0) > 0 is the unperturbed wave speed. Then the vector function
u(·, ·) satisfies

ukt +


n

i=1

cui(u0)ui


ukx


x

=
1
2
cuk(u0)

n
i=1

u2
ix (k = 1, 2, . . . , n) (1.5)

up to a scaling and reflection of the independent variables, assuming that ψ0 is such that
n

i=1 |cui(ψ0)| ≠ 0. Integrating
system (1.5) with respect to x gives a special case of (1.1).

The case n = 1 for (1.5) yields the well-known Hunter–Saxton equation, which has been widely studied by many
authors since it was introduced [8]. It possesses a number of nice properties [9,17] and also has an interesting geometric
interpretation [11,12]. Since smooth solutions may not exist globally in time [8], it becomes necessary to consider the
global existence of weak solutions. There are at least two natural distinct classes of admissible weak solutions, which
are called dissipative and conservative solutions [10]. The dissipative solution loses all the energy while the conservative
solution preserves its energy at the blow-up time. The existence of dissipative solutions and conservative solutions to the
initial–boundary value problem of the Hunter–Saxton equation are presented among others in [2,3,13,18–21].

In [4], Bressan, Zhang and Zheng established the well-posedness of the initial–boundary value problem to the case n = 1
of (1.1) for initial data of finite energy. Moreover, they found that the dissipative solutions may not depend continuously on
the initial data when f is non-convex.

Recently, the two-component Hunter–Saxton system
utxx + uuxxx + 2uxuxx = ρρx,
ρt + (ρu)x = 0, (1.6)

arising from the two-component Camassa–Holm equation [5,6], has attractedmuch attention; see for example [14–16]. We
notice that system (1.6) is a particular case of (1.1) for n = 2.

The purpose of the present paper is to establish the global well-posedness of the problem (1.1)–(1.3) for conservative
solutions. We use the method used in [4] to construct a global semigroup for conservative solutions to the problem. The
uniqueness result follows directly from the constructive procedure. The global existence of dissipative solutions to system
(1.1) will be addressed in a forthcoming paper.

We present the main theorem of this paper, Theorem 2.1, in Section 2. Section 3 is devoted to proving this theorem.

2. The main theorem

Before we state our main results, let us first recall the definition of solutions introduced by Bressan, Zhang and Zheng [4].

Definition 1. A vector function u(t, x), defined on [0, T ] × R+, is a solution of problem (1.1)–(1.3) if, for k = 1, 2, . . . , n,
the following hold.

(i) The function uk is locally Hölder continuous with respect to both t and x. The initial and boundary conditions (1.2)
hold pointwise. For each time t , the map x → uk(t, x) is absolutely continuous with ukx(t, ·) ∈ L2loc(R

+).
(ii) For any M > 0, the map t → uk(t, ·) ∈ L2([0,M]) is absolutely continuous and satisfies the equation

d
dt

uk(t, ·) = −f (u)ukx +
1
2


∗

0
fuk(u)

n
i=1

u2
ix dx (2.1)

for a.e. t ∈ [0, T ]. Here equality is understood in the sense of functions in L2([0,M]).

We notice here that there is no need to consider weak solutions in the distributional sense by the local integrability
assumptions uk(t, ·) ∈ L2loc(R

+) (k = 1, 2, . . . , n).
For each smooth solution, we can easily check that it satisfies

n
i=1

u2
ix


t

+


f (u)

n
i=1

u2
ix


x

= 0,

which implies that the existence of energy-conservative solutions is possible. We say that a solution u = u(t, x) is
conservative if the family of absolutely continuous measures {µ(t); t ≥ 0} defined by dµ(t) =

n
i=1 u

2
ix(t)dx provides a

measure-valued solution to

ωt + [f (u)ω]x = 0, (2.2)

that is, for every t2 ≥ t1 ≥ 0 and any non-negative function φ ∈ C1
c , there holds

φ(t, ·) dµ(t)

t2
t1

=

 t2

t1


(φt(t, ·)+ φx(t, ·)f (u(t, ·))) dµ(t)


dt. (2.3)



Y. Hu / J. Math. Anal. Appl. 408 (2013) 725–732 727

We define an evolution semigroup on a domain D defined as follows. An element of D is a couple (u, µ), where
u : R+

→ Rn is a continuous vector function with u(0) = 0 and whose distributional derivative ux lies in (L2)n; while
µ = µa

+ µs, the sum of the absolutely continuous and the singular part (with respect to the Lebesgue measure), is a
bounded non-negative Radon measure on R+, whose absolutely continuous part µa satisfies

dµa
=

n
i=1

u2
ix dx. (2.4)

We consider the distance of the Radon measures on R+ as

d(µ, µ̃) := sup
ϕ

 ϕ dµ−


ϕ dµ̃

 , (2.5)

for all smooth functions ϕ with |ϕ| ≤ 1, |ϕx| ≤ 1.
Recall that a semigroup S on a domain D is a map S : D × [0,+∞) → D such that S0w = w and Ss(Stw) = Ss+tw for

every s, t ≥ 0 andw ∈ D . The main results can be stated as follows.

Theorem 2.1. Assume that u0(0) = 0 and u0x ∈ (L2(R+))n. Then there exists a semigroup S : D × [0,+∞) → D with the
following properties. Denote by t → (u(t), µ(t)) := St(u0, µ(0)) the trajectory corresponding to the initial data (u0, µ(0)) ∈ D .
Then
(i) The functions uk(t, x) (k = 1, 2, . . . , n) are locally Hölder continuous in R+

× R+. The vector function u = (u1, . . . , un)
provides a solution of (1.1)–(1.3) in the sense of Definition 1.

(ii) The assignment t → µ(t) provides a measure valued solution to the linear transport equation

ωt + [f (u)ω]x = 0, ω(0) = µ(0).

Moreover, for k = 1, 2, . . . , n, the singular part of the measure fuk(u(t)) · µ(t) vanishes at almost every time t ≥ 0, i.e.,

∇f (u(t)) · µs
(t) = 0, a.e. t. (2.6)

(iii) (Temporal continuity) For every M > 0, the couple (u, µ) satisfies the Lipschitz continuity property: M

0

n
i=1

|ui(t, x)− ui(s, x)| dx ≤ C |t − s|, (2.7)

d(µ(t), µ(s)) ≤ C |t − s|,

where the constant C depends only on M, f and µ(0)(R+) < ∞.
(iv) (Continuous dependence) Assume that a sequence of initial conditions (uν0, µ

ν
(0)) ∈ D satisfy

uν0 → u0 uniformly on bounded sets,
d(µν(0), µ(0)) → 0

for some (u0, µ(0)) ∈ D , as ν → +∞. Then the corresponding solutions satisfy

uν(t, x) → u(t, x) uniformly for t, x in bounded sets,
d(µν(t), µ(t)) → 0, for every t > 0.

3. Proof of Theorem 2.1

This section is devoted to the Proof of Theorem 2.1. We assume without loss of generality thatµ(0) has compact support,
namely u0 is a constant vectorwhen x > R for some constant R > 0. The general case follows directly from an approximation
argument. We divide the proof into several steps.

3.1. Construction of the trajectory

Let an initial data (u0, µ(0)) ∈ D be given and denote ξ0 := µ(0)(R+) < ∞. We construct a vector function U =

(U1, . . . ,Un)(t, ξ) on the semi-infinite strip {t ≥ 0, ξ ∈ [0, ξ0]} by first setting

U(0, ξ) = U0(ξ) := u0(y0(ξ)), (3.1)

where

y0(ξ) := inf{x ≥ 0;µ(0)([0, x]) ≥ ξ}, (3.2)

for 0 < ξ ≤ ξ0, while

y0(0) = sup{x;µ(0)([0, x]) = 0}, (3.3)
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which implies that y0(ξ) is continuous at the point ξ = 0. We comment that the vector function ξ → u0(y0(ξ)) is always
continuous, despite the fact that the map ξ → y0(ξ)may have upward jumps.

For t > 0, we define U as the solution of

∂

∂t
U(t, ξ) =

1
2

 ξ

0
∇f (U(t, η)) dη (3.4)

with initial data (3.1). The Lipschitz continuity of vector function ∇f indicates that a unique solution U of the above system
can be constructed though the fixed point theorem. In fact, consider the space of continuous functions (C([0,∞)×[0, ξ0]))n
with the equivalent weighted norm

∥U∥∗ := sup
t≥0,ξ∈[0,ξ0]

e−Lξ0t |U(t, ξ)|. (3.5)

Define the transformation U → T U as

T U := u0(y0(ξ))+
1
2

 t

0

 ξ

0
∇f (U(s, η)) dηds. (3.6)

We thus find by (1.3) that

|(T U − T V )(t, ξ)| ≤
1
2

 t

0

 ξ

0
|(∇f (U)− ∇f (V ))(s, η)| dηds

≤
1
2

 t

0

 ξ

0
L|(U − V )(s, η)| dηds ≤

1
2
eLξ0tδ,

if ∥U − V∥∗ = δ. Therefore we have

∥T U − T V∥∗ ≤
1
2
∥U − V∥∗,

which means that the map T is contractive and then there exists a unique fixed point U = U(t, ξ), defined on R+
× [0, ξ0].

Next we construct the characteristic curves, which are determined by the following equation:

∂

∂t
y(t, ξ) = f (U(t, ξ)), y(0, ξ) = y0(ξ), (3.7)

that is,

y(t, ξ) = y0(ξ)+

 t

0
f (U(τ , ξ)) dτ . (3.8)

Now we define the vector function u = u(t, x) by

u(t, x) := U(t, ξ(t, x)) (3.9)

for any given (t, x), where

ξ(t, x) := sup{ξ ; y(t, ξ) ≤ x},

and the corresponding measure µ(t) at time t by

µ(t)(J) := meas {ξ ∈ [0, ξ0]; y(t, ξ) ∈ J} (3.10)

for each Borel set J ⊂ R+, that is, µ(t) is defined as the push-forward of Lebesgue measure on [0, ξ0] through the mapping
ξ → y(t, ξ).

3.2. Absolute continuity

For k = 1, 2, . . . , n, we assert that the map ξ → Uk(t, ξ) is absolutely continuous for each time t ≥ 0. We first consider
the case t = 0. Let [ξi, ξ

′

i ] ⊂ [0, ξ0], i = 1, . . . ,N , be disjoint intervals satisfying

N
i=1

|ξ ′

i − ξi| ≤ ε.

Denote I1 as the set of indices i such that

|Uk(ξ
′

i )− Uk(ξi)|

y(ξ ′

i − y(ξi))
≤

√
ε
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and I2 as the set of other indices. Then we get
i∈I1

|Uk(ξ
′

i )− Uk(ξi)| ≤
√
ε

i∈I1

|y(ξ ′

i )− y(ξi)| ≤ R
√
ε,

and 
i∈I2

|Uk(ξ
′

i )− Uk(ξi)| ≤
1

√
ε


i∈I2

|Uk(ξ
′

i )− Uk(ξi)|
2

y(ξ ′

i )− y(ξi)
≤

1
√
ε


i∈I2

 y(ξ ′
i )

y(ξi)
u2
kx dx

≤
1

√
ε


i∈I2

|ξ ′

i − ξi| ≤
√
ε.

Combining the two above inequalities gives
N
i=1

|Uk(ξ
′

i )− Uk(ξi)| ≤ (1 + R)
√
ε, (k = 1, 2, . . . , n),

which concludes the assertion in the case t = 0.
For t > 0, we obtain by (3.4)

|Uk(t, ξ ′)− Uk(t, ξ)| ≤ |Uk(0, ξ ′)− Uk(0, ξ)| + |ξ ′
− ξ | ·

t
2

· sup
u

|fuk(u)|

for k = 1, 2, . . . , n, from which follows the desired result.
For future reference, we here state a useful consequence, that is, the vector function Uξ exists at a.e. (t, ξ) and satisfies

the evolution system by (3.4)

∂

∂t
Uξ (t, ξ) =

1
2
∇f (U(t, ξ)). (3.11)

3.3. Measure transformations

For convenience of later application, we first analyze the absolutely continuous and the singular part of the measure µ
defined as (3.10), under a continuous non-decreasing mapping ξ → y(ξ).

Lemma 1. For k = 1, 2, . . . , n, let Uk : [0, ξ0] → R be absolutely continuous with a square integrable derivative. Assume that
the map ξ → y(ξ) satisfies

y(ξ) = y(0)+

 ξ

0

n
i=1

U2
ix(η) dη. (3.12)

Define the vector function u = u(x) implicitly by

u(y(ξ)) := U(ξ) (3.13)

for x ∈ [y(0), y(ξ0)] and the measure µ by

µ(J) := meas{ξ ∈ [0, ξ0]; y(ξ) ∈ J}. (3.14)

Then the absolutely continuous and the singular part of µ with respect to the Lebesgue measure are, respectively, given by

µa(A) = meas


ξ ∈ [0, ξ0]; y(ξ) ∈ A,

n
i=1

|Uiξ (ξ)| ≠ 0


, (3.15)

µs(A) = meas{ξ ∈ [0, ξ0]; y(ξ) ∈ A,Ukξ (ξ) = 0 (k = 1, 2, . . . , n)}. (3.16)

Moreover, one has

dµa
=

n
i=1

u2
ix dx (3.17)

on the set [y(0), y(ξ0)]. Conversely, if both U and y are absolutely continuous and (3.13), (3.14) and (3.17) are valid, then (3.12)
must hold.
Proof. In view of (3.12), it is easy to see that the image of a set I ⊆ [0, ξ0] under the mapping ξ → y(ξ) has the Lebesgue
measure

meas(y(I)) =


I

n
i=1

U2
iξ (η) dη.
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Clearly, the singular part ofµwith respect to the Lebesguemeasure is given by (3.16). In order to establish (3.15) and (3.17),
we consider a measurable set A ⊂ [0, ξ0] satisfying

n
i=1

U2
iξ (ξ) ≥ ε for all ξ ∈ A

for any fixed ε > 0. Then we have
y(A)

n
i=1

u2
ix(x) dx =


A

n
i=1


Uiξ ·

dξ
dy

2

·
dy
dξ

dξ

=


A

n
i=1

Uiξ ·
1

n
j=1

U2
jξ


2

·

n
j=1

U2
jξ dξ = meas(A),

which concludes (3.15) and (3.17) by the arbitrariness of ε.
We now prove the last part of the lemma. Denote

Iε := {ξ ∈ [0, ξ0]; yξ (ξ) ≥ ε}.

For ξ ∈ Iε , we get the chain rule due to (3.13)

ukx(y(ξ))yξ (ξ) = Ukξ (ξ), (k = 1, 2, . . . , n). (3.18)

On the other hand, we find for 0 < a < b < ξ0 that

meas([a, b] ∩ Iε) =


[y(a),y(b)]∩y(Iε)

n
i=1

u2
ix(x) dx =


[a,b]∩Iε

n
i=1

u2
ix(y(ξ))yξ (ξ) dξ, (3.19)

which implies, by the arbitrariness of a < b, that for ξ ∈ Iε

yξ (ξ) =
1

n
i=1

u2
ix(y(ξ))

. (3.20)

Combining (3.18) and (3.20) leads to

yξ (ξ) =

n
i=1

U2
iξ (ξ), ukx(y(ξ)) =

Ukξ (ξ)
n

i=1
U2
iξ (ξ)

, (k = 1, 2, . . . , n) (3.21)

for all ξ ∈ Iε . Therefore, we obtain

y(ξ) = y(0)+

 ξ

0
yξ (η) dη = y(0)+ lim

ε→0


[0,ξ ]∩Iε

yξ (η) dη

= y(0)+

 ξ

0

n
i=1

U2
iξ (η) dη.

The proof of Lemma 1 is complete. �

3.4. Existence of solutions

We now use Lemma 1 to prove that the trajectory t → (u(t, ·), µ(t)) satisfies system (1.1) and the initial–boundary
conditions (1.2).

We first assume that the map ξ → y0(ξ) is absolutely continuous. This assumption will be removed later.
For each t ≥ 0 and ξ ∈ [0, ξ0], we define

y(t, ξ) := y(t, 0)+

 ξ

0

n
i=1

U2
iξ (t, η) dη, (3.22)
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where y(t, 0) = y0(0)+ tf (0). Recalling (3.11), we find that

∂

∂t
yξ (t, ξ) =

∂

∂t

n
i=1

U2
iξ (t, ξ) = Uξ (t, ξ) · ∇f (U(t, ξ)), (3.23)

which, together with (3.4), (3.7) and the last assertion of Lemma 1, implies that the function y = y(t, ξ) defined at (3.22)
coincides with the one defined at (3.8).

It is easily seen that the initial–boundary conditions (1.2) hold by the definitions (3.1)–(3.2) and the construction
(3.4). Hence, it remains to prove that the vector function u satisfies (1.1). Fix a time t > 0; it suffices to check it for
x ∈ [y(t, 0), y(t, ξ0)] by the fact that u(t, x) ≡ 0 in x ∈ [0, y(t, 0)]. Notice that there exists a unique ξ ∈ [0, ξ0] such
that x = y(t, ξ), for almost every x ∈ [y(t, 0), y(t, ξ0)]. Then we compute

ut + f (u)ux = Ut(t, ξ) =
1
2

 ξ

0
∇f (U(t, η)) dη

=
1
2

 y(t,ξ)

0
∇f (u(t, ·)) dµ(t).

Comparing the above with (1.1), we see that it only needs to establish the identity of measures

∇f (u)
n

i=1

u2
ixdx = ∇f (u)dµ(t) (3.24)

for almost every time t ≥ 0. We notice that the open region
{(t, x) ∈ R+

× R+
; ∇f (u(t, x)) ≠ 0}

can be covered by countably many sets of the form
Γ := {(t, x); t ∈ [t1, t2], x ∈ [y(t, a), y(t, b)]}.

Thus it suffices to prove the following statement: assume that there exists k̂ ∈ {1, 2, . . . , n} such that
fuk̂(u(t, x)) > δ > 0, (t, x) ∈ Γ ,

then, for a.e. t ∈ [t1, t2], the restriction of the measure µ(t) to the interval [y(t, a), y(t, b)] satisfies dµ(t) =
n

i=1 u
2
ixdx. We

now prove this statement. It follows from (3.4) that
∂

∂t
Uk̂ξ (t, ξ) >

δ

2
, (3.25)

from which one has

meas({(t, x) ∈ Γ ; |Uk̂ξ (t, ξ)| < ε}) <
4ξ0
δ
ε,

which indicates, by the arbitrariness of ε, that there exists a set of times N of measure zero such that
meas({ξ ∈ [a, b];Uk̂ξ (t, ξ) = 0}) = 0

for all times t ∉ N . In particular, we have
meas({ξ ∈ [a, b];Ukξ (t, ξ) = 0 (k = 1, 2, . . . , n)}) = 0

for all times t ∉ N , which completes the proof by using Lemma 1.
Now we consider the case that the mapping ξ → y0(ξ) is non-decreasing but only left continuous. In this case, the

distributional derivative of thismap is thus ameasure,which can be denoted asDξy0(ξ) = σ = σ a
+σ s. By the assumptions,

the absolutely continuous part σ a satisfies dσ a
= |U0ξ |

2dξ and then the map ξ → y0(ξ) can be written as

y0(ξ) = y0(0)+

 ξ

0
|U0ξ |

2(η) dη + σ s([0, ξ)).

Define

ȳ0(ξ) := y0(0)+

 ξ

0
|U0ξ |

2(η) dη,

ū0(ȳ0(ξ)) := U0(ξ), µ̄(0)(J) := meas{ξ ; ȳ0(ξ) ∈ J}.
Then, for the new initial data (ū0, µ̄(0)), the map ξ → ȳ0(ξ) is absolutely continuous. Thus the previous analysis is valid and
then there exists a vector function ū(t, x) satisfying problem (1.1)–(1.3) for this new initial data. One can easily check that
the function constructed in (3.4), (3.7)–(3.9) for the original initial data u0 satisfies

u(t, y(t, ξ)+ σ s([0, ξ))) = U(t, ξ),
that is,

u(t, x) = U(t, ξ(t, x)), where ξ(t, x) := sup{ξ ; y(t, ξ)+ σ s([0, ξ)) ≤ x},
which provides a solution by its relationship with ū(t, x).
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3.5. Properties of solutions

We first see by the assumption ξ0 = µ(0)(R+) < ∞ that

Tot.Var.{uk(t, ·); [0,M]} ≤

ξ0M, (k = 1, 2, . . . , n),

which means, by the boundary condition, that for any x ∈ [0,M]

|uk(t, x)| ≤

ξ0M, (k = 1, 2, . . . , n),

from which we get M

0
|uk(t, x)− uk(s, x)| dx ≤ |t − s| ·


ξ0M sup

|ui|≤
√
ξ0M

f (u)+
ξ0M
2

sup
|ui|≤

√
ξ0M

fuk(u)


.

This proves (2.7). The Lipschitz continuity property of the measure µ(t) with respect to time can be easily obtained by
applying the expression of y(t, ξ) and the definition (2.5).

We now show that the vector function u(t, x) is Hölder continuous locally in (t, x). For k = 1, 2, . . . , n, we see that uk is
Hölder continuous in x for each fixed time t with exponent 1/2 by the Sobolev embedding theorem. On the other hand, uk
is Lipschitz continuous in time along each characteristic by the equation of uk in (1.1). Since the characteristic speed f (u) is
locally bounded, we obtain that uk is also Hölder continuous locally in the time direction.

The continuous dependence of solutions can be established by the fact that the corresponding vector functions Uν(t, ξ)
satisfy Uν(t, ξ) → U(t, ξ) uniformly on [0, T ] × [0, ξ0] for any T > 0.

So far, we have completed the proof of Theorem 2.1.

3.6. Uniqueness of solutions

Since the solution of the initial–boundary value problem (1.1)–(1.3) is constructed by the fixed point theorem, then one
directly obtains the uniqueness result, which can be stated as follows.

Theorem 3.1. Suppose that there exist a vector function u = u(t, x) and a family of measures µ(t) satisfying (i) and (ii) in The-
orem 2.1. Assume moreover that the map t → U(t, ξ), defined by

U(t, ξ) := u(t, y(t, ξ)), y(t, ξ) := inf{x ≥ 0;µ(t)([0, x]) ≥ ξ},

is absolutely continuous and satisfies system (3.4) for a.e. ξ . Then there is the identity (u(t), µ(t)) = St(u0, µ(0)). In other words,
the solution which satisfies the above conditions is unique.
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