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ON BALAZARD, SAIAS, AND YOR’S EQUIVALENCE TO THE
RIEMANN HYPOTHESIS

H. M. BUI, S. J. LESTER, AND M. B. MILINOVICH

Abstract. Balazard, Saias, and Yor proved that the Riemann Hypothesis is equivalent to
a certain weighted integral of the logarithm of the Riemann zeta-function along the critical
line equaling zero. Assuming the Riemann Hypothesis, we investigate the rate at which a
truncated version of this integral tends to zero, answering a question of Borwein, Bradley,
and Crandall and disproving a conjecture of the same authors. A simple modification of our
techniques gives a new proof of a classical Omega theorem for the function S(t) in the theory
of the Riemann zeta-function.

1. Introduction

Let ζ(s) denote the Riemann zeta-function. In [1], Balazard, Saias, and Yor gave an elegant
proof of the formula

∫

<(s)=1/2

log |ζ(s)|
|s|2 |ds| = 2π

∑

β>1/2

log
∣∣∣∣
ρ

1−ρ

∣∣∣∣ , (1.1)

where the sum runs over the nontrivial zeros ρ = β + iγ of ζ(s) with real part strictly greater
than 1/2. Since the Riemann Hypothesis (RH) states that β = 1/2 for all the nontrivial zeros
of ζ(s), it follows that RH is equivalent to the expression

∫

<(s)=1/2

log |ζ(s)|
|s|2 |ds| = 0. (1.2)

This equivalence led Borwein, Bradley, and Crandall [2] to study the function

I(T ) =
∫ T

−T

log |ζ(1
2 +it)|

1
4 +t2

dt.

Since by (1.2), RH is equivalent to the assertion that I(T ) → 0 as T → ∞, they asked the
following question: What are the admissible positive values of α such that I(T ) = O(T−α) as
T →∞ on RH? Based upon numerical evidence, they conjectured that I(T ) = O(T−2).

In this note, we answer their question and disprove their conjecture by showing that I(T ) =
O(T−α) for any fixed positive α < 2 as T →∞, but that I(T ) 6= O(T−2). Precisely, we prove
the following theorem.

Theorem 1.1. Assume RH. Then we have

I(T ) = O

(
1
T 2

log T
(log log T )2

)
(1.3)

and

I(T ) = Ω
(

1
T 2

√
log T

(log log T )3/2

)
(1.4)

as T →∞.
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Additionally, by estimating the tails of the integral in (1.1) we obtain an unconditional
formula for I(T ) in terms of the nontrivial zeros of the Riemann zeta-function.

Theorem 1.2. For T ≥ 3, we have

I(T ) = 2π
∑

−T≤γ≤T
β>1/2

log
∣∣∣∣

ρ

1− ρ

∣∣∣∣+O

(
1
T 2

log T
)
. (1.5)

Through a straightforward modification of our argument it can be shown that the Lindelöf
Hypothesis implies that the error term in (1.5) is o(T−2 log T ) as T →∞. We remark that the
proof of Theorem 1.2 does not give a new proof of (1.1) since we merely truncate the integral.
However, we will show how to adapt the method used to prove Theorem 1.2 to give a simple,
new proof of (1.1) that relies only on standard techniques in complex analysis.

In the final section, we give a new proof of a classical Omega theorem of Montgomery for
the function S(t).

2. Various lemmas

Our first two lemmas concern integrals of the logarithm of the Riemann zeta-function (one
unconditional and the other conditional upon RH).

Lemma 2.1. Uniformly for 1 ≤ c ≤ 2 and t ≥ 3 we have∫ c

1/2

∣∣ log ζ(σ+it)
∣∣ dσ � log t.

Proof. See Lemma β of Titchmarsh [11]. �
Lemma 2.2. Assume RH. Then for t ≥ T ≥ 3 we have

∫ t

T
log
∣∣ζ(1

2 +iu)
∣∣ du� log t

(log log t)2
.

Proof. Under the assumption of RH, Cauchy’s theorem implies that
∫ t

T
log
∣∣ζ(1

2 +iu)
∣∣ du = −

∫ 3/2

1/2
arg ζ(σ+it) dσ +

∫ 3/2

1/2
arg ζ(σ+iT ) dσ +O(1).

We will bound the first integral on the right-hand side of this equation. The second integral
can be handled similarly.

Let σt = 1/2 + (log log t)−1 and write
∫ 3/2

1/2
arg ζ(σ+it) dσ = I1 + I2 + I3, (2.1)

where I1 is the portion of the integral over [1/2, σt), I2 is the portion over [σt, 3/4), and I3 is
the portion over [3/4, 3/2]. By Theorem 13.21 of [9], we have arg ζ(σ + it) � log t/ log log t
for σ ≥ 1/2. Thus,

I1 �
log t

(log log t)2
.

For σt ≤ σ < 3/4 it follows from Corollary 13.16 of [9] that arg ζ(σ+it)� (log t)(2−2σ)/ log log t.
Hence

I2 �
log t

(log log t)2
.

Finally, Corollary 13.16 of [9] also implies that arg ζ(σ + it)� (log t)1/2 uniformly for 3/4 ≤
σ ≤ 3/2, and we have

I3 � (log t)1/2.

The lemma now follows by inserting the estimates for I1, I2 and I3 into (2.1). �
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Next we prove two key lemmas which are used to prove the estimate (1.4) in Theorem 1.1.

Lemma 2.3. Assume RH. For any sequence of complex numbers {r(n)} let

R(t) =
∑

n≤N

r(n)
nit

.

Then uniformly for 1/2 ≤ α ≤ 2 , h ∈ R, N > 1, T ≥ 3, and ε > 0 we have
∫ 2T

T
log ζ(α+it+ih)

∣∣R(t)
∣∣2dt = T

∑

mn≤N

Λ(n)r(m)r(mn)
nα+ih log n

+O

(
N(log TN)3/2+ε

∑

n≤N
|r(n)|2

)
.

Proof. Let c = 1 + (logN)−1, R(s) =
∑

n≤N r(n)n−s, and R(s) =
∑

n≤N r(n)n−s. We shall
consider the case 1/2 ≤ α ≤ c. The remaining case c ≤ α ≤ 2 is treated similarly to I3 below.

By the elementary inequality 2|ab| ≤ |a|2 + |b|2 it follows that

|r(m)r(n)|
(m
n

)σ−α
≤ 1

2

(
|r(m)|2∆
n2(σ−α)

+
|r(n)|2m2(σ−α)

∆

)

for any ∆ > 0. Thus,
∣∣R(s− α− ih)R(α+ ih− s)

∣∣ ≤
∑

m,n≤N
|r(m)r(n)|

(m
n

)σ−α

�
(

∆
∑

m≤N

1
m2(σ−α)

+
1
∆

∑

m≤N
m2(σ−α)

)∑

n≤N
|r(n)|2

�
(

∆N1−2(σ−α) logN +
N1+2(σ−α)

∆

)∑

n≤N
|r(n)|2

uniformly for α ≤ σ ≤ c. Choosing ∆ = N2(σ−α)(logN)−1/2, we conclude that
∣∣R(s− α− ih)R(α+ ih− s)

∣∣� N(logN)1/2
∑

n≤N
|r(n)|2 (2.2)

uniformly for α ≤ σ ≤ c.
Let C be the positively oriented rectangle with vertices at α + i(T + h), c + i(T + h),

c+ i(2T + h), and α+ i(2T + h). We write

i

∫

C
log ζ(s)R(s− α− ih)R(α+ ih− s) ds = I1 + I2 + I3 + I4,

where I1, I2, I3, I4 are the parts of the integral over the left, bottom, right, and top edges of
C , respectively. Cauchy’s theorem implies that

I1 + I2 + I3 + I4 = 0.

Thus, after an obvious variable change, we have
∫ 2T

T
log ζ(α+it+ih)

∣∣R(t)
∣∣2 dt = −I3 +O

(
|I2|+|I4|

)
. (2.3)

By (2.2) and Lemma 2.1 we have

|I2|+|I4| � N(logNT )3/2
∑

n≤N
|r(n)|2. (2.4)

It remains to estimate I3.
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In I3, we express log ζ(s) as an absolutely convergent Dirichlet, interchange summation and
integration, and then integrate term-by-term to obtain

−I3 = T
∑

mn≤N

Λ(n)r(m)r(mn)
nα+ih log n

+O

( ∞∑

k=2

∑

m,n≤N
n6=km

Λ(k)
kc log k

|r(m)r(n)|
| log n

km |
( n
m

)c−α
)
. (2.5)

To bound the error term, we first note that
∑

m,n≤N
n6=km

|r(m)r(n)|
| log n

km |
( n
m

)c−α
� ∆

∑

n≤N
|r(n)|2

∑

m≤N
n6=km

1
m2(c−α)| log n

km |

+
1
∆

∑

m≤N
|r(m)|2

∑

n≤N
n6=km

n2(c−α)

| log n
km |

for any ∆ > 0. Next, using standard techniques, we have
∑

m≤N
n6=km

1
m2(c−α)| log n

km |
� N1−2(c−α)(logN)2 and

∑

n≤N
n6=km

n2(c−α)

| log n
km |
� N1+2(c−α) logN

uniformly in k. Hence

∑

m,n≤N
n6=km

|r(m)r(n)|
| log n

km |
( n
m

)c−α
�
(

∆N1−2(c−α)(logN)2 +
N1+2(c−α) logN

∆

)∑

n≤N
|r(n)|2.

Choosing ∆ = N2(c−α)(logN)−1/2, it follows that the big-O term in (2.5) is

� N(logN)3/2
∞∑

k=2

Λ(k)
kc log k

∑

n≤N
|r(n)|2 � N(logN)3/2 log logN

∑

n≤N
|r(n)|2.

The lemma now follows from this estimate and (2.3)–(2.5). �

Lemma 2.4. Let µ and ν be fixed non-negative integers, N > 1, and h ∈ [0, (log logN)−1].
Then there exist two real-valued arithmetic functions r±(n) and a positive constant C (depend-
ing on µ and ν) such that

∑

mn≤N

Λ(n) sinµ(h log n)r+(m)r+(mn)√
n(log n)ν

/∑

n≤N
|r+(n)|2 ≥ C hµ(logN)1/2(log logN)µ−ν+1/2

and
∑

mn≤N

Λ(n) sinµ(h log n)r−(m)r−(mn)√
n(log n)ν

/∑

n≤N
|r−(n)|2 ≤ −C hµ(logN)1/2(log logN)µ−ν+1/2.

Proof. Our proof of this lemma is based upon the ideas in the proof of Theorem 2.1 of
Soundararajan [10]. We shall prove the first inequality. The second inequality can be proved
similarly by choosing r−(n) = µ(n)r(n), where µ(n) is the Möbius function and r(n) is defined
below. Throughout the proof, the letter p denotes a prime number.

We choose r+(n) to be the multiplicative function r(n) supported on square-free integers
and defined on primes p by

r(p) =

{
L(log p)ν
√
p , if A < p < B,

0, otherwise.
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Here the parameters A, B and L are chosen so that

A = L2(logL)2ν+1, B = L3, and L2(logB)2ν+1 = (2ν + 1) logN.

We note that with our choice we have r(p)� 1, L � (logN)1/2(log logN)−ν−1/2, and logB <
(3/2) log logN , so that sin(h log p) > (h log p)/2 for h ∈ [0, (log logN)−1] and p < B.

With r+(n) = r(n), the denominator on the left-hand side of the first inequality is

∑

n≤N
|r(n)|2 ≤

∞∑

n=1

r(n)2 =
∏

p

(
1 + r(p)2

)
.

To estimate the numerator, we use Rankin’s trick which asserts that for any sequence of
non-negative real numbers {an}, and any α > 0 we have

∑

n>x

an ≤ x−α
∑

n>x

ann
α ≤ x−α

∞∑

n=1

ann
α.

Therefore,

∑

mn≤N

Λ(n) sinµ(h log n)r(m)r(mn)√
n (log n)ν

=
∑

n≤N

Λ(n) sinµ(h log n)r(n)√
n (log n)ν

∑

m≤N/n
(m,n)=1

r(m)2

=
∑

n≤N

Λ(n) sinµ(h log n)r(n)√
n (log n)ν

∏

p-n

(
1 + r(p)2

)
(2.6)

+O

(
hµ
∑

n≤N

Λ(n)r(n)√
n (log n)ν−µ

( n
N

)α∏

p-n

(
1 + pαr(p)2

)
)
.

Here we have used the inequality | sinx| ≤ x for x ≥ 0 in the big-O term. Note that r(n)
is supported on square-free integers, and the inequalities sin(h log p) � h log p and r(p) � 1
hold for all p < B. Using these observations we see that the ratio of the main term in (2.6)
to
∑

n≤N |r(n)|2 is

�
∑

p≤N

sinµ(h log p) r(p)√
p (log p)ν−1(1+r(p)2)

= L
∑

A<p<B

sinµ(h log p) log p
p (1+r(p)2)

� L
∑

A<p<B

hµ(log p)µ+1

p
= Lhµ

(
(logB)µ+1

µ+1
− (logA)µ+1

µ+1
+O

(
(logB)µ

)
)

� Lhµ(log logN)µ+1 � hµ(logN)1/2(log logN)µ−ν+1/2.

On the other hand, the error term in (2.6) is

� hµLN−α
( ∑

A<p<B

(log p)µ+1

p1−α(1 + pαr(p)2)

)∏

p

(
1 + pαr(p)2

)

�
(
1+α logB

)
hµLN−α

( ∑

A<p<B

(log p)µ+1

p

)∏

p

(
1 + pαr(p)2

)
.

(2.7)
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Note that B = L3 and L� (logN)1/2. So by Rankin’s trick (with exponent taken to be 1/2)
we have

∑

n≤N
|r(n)|2 =

∞∑

n=1

|r(n)|2 +O

(
L2

N1/2

∑

A<p<B

(log p)2ν

√
p

)

=
∏

p

(1 + r(p)2) +O

(
L2

N1/2
B3/2(logB)2ν

)
�
∏

p

(1 + r(p)2).

Choosing α = (logL)−2, we see that the ratio of (2.7) to
∑

n≤N |r(n)|2 �∏
p(1 + r(p)2) is

� hµLN−α (logB)µ+1
∏

p

(
1 + pαr(p)2

1 + r(p)2

)

� hµL (logB)µ+1 exp

{
− α logN +

∑

A<p<B

(pα−1)
L2(log p)2ν

p

}

� hµL (logB)µ+1 exp

{
− α logN +

αL2

2ν+1

(
(logB)2ν+1 − (logA)2ν+1

)
+O

(
α2L2(logB)2ν+2

)
}

� hµL (logB)µ+1 exp

{
− 1

2
αL2(logA)2ν+1

2ν+1

}
= o
(
hµ(logN)1/2(log logN)µ−ν+1/2

)

since L(logB)µ+1 � (logN)1/2(log logN)µ−ν+1/2 by our choices of A,B, and L. Combining
the estimates, the lemma follows. �

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Our proof of (1.3) follows from Lemma 2.2, while
our proof of (1.4) is a consequence of the following Omega theorem.

Theorem 3.1. Assume RH. Then as t→∞, we have
∫ t+h

t−h
log |ζ(1

2 +iu)| du = Ω±

(
h

√
log t

log log t

)

uniformly for h ∈ [0, (log log t)−1].

Proof. We prove this theorem using Soundararajan’s resonance method.
Let R(t) =

∑
n≤N r(n)n−it and observe that

max
T≤t≤2T

∫ t+h

t−h
log
∣∣ζ(1

2 +iu)
∣∣ du ≥

∫ 2T
T

{∫ t+h
t−h log |ζ(1

2 +iu)| du
}
|R(t)|2 dt

∫ 2T
T |R(t)|2 dt

(3.1)

and

min
T≤t≤2T

∫ t+h

t−h
log
∣∣ζ(1

2 +iu)
∣∣ du ≤

∫ 2T
T

{∫ t+h
t−h log |ζ(1

2 +iu)| du
}
|R(t)|2 dt

∫ 2T
T |R(t)|2 dt

. (3.2)

Making the substitution u = t + h1, using Lemma 2.3 with α = 1/2, and integrating with
respect to h1, the double integral in the numerators in (3.1) and (3.2) is

= <
∫ h

−h

∫ 2T

T
log ζ(1

2 +it+ih1)|R(t)|2 dt dh1

= 2T
∑

mn≤N

Λ(n)r(m)r(mn) sin(h log n)√
n(log n)2

+O

(
hN(log TN)3/2+ε

∑

n≤N
|r(n)|2

)
. (3.3)
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Furthermore, Montgomery and Vaughan’s mean-value theorem for Dirichlet polynomials (Corol-
lary 3 of [8]) implies that

∫ 2T

T
|R(t)|2 dt =

(
T +O(N)

) ∑

n≤N
|r(n)|2. (3.4)

Choosing N = T (log T )−2, Lemma 2.4 and equations (3.1)–(3.4) imply that

max
T≤t≤2T

∫ t+h

t−h
log |ζ(1

2 +iu)| du ≥ c1h

√
log T

log log T

and

min
T≤t≤2T

∫ t+h

t−h
log |ζ(1

2 +iu)| du ≤ −c2h

√
log T

log log T

uniformly for h ∈ [0, (log logN)−1], where c1 and c2 are (computable) positive constants. The
theorem follows. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. We first prove (1.3). Assuming RH, (1.2) implies that

∫ ∞

−∞

log |ζ(1
2 +it)|

1
4 + t2

dt = 0.

Since the integrand is even, it follows that

I(T ) = −2
∫ ∞

T

log |ζ(1
2 +it)|

1
4 + t2

dt.

Integrating by parts and applying Lemma 2.2 we have

I(T ) = −2
∫ ∞

T

1
1
4 + t2

d

(∫ t

T
log |ζ(1

2 +iu)| du
)

= −4
∫ ∞

T

t

(1
4 + t2)2

(∫ t

T
log |ζ(1

2 +iu)| du
)
dt

�
∫ ∞

T

1
t3

log t
(log log t)2

dt� 1
T 2

log T
(log log T )2

.

This completes the proof of (1.3).

We now prove (1.4). Let h ∈ [0, (log log t)−1] and suppose, for sake of contradiction, that

I(t) = o

(
1
t2

√
log t

(log log t)3

)
.

Then for t− h ≤ u ≤ t+ h we have

I(u)− I(t− h) = o

(
1
t2

√
log t

(log log t)3

)
, (3.5)
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as well. Integrating by parts yields
∫ t+h

t−h
log
∣∣ζ(1

2 +iu)
∣∣du =

∫ t+h

t−h

(
1
4 + u2

)
d

(∫ u

t−h

log |ζ(1
2 +iv)|

1
4 + v2

dv

)

=
(

1
4 + (t+ h)2

)∫ t+h

t−h

log |ζ(1
2 +iv)|

1
4 + v2

dv

−
∫ t+h

t−h
2u
(∫ u

t−h

log |ζ(1
2 +iv)|

1
4 + v2

dv

)
du.

Using the assumption (3.5) twice, it follows that
∫ t+h

t−h
log |ζ(1

2 +iu)| du = o

(√
log t

(log log t)3

)
.

If h = (log log t)−1, this contradicts Theorem 3.1, and thus proves (1.4). �

4. Proof of Theorem 1.2

In this section, we use contour integration to prove Theorem 1.2. We also show how this
method can be modified to give a new proof of (1.1) that relies solely on standard techniques
from complex analysis.

Proof of Theorem 1.2. First, suppose that T is not an ordinate of a zero of ζ(s) and consider

1
i

∫ 1
2

+i∞

1
2

+iT

log ζ(s)
s(1− s) ds.

Let S be subset of the region σ > 1/2 and t > T , that excludes all the horizontal segments
1/2 + iγ to β+ iγ. It follows that log ζ(s) is a single-valued analytic function in S. Moreover,
along each branch cut from 1/2 + iγ to β + iγ the values of log ζ(s) on the upper and lower
cuts differ by 2πi. Therefore, moving the contour in the above integral from <(s) = 1/2 to
<(s) =∞ yields

1
i

∫ 1
2

+i∞

1
2

+iT

log ζ(s)
s(1− s) ds = 2π

∑

γ>T
β>1/2

∫ β+iγ

1
2

+iγ

1
s(1− s) ds+

1
i

∫ ∞+iT

1
2

+iT

log ζ(s)
s(1− s) ds. (4.1)

Also, we have
∫ β+iγ

1
2

+iγ

1
s(1− s) ds = log(ρ)− log(1

2 + iγ)− log(1− ρ) + log(1
2 − iγ). (4.2)

For σ ≥ 2 we have log ζ(s)� 2−σ uniformly in t. From this and Lemma 2.1 it follows that
∫ ∞+iT

1
2

+iT

log ζ(s)
s(1− s) ds�

1
T 2

(∫ 2

1
2

+
∫ ∞

2

)
| log ζ(σ + iT )| dσ � 1

T 2

(
log T + 1

)
.

Taking the real parts in (4.1), and using the above estimate and (4.2), we deduce that
∫ ∞

T

log |ζ(1
2 + it)|

1
4 + t2

dt = 2π
∑

γ>T
β>1/2

log
∣∣∣∣

ρ

1− ρ

∣∣∣∣+O

(
1
T 2

log T
)
.

Similarly, it can be shown that
∫ −T

−∞

log |ζ(1
2 + it)|

1
4 + t2

dt = 2π
∑

γ<−T
β>1/2

log
∣∣∣∣

ρ

1− ρ

∣∣∣∣+O

(
1
T 2

log T
)
.
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Combining these two estimates and then differencing the resulting formula with (1.1) completes
the proof of the theorem in the case when T 6= γ. If T = γ, we note that for all sufficiently
small ε > 0 the estimate in (1.5) holds for T = γ + ε. The theorem now follows in this case
by letting ε→ 0+. �

Proof of (1.1). Consider the integral

1
i

∫ 1
2

+i∞

1
2
−i∞

log((s− 1)ζ(s))
s(1− s) ds.

Arguing as in the previous proof, we move the contour from <(s) = 1/2 to <(s) = ∞ and
deduce that

1
i

∫ 1
2

+i∞

1
2
−i∞

log((s− 1)ζ(s))
s(1− s) ds = 2π

∑

β>1/2

∫ β+iγ

1
2

+iγ

1
s(1− s) ds+

1
i

∫

C

log((s− 1)ζ(s))
s(1− s) ds, (4.3)

where C is the positively oriented circle centered at s = 1 with radius 1/4. By the calculus of
residues and the fact that lims→1((s− 1)ζ(s)) = 1 the last integral equals zero. Thus, by this
and (4.2), taking the real parts in (4.3) gives

∫ ∞

−∞

log |(−1
2 + it)ζ(1

2 + it)|
1
4 + t2

dt = 2π
∑

β>1/2

log
∣∣∣∣

ρ

1− ρ

∣∣∣∣.

Note that by residue calculus (or otherwise) we have
∫ ∞

−∞

log | − 1
2 + it|

1
4 + t2

dt =
1
2

∫ ∞

−∞

log(1
4 + t2)

1
4 + t2

dt = 0.

This completes the proof. �

5. Montgomery’s Omega theorem for S(t)

Let N(t) denote the number of non-trivial zeros ρ = β + iγ of the Riemann zeta-function
with 0 < γ ≤ t. It is well-known that

N(t) =
t

2π
log

t

2π
− t

2π
+

7
8

+ S(t) +O
(1
t

)

for t ≥ 10. Here, if t is not equal to an ordinate of a zero of ζ(s), the function S(t) is defined
by

S(t) =
1
π
= log ζ

(
1
2 + it

)
,

where the branch of logarithm is obtained by continuous variation along the line segments
joining the points 2, 2 + it, and 1

2 + it, starting with arg ζ(2) = 0. If t corresponds to an
ordinate of a zero of ζ(s) we set

S(t) =
1
2

lim
ε→0

{
S(t+ε)+S(t−ε)

}
.

Assuming RH, it is known that
∣∣S(t)

∣∣ ≤
(

1
4 + o(1)

) log t
log log t

as t→∞ [4]. In this section, we illustrate how Lemmas 2.3 and 2.4 in §3 can be used to give
a new proof of Montgomery’s result [7] that

S(t) = Ω±

(√
log t

log log t

)
(5.1)
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assuming RH. Tsang [13] gave an alternate proof of (5.1). In contrast to the proofs of Mont-
gomery and Tsang, our proof uses the resonance method.

Proof of (5.1). Define the auxiliary function

S1(t) =
∫ t

0
S(u) du

and note that

max
t≤u≤t+h

±S(u) ≥ 1
h

∫ t+h

t
±S(u) du =

±
(
S1(t+h)− S1(t)

)

h
. (5.2)

We use a result of Littlewood (see Theorem 3 of [6] or Theorem 9.9 of [12]) that

S1(t) =
1
π

∫ 2

1/2
log |ζ(σ+it)| dσ +O

(
1
)
.

Now taking the real part of the integral in Lemma 2.3, and integrating with respect to α from
1/2 to 2 yields

∫ 2T

T
S1(t+h)|R(t)|2 dt =

T

π

∑

mn≤N

Λ(n)r(m)r(mn)√
n (log n)2

cos
(
h log n

)
+O

(
T
∑

n≤N
|r(n)|2

)

+O

(
N(log TN)3/2

∑

n≤N
|r(n)|2

)
+O

(∫ 2T

T
|R(t)|2 dt

)
.

Choosing N = T (log T )−2 and noting that
∫ 2T

T
|R(t)|2 dt =

(
T +O(N)

) ∑

n≤N
|r(n)|2,

we obtain

±
∫ 2T
T

(
S1(t+h)− S1(t)

)
|R(t)|2 dt

∫ 2T
T |R(t)|2 dt

= ∓ 2
π

∑
mn≤N

Λ(n)r(m)r(mn)√
n (logn)2

sin2
(
h
2 log n

)
∑

n≤N |r(n)|2 +O
(
1
)
.

Using Lemma 2.4 with µ = ν = 2 to estimate the ratio of sums on the right-hand side of the
above expression, we deduce that

max
T≤t≤2T

±
(
S1(t+h)− S1(t)

)
� h2

√
log T log log T

uniformly for h ∈ [0, (log logN)−1]. Combining this inequality with the observation in (5.2)
and choosing h = (log logN)−1, the estimate (5.1) follows. �

We remark that using the resonance method in a different way, the estimate in (5.1) can
be refined. In [3], assuming RH, it is shown that

max
T≤t≤2T

S(t) ≥ 1
π

√
log t

log log t
+O

( √
log t

log log t

)

and

min
T≤t≤2T

S(t) ≤ − 1
π

√
log t

log log t
+O

( √
log t

log log t

)
.

These are conditional analogues of Soundararajan’s unconditional Omega theorem for
∣∣ζ(1

2 +
it)
∣∣ in [10]. It does not seem, however, that the method in [3] can be modified to prove

Theorem 3.1.
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E-mail address: hung.bui@math.uzh.ch

Department of Mathematics, University of Rochester, Rochester, NY 14627 USA
E-mail address: lester@math.rochester.edu

Department of Mathematics, University of Mississippi, University, MS 38677 USA
E-mail address: mbmilino@olemiss.edu


