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We prove large deviation results for sums of heavy-tailed random elements in rather
general convex cones being semigroups equipped with a rescaling operation by positive
real numbers. In difference to previous results for the cone of convex sets, our technique
does not use the embedding of cones in linear spaces. Examples include the cone of convex
sets with the Minkowski addition, positive half-line with maximum operation and the
family of square integrable functions with arithmetic addition and argument rescaling.
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1. Introduction

Most results concerning limiting behavior of sums of random elements in linear spaces can be extended for random
closed sets in linear spaces, see [10, Ch. 3]. The sum of sets is defined in the Minkowski sense, i.e. the sum of two sets is
the closure of the set of pairwise sums of elements from these sets. It is well known that this addition is not invertible. The
most typical way to handle this setting is to consider first random convex compact sets and embed them into the Banach
space of continuous functions on the unit sphere in the dual space using the support function. Then the Minkowski sum
of sets corresponds to the arithmetic sum of their support functions and the Hausdorff distance between sets turns into
the uniform distance in the space of support functions, which opens the possibility to use the results available for random
elements in Banach spaces, see e.g. [4]. Finally, it is usually argued that the results for possibly non-convex random compact
sets are identical to their convex case counterparts in view of the convexification property of the Minkowski addition,
see [1].

The family of limit theorems for random sets has been recently extended with several large deviation results in the
heavy-tail setting in [8] and [9]. The crucial assumption is the regular variation condition on the tail, which is similar to one
that appears in limit theorems for unions of random closed sets, see [10, Ch. 4]. Let Sn denote the Minkowski sum of i.i.d.
regularly varying random compact sets ξ1, . . . , ξn in R

m with tail index α > 0 and tail measure μ. In particular, [8] show
that

γnP(Sn ∈ λnU ) → μ(U ) (1)
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for λn that grows sufficiently fast and all μ-continuous measurable subsets U of the family of all compact sets bounded
away from zero. The sequence of normalizing constants {γn} is related to the tail behavior of the norm of a single random
compact set defined as its Hausdorff distance to the origin. Especially, it is required that λn/n → ∞ in case α � 1.

This large deviation result has been refined in [9], where it is shown that, for regularly varying convex random compact
sets with integrable norm (so α � 1),

γnP(Sn ∈ λnU + nEξ1) → μ(U ), (2)

where λn grows slower than in (1) and Eξ1 is the expectation of ξ1, see [10, Sec. 2.1]. The method of the proof is based on
the embedding argument combined with a use of classical large deviation results from [11] and [6].

The setting of random compact sets can be considered as a special case of random elements in convex cones (also
called conlinear spaces), being semigroups with a scaling operation by positive reals, see [3]. A simple example is the
cone of positive numbers with the maximum operation. It should be noted that in that case the embedding argument
is not applicable any longer, so one has to prove the corresponding results in the cone without using any centering or
symmetrization arguments.

In this paper, we generalize the above mentioned results from [8] and [9] for heavy-tailed random elements in convex
cones. While the general scheme of our proofs follows the lines of the proofs from [8] and [9], it requires extra care caused
by the impossibility to use the embedding device. In particular, this concerns our generalization of (2), since there is no
generally consistent definition of the expectation in convex cones.

2. Regularly varying random elements in cones

A Borel function f : (c,∞) �→ (0,∞) for some c > 0 is said to be regularly varying (at infinity) with index ρ if

f (λx)/ f (x) → λρ as x → ∞
for all λ > 0, see e.g. [2]. If ρ = 0, then f is called slowly varying and usually denoted by the letter � instead of f . Any
regularly varying function f with index ρ has a representation f (x) = xρ�(x) for a slowly varying function �. We write
f ∼ g as a shorthand for f (x)/g(x) → 1 as x → ∞.

Theorem 2.1 (Karamata). (See Th. 1.5.11 [2].) If f is regularly varying with index ρ and locally bounded on [a,∞), then

(i) for any β � −(ρ + 1),

lim
x→∞

xβ+1 f (x)∫ x
a tβ f (t)dt

= β + ρ + 1;

(ii) for any β < −(ρ + 1) (and for β = −(ρ + 1) if
∫ ∞

a t−(ρ+1) f (t)dt < ∞),

lim
x→∞

xβ+1 f (x)∫ ∞
x tβ f (t)dt

= −(β + ρ + 1).

Below we summarize several concepts from [3] concerning general convex cones. A convex cone K is a topological
semigroup with neutral element e and an extra operation x �→ ax of scaling x ∈ K by a positive number a, so that
a(x + y) = ax + ay for all a > 0, x, y ∈ K. It should be noted that we do not require the validity of the second distribu-
tivity law (a + b)x = ax + bx. The second distributivity law holds for the cone of compact sets in R

d with the Minkowski
addition and enables using the embedding argument.

We assume that K is a pointed cone, i.e. ax converges to the cone element 0 called the origin as a ↓ 0 for all x 	= e.
Assume that K is metrized by a homogeneous metric d, i.e. d(ax,ay) = ad(x, y) for all x, y ∈ K and a > 0. The value
‖x‖ = d(x,0) is called the norm of x which in general constitutes an abuse of language since ‖·‖ is not necessarily sub-linear.
Nevertheless, the norm is sub-linear if the metric is sub-invariant, i.e. if d(x +h, x) � d(h,0) = ‖h‖ for all x,h ∈K. A stronger
assumption is the translation-invariance of the metric meaning that d(x + h, y + h) = d(x, y) for all x, y,h ∈ K. In a cone
with sub-invariant metric, 0 = e, see [3, Lemma 2.7].

Furthermore, S= {x ∈ K: ‖x‖ = 1} denotes the unit sphere. For ε > 0,

Aε = {
x ∈K: d(x, A) � ε

}
is the ε-envelope of A ⊂ K, where d(x, A) = infa∈A d(x,a). The Borel σ -algebra on K is denoted by B and used to define
random cone elements ξ as measurable maps from a probability space (Ω,F ,P) to (K,B).

Furthermore, int A, cl A and ∂ A denote the interior, closure and boundary of A ⊂ K. A set A ⊂ K is said to be bounded
away from a point x ∈K if x /∈ cl A. If μ is a measure on B, then A ∈ B is called a μ-continuity set if μ(∂ A) = 0.
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Let M0 be the space of all Borel measures on K
′ = K \ {0} taking finite values on K \ {x ∈ K: ‖x‖ � r} for each r > 0.

By C0 we denote the class of all real-valued bounded continuous functions on K
′ with support bounded away from 0.

A sequence {μn, n � 1} of measures from M0 is said to converge to μ ∈ M0 if∫
f dμn →

∫
f dμ as n → ∞

for all f ∈ C0, equivalently μn(U ) → μ(U ) for all μ-continuity sets U ∈ B bounded away from 0.
The following definition does not rely on the semigroup operation and is available for random elements in metric spaces,

where a scaling by positive real numbers is defined.

Definition 2.1. (See [5].) A random cone element ξ is called regularly varying (at infinity) if there exist a non-null measure
μ ∈ M0 and a sequence {an, n � 1} of positive numbers such that

nP(ξ ∈ an·) → μ(·) in M0 as n → ∞.

The tail measure μ necessarily scales like a power function, i.e. μ(λU ) = λ−αμ(U ) for every λ > 0, all μ-continuous U
bounded away from 0 and α > 0 called the index of regular variation of ξ .

By [5, Th. 3.1], regular variation of ξ implies

P(ξ ∈ t·)
P(‖ξ‖ > t)

→ cμ(·) in M0 as t → ∞ (3)

for some c > 0. It will subsequently be assumed that c = 1 in (3), which is possible by scaling {an}.
By [5, Th. 3.1], ξ is regularly varying with index α > 0 if and only if there exist a finite measure σ (called the spectral

measure) on the unit sphere S and a sequence {ãn} such that

lim
n→∞nP

(‖ξ‖−1ξ ∈ B,‖ξ‖ > rãn
) = σ(B)r−α

for all r > 0 and all Borel B ⊂ S with σ(∂ B) = 0. It holds that ãn ∼ an .
Karamata’s theorem implies the following result.

Corollary 2.2. Let ξ be regularly varying with index α > 0 and let T > 0 and γ > α. Then

E
(‖ξ‖1‖ξ‖�T

)γ = γ

T∫
0

P
(‖ξ‖ > t

)
tγ −1 dt ∼ cT γ P

(‖ξ‖ > T
)

as T → ∞,

where c > 0 denotes a finite constant.

The letter c (also with subscripts) denotes finite, strictly positive constants; its value may change at every occurrence.

3. Large deviations with strong scaling

Consider a sequence {ξn}n�1 of i.i.d. random elements in K
′ and their partial sums

Sn = ξ1 + · · · + ξn, n � 1.

Theorem 3.1. Let ξ, ξ1, . . . be i.i.d. regularly varying random elements with index α > 0, tail measure μ and normalizing sequence
{an} in a convex cone with sub-invariant homogeneous metric d. Let {λn,n � 1} be a sequence such that

(i) λn/an → ∞ if α < 1,
(ii) λn/n → ∞, λn/an → ∞ and (n/λn)E(‖ξ‖1‖ξ‖�λn ) → 0 if α = 1,

(iii) λn/n → ∞ if α > 1.

Then

γnP(Sn ∈ λn·) → μ(·) in M0 as n → ∞,

where γn = (nP(‖ξ‖ > λn))−1 .

The proof closely follows the lines of the proof of [8, Th. 1]. Note that the sequence {λn} grows faster than nmax(1,1/α) .
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Lemma 3.2. In the setting of Theorem 3.1, λ−1
n ‖Sn‖ → 0 in probability.

Proof. The sub-invariance of the metric implies the sub-linearity of the norm, thus it suffices to show that

‖ξ1‖ + · · · + ‖ξn‖
λn

→ 0 in probability. (4)

If α > 1, then E‖ξ‖ < ∞ and the strong law of large numbers with the growth conditions on {λn} provides the result.
Assume 0 < α � 1. By [11, Th. 4.13], (4) holds if (and only if) the following three conditions hold.

(i) nP(‖ξ‖ > λn) → 0. This is the case, since

nP
(‖ξ‖ > λn

) = nP
(‖ξ‖ > an

)P(‖ξ‖ > λn)

P(‖ξ‖ > an)
,

where the first factor converges to one and the fraction converges to zero.
(ii) λ−1

n nE(‖ξ‖1‖ξ‖<λn ) → 0, which follows from Corollary 2.2 in case α < 1, while for α = 1 the convergence is assumed.
(iii) λ−2

n n Var(‖ξ‖1‖ξ‖<λn ) → 0. To confirm this, bound the variance by the second moment and apply Corollary 2.2. �
Proof of Theorem 3.1. Let U ∈ B with U 	= ∅, μ(∂U ) = 0 and 0 /∈ cl U . We start by bounding γnP(Sn ∈ λnU ) from above. For
any ε > 0,

P(Sn ∈ λnU ) = P

(
Sn ∈ λnU ,

n⋃
i=1

{
ξi ∈ λnU ε

}) + P

(
Sn ∈ λnU ,

n⋂
i=1

{
ξi /∈ λnU ε

})

� nP
(
ξ1 ∈ λnU ε

) + P

(
n⋂

i=1

{
d(Sn, ξi) > ελn

})

= I1 + I2,

since Sn ∈ λnU and ξi /∈ λnU ε imply that d(λ−1
n Sn, λ−1

n ξi) > ε so that d(Sn, ξi) > ελn by the homogeneity of d.
By (3), γn I1 → μ(U ε) as n → ∞ for μ-continuity sets U ε with 0 /∈ cl U ε . Note that 0 /∈ cl U ε for sufficiently small ε and

that all but countably many U ε-sets are μ-continuity sets since μ is finite outside any neighborhood of 0. It follows that
μ(U ε) → μ(U ) as ε ↓ 0.

To show that γn I2 → 0 as n → ∞ for every ε > 0, consider for δ > 0 the following events partitioning the probability
space:

D1 =
⋃

1�i< j�n

{‖ξi‖ > δλn, ‖ξ j‖ > δλn
}
,

D2 =
n⋃

i=1

{‖ξi‖ > δλn, ‖ξ j‖ � δλn, j 	= i, j = 1, . . . ,n
}
,

D3 =
{

max
i=1,...,n

‖ξi‖ � δλn

}
.

By the Bonferroni inequality and the independence of the ξi ,

γnP(D1) �
(

n

2

)
P(‖ξ1‖ > δλn)

2

nP(‖ξ‖ > λn)
,

which converges to zero as n → ∞ because of the regular variation property and the growth condition on {λn}.
By the sub-invariance of the metric, d(Sn, ξn) � ‖Sn−1‖. Therefore,

P

(
n⋂

i=1

{
d(Sn, ξi) > ελn

}
, D2

)
�

n∑
i=1

P
(
d(Sn, ξi) > ελn,‖ξi‖ > δλn

)
� nP

(‖Sn−1‖ > ελn
)
P
(‖ξn‖ > δλn

)
which, if multiplied by γn , converges to zero as n → ∞ because of the regular variation of ξ and Lemma 3.2.

Regarding D3, by sub-invariance

P

(
n⋂{

d(Sn, ξi) > ελn
}
, max

i=1,...,n
‖ξi‖ � δλn

)
� P

(
n∑

‖ξi‖1‖ξi‖�δλn > ελn

)
,

i=1 i=1
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which, after centering, becomes

P

(
n∑

i=1

(‖ξi‖1‖ξi‖�δλn − E
(‖ξi‖1‖ξi‖�δλn

))
> ελn − nE

(‖ξ1‖1‖ξ1‖�δλn

))
.

Since nλ−1
n E(‖ξ1‖1‖ξ1‖�δλn ) → 0 (see the proof of Lemma 3.2), the right-hand side of the above inequality may be replaced

by ελn/2.
It remains to show that

γnP

(
n∑

i=1

(‖ξi‖1‖ξi‖�δλn − E
(‖ξi‖1‖ξi‖�δλn

))
> ελn/2

)
→ 0 as n → ∞.

Since each summand

ηi = ‖ξi‖1‖ξi‖�δλn − E
(‖ξi‖1‖ξi‖�δλn

)
is centered and E|ηi |p < ∞ for any p � 2, the Fuk–Nagaev inequality (see e.g. [11, p. 78]) yields that

P

(
n∑

i=1

ηi >
ελn

2

)
� c1n(ελn)

−pE|η1|p + exp

{
− c2(ελn)

2

(n Varη1)

}
= I3,1 + I3,2

for any p � 2 where c1, c2 > 0 are finite constants.
By Corollary 2.2,

E|η1|p � E
(‖ξ1‖1‖ξ1‖�δλn

)p ∼ c(δλn)
pP

(‖ξ1‖ > δλn
)

as n → ∞
for p > α. For p > max{2,α},

lim
δ↓0

lim sup
n→∞

γn I3,1 � c lim
δ↓0

δp lim
n→∞

P(‖ξ1‖ > δλn)

P(‖ξ1‖ > λn)
= c lim

δ↓0
δp−α = 0.

To show that lim supn→∞ γn I3,2 = 0, consider these (disjoint) cases:

(i) If α � 2 and Var ‖ξ1‖ < ∞, then Varη1 < ∞ and the convergence follows.
(ii) If 0 < α < 2, then λ−2

n n Var(‖ξ1‖1‖ξ1‖�δλn ) ∼ cn P(‖ξ‖ > δλn) by Corollary 2.2, which implies the convergence.
(iii) If α = 2 and Var ‖ξ‖ = ∞, then λ2

nP(‖ξ‖ > λn) and Var(‖ξ‖1‖ξ‖�δλn ) are both slowly varying functions of λn . Because
λn/n → ∞, the convergence follows.

Thus lim supn→∞ γn I3,2 = 0. Hence

lim sup
n→∞

γnP(Sn ∈ λnU ) � μ
(
U ε

) → μ(U ) as ε ↓ 0

for any U bounded away from 0, establishing the upper bound.
For the lower bound, let U ∈ B now denote a μ-continuity set bounded away from 0 with nonempty interior. The set

U−ε = ((U c)ε)c is bounded away from 0, is a μ-continuity set for all but countably many ε and int(U−ε) is nonempty for
sufficiently small ε.

Writing S 	=i
n = ∑n

j=1, j 	=i ξ j for i = 1, . . . ,n, we see that

P(Sn ∈ λnU ) � P

(
Sn ∈ λnU ,

n⋃
i=1

{
ξi ∈ λnU−ε

})

� P

(
n⋃

i=1

{
d(Sn, ξi) < ελn, ξi ∈ λnU−ε

})

� P

(
n⋃

i=1

{∥∥S 	=i
n

∥∥ < ελn, ξi ∈ λnU−ε
})

� nP
(∥∥S 	=1

n

∥∥ < ελn
)
P
(
ξ1 ∈ λnU−ε

) −
(

n

2

)
P
(
ξ1 ∈ λnU−ε

)2

= J1 − J2,

where the second inequality holds because d(Sn, ξi) < ελn and ξi ∈ λnU−ε imply that λ−1
n Sn ∈ (U−ε)ε ⊂ U . The third in-

equality is implied by the sub-invariance of the metric.
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By Lemma 3.2, P(‖S 	=1
n ‖ < ελn) → 1 as n → ∞ and

lim inf
n→∞ γn J1 � lim

n→∞
P(ξ1 ∈ λnU−ε)

P(‖ξ‖ > λn)
= μ

(
U−ε

)
which converges to μ(U ) as ε ↓ 0. Finally,

lim sup
n→∞

γn J2 � c lim
n→∞nP

(
ξ1 ∈ λnU−ε

) = 0,

which establishes the lower bound and finishes the proof. �
4. Moderate scaling

Theorem 3.1 requires that the normalizing sequence {λn} grows faster than n in case α � 1. If λn grows slower than n,
but faster than nmax(1/α,1/2) , then the large deviation result holds with an extra additive normalization. Care is required
however, since the addition operation in general cones is not invertible and the expectation is not well defined.

Theorem 4.1. Let ξ, ξ1, . . . be i.i.d. regularly varying random elements with index α � 1 and tail measure μ in a convex cone K′ with
a homogeneous sub-invariant metric d. Assume that E‖ξ‖ is finite and there exists a sequence {An,n � 1} of cone elements such that

λ−1
n Ed(Sn, An) → 0 as n → ∞, (5)

where λn/nmax{1/α,1/2}+η → ∞ for some η > 0. If

(A) An = e for all n, or (B) the metric d is invariant

then, with γn = (nP(‖ξ‖ > λn))−1 ,

γnP(Sn ∈ λn · +An) → μ(·) in M0 as n → ∞.

The following result known in the setting of Banach spaces (see [7, Lemma 6.16]) extends to general semigroups and
will be used to prove Theorem 4.1.

Let ζ1, . . . , ζn be integrable random elements in a semigroup K with sub-invariant metric d. For i � n write Ai =
σ(ζ1, . . . , ζi) and let A0 denote the trivial sigma-algebra. Write S 	=i

n = ∑n
j=1, j 	=i ζ j for i � n. Let z be any fixed cone el-

ement and define

di = E
(
d(Sn, z)

∣∣ Ai
) − E

(
d(Sn, z) | Ai−1

)
, i = 1, . . . ,n.

Then d1, . . . ,dn is a real-valued martingale difference sequence and
∑n

i=1 di = d(Sn, z) − Ed(Sn, z) almost surely.

Lemma 4.2. Let ζ1, . . . , ζn be independent. Then

|di| � ‖ζi‖ + E‖ζi‖
almost surely for every i = 1, . . . ,n.

Proof. Since S 	=i
n is independent of ζi ,

di = E
(
d(Sn, z)

∣∣ Ai
) − E

(
d(Sn, z)

∣∣ Ai−1
) + E

(
d
(

S 	=i
n , z

) ∣∣ Ai−1
) − E

(
d
(

S 	=i
n , z

) ∣∣ Ai
)

= E
(
d(Sn, z) − d

(
S 	=i

n , z
) ∣∣ Ai

) − E
(
d(Sn, z) − d

(
S 	=i

n , z
) ∣∣ Ai−1

)
,

where the equalities hold almost surely. The sub-invariance property yields that d(Sn, z) − d(S 	=i
n , z) � d(Sn, S 	=i

n ) � ‖ζi‖,
giving the result. �
Proof of Theorem 4.1. We start with an upper bound. Let ε > 0 and U ∈ B be a nonempty μ-continuity set bounded away
from 0. Then

P(Sn ∈ λnU + An) = P

(
Sn ∈ λnU + An,

n⋃
i=1

{
ξi ∈ λnU ε

}) + P

(
Sn ∈ λnU + An,

n⋂
i=1

{
ξi /∈ λnU ε

})

� nP
(
ξ1 ∈ λnU ε

) + P

(
Sn ∈ λnU + An,

n⋂
i=1

{
ξi /∈ λnU ε

})

= I1 + I2.
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As in the proof of Theorem 3.1, using (3) and the μ-continuity of U ,

μ(U ) � lim
ε↓0

lim inf
n→∞ γn I1 � lim

ε↓0
lim sup

n→∞
γn I1 = μ(U ).

Now fix 0 < δ � ε/3 and partition Ω into

D1 =
n⋃

i=1

{‖ξi‖ > δλn} and D2 =
{

max
i=1,...,n

‖ξi‖ � δλn

}
.

Starting with D1, we see that

P

(
Sn ∈ λnU + An,

n⋂
k=1

{
ξk /∈ λnU ε

}
, D1

)
� nP

(
Sn ∈ λnU + An, ξ1 /∈ λnU ε,‖ξ1‖ > δλn

)
� nP

(
d(ξ2 + · · · + ξn, An) > ελn,‖ξ1‖ > δλn

)
.

To justify the last step, define the event

C = {
Sn ∈ λnU + An, ξ1 /∈ λnU ε

}
.

If (A) holds, C = {λ−1
n Sn ∈ U , λ−1

n ξ1 /∈ U ε} so that d(Sn, ξ1) > ελn by the homogeneity of d. Now d(Sn, ξ1) � d(ξ2 + · · · +
ξn, An) by the sub-invariance.

If (B) holds, ξ1 /∈ λnU ε if and only if ξ1 + An /∈ λnU ε + An so that

C = {
Sn ∈ λnU + An, ξ1 + An /∈ λnU ε + An

}
,

implying that d(Sn, ξ1 + An) > ελn . Now apply the invariance of d again.
By independence of the ξi ,

γnnP
(
d(ξ2 + · · · + ξn, An) > ελn,‖ξ1‖ > δλn

) = P
(
λ−1

n d(ξ2 + · · · + ξn, An) > ε
)P(‖ξ1‖ > δλn)

P(‖ξ‖ > λn)
.

The fraction in the right-hand side converges to δ−α as n → ∞. The first factor converges to zero, since

λ−1
n d

(
S 	=1

n , An
)
� λ−1

n ‖ξ1‖ + λ−1
n d(Sn, An)

converges to zero in probability because λ−1
n ‖ξ1‖ → 0 in probability and (5) implies that λ−1

n d(Sn, An) → 0 in probability.
By the same reasoning as for D1, for D2 we get

P

(
Sn ∈ λnU + An,

n⋂
k=1

{
ξk /∈ λnU ε

}
, D2

)
� P

(
d(ξ2 + · · · + ξn, An) > ελn, D2

)
.

Since d(S 	=1
n , An) � d(S 	=1

n , Sn) + d(Sn, An) and d(S 	=1
n , Sn) � ‖ξ1‖ the sub-invariance property yields that

P
(

d
(

S 	=1
n , An

)
> ελn, max

i=1,...,n
‖ξi‖ � δλn

)
� P

(
d(Sn, An) > ελn/2, max

i=1,...,n
‖ξi‖ � δλn

)
� P

(
d(Sn, An) > ελn/2, max

i=1,...,n
d(ξi, A1) � 2δλn

)
for sufficiently large n. The latter inequality holds since d(ξi, A1) � ‖ξi‖ + ‖A1‖ and δλn eventually exceeds ‖A1‖. Defining

ξδ
i =

{
ξi, d(ξi, A1) � 2δλn,

e, d(ξi, A1) > 2δλn,
i = 1, . . . ,n

and Sδ
n = ξδ

1 +· · ·+ ξδ
n , we see that it suffices to show that, for δ sufficiently small, γnP(d(Sδ

n, An) > ελn) → 0 as n → ∞. For
this, show that Ed(Sδ

n, An) � ελn/2 for sufficiently large n.
By the triangle inequality,

λ−1
n Ed

(
Sδ

n, An
)
� λ−1

n Ed
(

Sδ
n, Sn

) + λ−1
n Ed(Sn, An),

where the last term converges to zero as n → ∞ by (5). To show that also λ−1
n Ed(Sδ

n, Sn) → 0 as n → ∞ for fixed δ, let
I(n) = {1 � i � n: d(ξi, A1) > 2δλn}, so that

d
(

Sδ
n, Sn

)
�

∥∥∥∥ ∑
i∈I(n)

ξi

∥∥∥∥
by sub-invariance.
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If α = 1, λ−1
n E‖∑

i∈I(n) ξi‖ � λ−1
n nE‖ξ1‖, which converges to zero. In case α > 1, we have to show that

λ−1
n nE

(‖ξ1‖1d(ξ1,A1)>2δλn

) → 0 as n → ∞.

Since d(ξ1, A1) � ‖ξ1‖ − ‖A1‖, it suffices that λ−1
n nE(‖ξ1‖1‖ξ1‖>3δλn ) converges to 0, which follows from Corollary 2.2 and

the growth rate of {λn}.
Now we assume that n is so large that Ed(Sδ

n, An) � ελn/2. Then

P
(
d
(

Sδ
n, An

)
> ελn

)
� P

(
d
(

Sδ
n, An

) − Ed
(

Sδ
n, An

)
> ελn/2

)
.

Note that d(Sδ
n, An) − Ed(Sδ

n, An) is almost surely equal to
∑n

i=1 di with di = E(d(Sδ
n, An) | Ai) − E(d(Sδ

n, An) | Ai−1).
Lemma 4.2 (applied for ζi = ξδ

i and z = An) yields that |di | � ‖ξδ
i ‖ + E‖ξδ

i ‖, which is almost surely smaller than 6δλn

for sufficiently large n.
A martingale version of Bennett’s inequality [7, Eq. (6.13)] for the martingale difference sequence d1, . . . ,dn yields that

P
(
d
(

Sδ
n, An

) − Ed
(

Sδ
n, An

)
> ελn/2

)
� 2 exp

{
ε

12δ
−

(
ε

12δ
+ b

144δ2λ2
n

)
log

(
1 + 6δελ2

n

b

)}

for any b � 4nE‖ξδ
1 ‖2 �

∑n
i=1 Ed2

i .
In case α � 2 and E‖ξ‖2 < ∞, we choose b = 4nE‖ξ‖2. In case 1 � α � 2 and E‖ξ‖2 is infinite, we choose b = 8n(‖A1‖2 +

E‖ξδ
1‖21d(ξ1,A1)�2δλn ). Using the regular variation of ‖ξ‖, we see that in both cases the growth conditions on {λn} provide

that for all δ > 0 small enough,

γnP
(
d
(

Sδ
n, An

) − Ed
(

Sδ
n, An

)
> ελn/2

) → 0 as n → ∞.

This establishes the upper bound.
For the lower bound, we let U ∈ B again be a μ-continuity set bounded away from 0 with nonempty interior and write

P(Sn ∈ λnU + An) � P

(
Sn ∈ λnU + An,

n⋃
i=1

{
ξi ∈ λnU−ε

})

= P
(∪n

i=1

{
ξi ∈ λnU−ε

}) − P

(
Sn /∈ λnU + An,

n⋃
i=1

{
ξi ∈ λnU−ε

})

= I1 − I2.

To show that limε↓0 lim supn→∞ γn I2 = 0, first note that

P

(
Sn /∈ λnU + An,

n⋃
i=1

{
ξi ∈ λnU−ε

})
� nP

(
Sn /∈ λnU + An, ξ1 ∈ λnU−ε

)
.

Now Sn /∈ λnU + An, ξ1 ∈ λnU−ε implies that d(S 	=1
n , An) > ελn , by separately considering cases (A) and (B) as above. Then

the same arguments as in the upper bound part of the proof apply.
It remains to show that lim supn→∞ γn I1 � μ(U−ε). By a Bonferroni argument,

γn I1 � P(ξ1 ∈ λnU−ε)

P(‖ξ1‖ > λn)
− n − 1

2

P(ξ1 ∈ λnU−ε)2

P(‖ξ1‖ > λn)
.

By choosing ε sufficiently small (such that U−ε is a μ-continuity set bounded away from 0), we may apply (3) and conclude
that the lim sup of the positive summand converges to μ(U−ε). The upper limit of the second term is zero because λn/an →
∞. Letting ε → 0 establishes the lower bound. �

A convex cone with metric d is said to be isometrically embeddable in a Banach space (B,‖ · ‖B) if there exists a measur-
able map I :K → B such that I(x + y) = I(x) + I(y) and d(x, y) = ‖I(x) − I(y)‖B for all x, y ∈K. If the second distributivity
law in K holds, this is always possible and then I becomes a linear map, i.e. I(ax) = aI(x) for all a > 0.

By [7, Prop. 9.11], a Banach space B of (Rademacher) type p ∈ [1,2] has the property that for every finite sequence
X1, . . . , Xn of independent mean zero p-integrable Radon random variables in B,

E

∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
p

B

� (2c)p
n∑

i=1

E‖Xi‖p
B
. (6)

If ξ is a random element in K with E‖ξ‖ < ∞, then I(ξ) is a random element in B which is strongly integrable with
expectation EI(ξ).
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Corollary 4.3. Let ξ, ξ1, . . . be i.i.d. regularly varying random elements with index α � 1 and tail measure μ in a convex cone K which
is isometrically embeddable by I : K → B in a separable Banach space B of type min(α,2). Assume that E‖ξ‖min(α,2) is finite and
I(An) = nEI(ξ), n � 1, for some cone elements {An,n � 1}. Then (5) holds, and so the statement of Theorem 4.1 follows.

Proof. Note that the existence of the embedding implies that the metric d is invariant. If S̃n = I(Sn) − nEI(ξ), then

Ed(Sn, An) = E‖ S̃n‖B.

Since B is a Banach space of type min(α,2) and each summand Xi = I(ξi) − EI(ξ), i = 1, . . . ,n, is centered and Radon by
the separability of B, it holds that

E‖ S̃n‖min(α,2)
B

� cnE‖X1‖min(α,2)
B

for some finite c by (6). Further

sup
n

n−1E‖ S̃n‖min(α,2)
B

< ∞.

By Jensen’s inequality,

sup
n

n−1/ min(α,2)+ηE‖ S̃n‖B → 0

for any η > 0, so that (5) holds. �
5. Examples

Example 5.1 (Half-line with maximum). Let K = [0,∞) with the semigroup operation x + y = max{x, y} and the usual mul-
tiplication, so that Sn = max{ξ1, . . . , ξn}. The metric d(x, y) = |x − y| is homogeneous and sub-invariant, and e = 0 = 0.
Regularly varying random elements are precisely the non-negative random variables with regularly varying right tail of in-
dex α > 0, so their distributions are in the maximum domain of attraction of the Fréchet distribution and an = n1/α�(n) for
some slowly varying function �. Thus, Theorem 3.1 applies.

Since the metric is not invariant, condition (A) in Theorem 4.1 is imposed, i.e. An = 0 for all n. Condition (5) requires that
λ−1

n E max{ξ1, . . . , ξn} → 0. If α = 1, it follows from the law of large numbers, since max{ξ1, . . . , ξn}/λn � (ξ1 +· · ·+ ξn)/n1+η

and Eξ1 < ∞. In case α > 1, we can use the fact that ξα−ε
1 is integrable for any ε > 0. Since α − ε � 1 for sufficiently small

ε > 0, Jensen’s inequality yields that

n−1−η′(
E max(ξ1, . . . , ξn)

)α−ε → 0

for each η′ > 0 and it remains to choose η′ and ε > 0 such that (1 + η′)/(α − ε) � 1/α + η.

Example 5.2 (Compact sets in R
m). The cone of compact sets in the Euclidean space with the Minkowski addition metrized

by the Hausdorff metric falls into the scheme of Theorem 3.1. This case is considered in [8].

Example 5.3 (Compact convex sets in R
m). Let K consist of nonempty compact convex sets in R

m , equipped with Minkowski
addition and the usual scaling. The support function of the set X is denoted by hX (u) for u from the unit sphere S

m−1 in
R

m . The Hausdorff distance between compact convex sets equals the uniform distance between their support functions, so
it is possible to embed K into the Banach space of continuous functions on the unit sphere. This argument has been used
in [9] to derive large deviation results for random convex compact sets with integrable norm, which is also a special case
of Theorem 4.1.

However, it is possible to get rid of condition (5) by considering another metric for convex compact sets. For p ∈ [1,∞),
define the distance between convex compact sets X and Y using the L p-distance between their support functions as

dp(X, Y ) =
( ∫
Sm−1

∣∣hX (u) − hY (u)
∣∣p

du

)1/p

,

see also [12]. Note that dp is homogeneous and invariant and the support function provides an isometric embedding of K
into the space B = Lp(Sm−1). Since B is a separable Banach space of type min(p,2), Corollary 4.3 applies and condition (5)
is not needed.

Example 5.4 (Functions with argument rescaling). Let K consist of continuous functions f : R+ →R such that
∫ ∞

0 xf (x)2 dx <

∞, i.e. f ∈ L2(R+,μ), where μ(dx) = x dx. The addition is defined pointwisely (so e is the zero function) and the cone
multiplication · is defined as
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(a · f )(x) = f

(
x

a

)

for a > 0. The metric

d( f , g) =
( ∞∫

0

x
(

f (x) − g(x)
)2

dx

)1/2

is invariant and homogeneous, and K is isometrically embeddable into the space B = L2(R+,μ) of type 2. Note however
that the scaling in K differs from the scaling in B. Thus, Theorem 3.1 applies and also (5) in Theorem 4.1 holds, see
Corollary 4.3.

In order to construct an example of a regularly varying function in K
′ , take any random function η from K with ‖η‖ = 1

a.s. and define

ξ(x) = (ζ · η)(x) = η
(
ζ−1x

)
, x � 0,

for a non-negative and independent of η random variable ζ with regularly varying tail with index α � 1. Then ‖ξ‖ = ζ and
‖ξ‖−1 · ξ = η a.s. and

nP
(‖ξ‖−1 · ξ ∈ B,‖ξ‖ > anr

) = nP(η ∈ B)P(ζ > anr) → σ(B)r−α

as n → ∞, where an is the normalizing sequence associated to ζ , so that ξ is indeed regularly varying in K.
The condition E‖ξ‖ < ∞ in Theorem 4.1 means that Eζ < ∞. We define An(x) = nEξ(x) for all x. Condition (5) holds in

case Eζ min(α,2) < ∞ by Corollary 4.3.

A number of further examples fall into the scope of the proved large deviation theorems. They include the cone of
compact sets with the union operation and the Hausdorff metric, and the cone of integrable probability measures with the
convolution operation and rescaling of the argument and the Wasserstein metric, see [3, Sec. 8] for these examples in view
of the stability properties.
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