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In recent years, Radon-type transforms that integrate functions over various sets
of ellipses/ellipsoids have been considered in synthetic aperture radar, ultrasound
reflection tomography, and radio tomography. In this paper, we consider the
transform that integrates a given function in R

n over a set of solid ellipses (when
n = 2) or solid ellipsoids of rotation (when n � 3) with a fixed eccentricity and foci
restricted to a hyperplane. Inversion formulas are obtained for appropriate classes
of functions that are even with respect to the hyperplane. Stability estimates and
local uniqueness results are also provided.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Radon-type transforms that integrate functions over various sets of ellipses/ellipsoids have been arising
in the recent decade, due to studies in Synthetic Aperture Radar (SAR) [2,4,8,9], Ultrasound Reflection
Tomography (URT) [7,1], and radio tomography [15–17]. In particular, radio tomography is a new imag-
ing method, which uses a wireless network of radio transmitters and receivers to image the distribution of
attenuation within the network. The usage of radio frequencies brings in significant non-line-of-sight prop-
agation, since waves propagate along many paths from a transmitter to a receiver. Given a transmitter and
a receiver, wave paths observed for a given duration are all contained in an ellipsoid with foci at these two
devices. It was thus suggested in [15–17] to approximate the obtained signal by the volume integral of the
attenuation over this ellipsoid, which is the model we study in this article.

Due to these applications, there have been several papers devoted to such “elliptical Radon transform.”
The family of ellipses with one focus fixed at the origin and the other one moving along a given line was
considered in [9]. In the same paper, the family of ellipses with a fixed focal distance was also studied. The
authors of [7,1] dealt with the case of circular acquisition, when the two foci of ellipses with a given focal
distance are located on a given circle. A family of ellipses with two moving foci was also handled in [4].
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In all these works, however, the ellipses have varying eccentricity, the ratio of the major axis to the focal
distance. Also, their data were the line integrals of the function over ellipses rather than area integrals.
The radio tomography application makes it interesting to consider integrals over solid ellipsoids. In this
article, we consider the volume integrals of an unknown attenuation function over the family of ellipsoids
of rotation in R

n with a fixed eccentricity and two foci located in a given hyperplane. We thus reserve the
name elliptical Radon transform REf for the volume integral of a function f over this family of ellipsoids.
(When n = 2, the elliptical Radon transform REf is the area integrals of a function over the family of
ellipses with a fixed eccentricity and two foci located in a line.)

The volume integral of a function f(x) over an ellipsoid (or an ellipse for n = 2) of the described type
is equal to zero if the function is odd with respect to the chosen hyperplane. If the hyperplane is given by
xn = 0, we thus assume the function f : Rn → R to be even with respect to xn: f(x′, xn) = f(x′,−xn)
where x = (x′, xn) ∈ R

n−1 × R.
Given a Radon-type transform, one is usually interested, among others, in the following questions: inver-

sion formulas, uniqueness for a local data problem, and a stability estimate [10,11]. These are the issues we
address below.

The problem is stated precisely in Section 2. Two inversion formulas are presented in Sections 3 and 4.
Analogue of the Fourier slice theorem is obtained in Section 3 by taking the Fourier transform with respect
to the center and a radial Fourier transform with respect to the half distance between two foci. This theorem
plays a critical role in getting a stability estimate. The formula discussed in Section 4 is obtained by taking
a Fourier type transform and needs less integration than the previous one in Section 3. A stability estimate
is handled in Section 5. Section 6 is devoted to uniqueness for a local data problem.

2. Formulation of the problem

We consider all solid ellipses (when n = 2) or solid ellipsoids of rotation (when n � 3) in R
n with

a fixed eccentricity 1/λ, where λ > 1 and foci located in the hyperplane xn = 0. We will identify this
hyperplane with R

n−1. While a function f depends on n parameters, the set of such ellipsoids depends on
2n− 2 parameters. This means that when n � 3, the problem of inverting the elliptical Radon transform is
n− 2-dimensions overdetermined. To reduce the overdeterminacy, we require that the focal axis is parallel
to a given line, for instance, the x1 coordinate axis. When n = 2, i.e., integral domain is an ellipse, there is
no overdeterminacy and the focal axis is automatically parallel because the hyperplane is the line.

Let u ∈ R
n−1 be the center of such an ellipse/ellipsoid and let t > 0 be the half of the focal distance. We

denote this ellipse/ellipsoid by Eu,t. Then, the foci are

c1 = (u1 + t, u2, . . . , un−1, 0) and c2 = (u1 − t, u2, . . . , un−1, 0)

and the points x ∈ Eu,t are described as follows:

(x1 − u1)2

λ2 + (x2 − u2)2

λ2 − 1 + · · · + x2
n

λ2 − 1 � t2.

To shorten the formulas, we are going to use the following notation:

ν :=
√
λ2 − 1.

The elliptical Radon transform RE maps a locally integrable function f(x) into its integrals over the solid
ellipses/ellipsoids Eu,t for all u ∈ R

n−1 and t > 0:

REf(u, t) =
∫

Eu,t

f(x) dx.

Our goals are to reconstruct f from REf and to study properties of this transform.
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3. Inversion of the elliptical Radon transform

In this section, we assume f ∈ C∞
c (Rn). Here is our strategy. First of all, we change the ellipse area

or ellipsoid volume integral to the ellipse line or ellipsoid surface integral, differentiating with respect to t.
Second, we take the Fourier transform of this derivative of REf with respect to u. Next, taking a radial
Fourier transform with respect to t, we obtain an analogue of the Fourier slice theorem (see [10–12]).

We introduce a back projection operator R∗
E for g(u, t) ∈ C∞

c (Rn−1 × R+) as

R∗
Eg(x) =

∫
Rn−1

g

(
u,

√
|u1 − x1|2

λ2 + |ũ− x̃|2
ν2 + x2

n

ν2

)
du, (1)

where u = (u1, ũ) ∈ R
n−1 and x = (x1, x̃, xn) ∈ R

n. In fact, R∗
Eg(x) is the dual transform not to REf(u, t),

but rather to ∂
∂tREf(u, t), i.e.,

∞∫
0

∫
Rn−1

∂

∂t
REf(u, t)g(u, t) du dt =

∫
Rn

f(x)R∗
Eg(x) dx. (2)

Let χS denote the characteristic function of a set S ⊂ R
n:

χS(x) =
{

1 if x ∈ S,

0 otherwise.

Then the elliptical Radon transform can be written as

REf(u, t) =
∫
Rn

χEu,t
f(x) dx = C(λ)

∫
Rn

χ|x|<tf(λx1 + u1, νx̃ + ũ, νxn) dx

= C(λ)
t∫

0

rn−1
∫

Sn−1

f(λry1 + u1, νrỹ + ũ, νryn) dσ(y) dr, (3)

where C(λ) = λνn−1 and σ(y) is the surface measure on Sn−1.
Formula (3) can be simplified by differentiation with respect to t and division by tn−1, which yields

1
tn−1

∂

∂t
REf(u, t) = C(λ)

∫
|y|=1

f(λty1 + u1, νtỹ + ũ, νtyn) dσ(y)

= 2C(λ)
∫

|y′|�1

f
(
u + (tλy1, tνỹ), tν

√
1 − |y′|2

) dy′√
1 − |y′|2

, (4)

where y′ = (y1, ỹ) ∈ R
n−1.

It is easy to check that RE is invariant under the shift with respect to the first n− 1 variables. That is,
if fa(x) := f(x′ + a, xn) for x = (x′, xn) ∈ R

n−1 × R and a ∈ R
n−1, we have

(REfa)(u, t) = (REf)(u + a, t).

Thus, application of the (n−1)-dimensional Fourier transform with respect to the center u seems reasonable.
Doing this and changing the variable y′ ∈ R

n−1 to the polar coordinates (θ, s) ∈ Sn−2 × [0,∞), we get
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1
tn−1

∂

∂t
Fn−1(REf)

(
ξ′, t

)
= 2C(λ)

1∫
0

sn−2
√

1 − s2
Fn−1f

(
ξ′, tν

√
1 − s2

) ∫
Sn−2

eits(λθ1,νθ̃)·ξ
′
dθ ds,

where Fn−1(REf) and Fn−1f are the Fourier transforms of REf and f with respect to the first n − 1
coordinates x′ of x and u of (u, t), respectively, and θ = (θ1, θ̃) ∈ Sn−2.

To compute the inner integral, we use the known identity [3,6]∫
Sn−2

eiξ
′·θ dθ = (2π)(n−1)/2∣∣ξ′∣∣(3−n)/2

J(n−3)/2
(∣∣ξ′∣∣).

We thus get

1
tn−1

∂

∂t
Fn−1(REf)

(
ξ1
λ
,
ξ̃

ν
, t

)

= ωn

1∫
0

sn−2
√

1 − s2
Fn−1f

(
ξ1
λ
,
ξ̃

ν
, tν

√
1 − s2

)(
ts
∣∣ξ′∣∣)(3−n)/2

J(n−3)/2
(
ts
∣∣ξ′∣∣) ds,

where ξ′ = (ξ1, ξ̃) ∈ R× R
n−2 and ωn = 2(2π)(n−1)/2C(λ).

This enables us to get an analogue of the Fourier slice theorem.

Theorem 1. For a function f ∈ C∞
c (Rn) that is even with respect to xn, the following formula holds:

Fnf(ξ) = |(λξ1, νξ̃, νξn)|n−2|νξn|
2n+1πnC(λ)2 Fn

(
R∗

E

1
tn−1

∂

∂t
REf

)
(ξ), (5)

where Fnf is the n-dimensional Fourier transform of f .

Proof. Let us denote the radial Fourier transform by Hnf(ρ), i.e.,

Hnf(ρ) := ρ1−n/2
∞∫
0

tn/2J(n−2)/2(tρ)f(t) dt.

We recall that if f is a radial function on R
n, then the Fourier transform Fnf of f is also radial and

Fnf = (2π)n/2Hnf0 where f0(|x|) = f(x) (cf. [14]). Taking this transform of 1
tn−1

∂
∂tFn−1(REf) as a

function of t, we have for ξ′ = (ξ1, ξ̃) ∈ R
n−1,

Hn

(
1

tn−1
∂

∂t
Fn−1(REf)

)(
ξ1
λ
,
ξ̃

ν
, ρ

)

= ωnρ
1−n/2

∞∫
0

1∫
0

t
n
2 Jn−2

2
(tρ)

(
s
∣∣ξ′∣∣) 3−n

2 Jn−3
2

(
ts
∣∣ξ′∣∣)Fn−1f

(
ξ1
λ
,
ξ̃

ν
, tν

√
1 − s2

)
sn−2 ds dt√

1 − s2
. (6)

It is known [5, p. 59 (18) vol. 2 or for n = 2, p. 55 (35) vol. 1] that for a > 0, β > 0, and, μ > ν > −1,

∞∫
0

xν+1/2(x2 + β2)−1/2μ
Jμ

(
a
(
x2 + β2)1/2)Jν(xy)(xy)1/2 dx

=
{

a−μyν+1/2β−μ+ν+1(a2 − y2)1/2μ−1/2ν−1/2Jμ−ν−1(β(a2 − y2)1/2) if 0 < y < a,

0 if a < y < ∞.
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To use the above identity, we make the change of variables (s, t) → (x, β), where t =
√

x2 + β2 and
s = x/

√
x2 + β2 in Eq. (6), which gives

Hn

(
1

tn−1
∂

∂t
Fn−1(REf)

)(
ξ1
λ
,
ξ̃

ν
, ρ

)

= ωnρ
2−n

2
∣∣ξ′∣∣ 3−n

2

∞∫
0

∞∫
0

|x|Jn−2
2

(
ρ
(
x2 + β2) 1

2
)(
x2 + β2)−n−2

4 Jn−3
2

(
x
∣∣ξ′∣∣)Fn−1f

(
ξ1
λ
,
ξ̃

ν
, νβ

)
dx dβ

=
{

C(λ)2n/2+1πn/2ρ2−n√
ρ2−|ξ′|2

∫∞
0 Fn−1f( ξ1λ , ξ̃

ν , βν) cos(β
√

ρ2 − |ξ′|2) dβ if |ξ′| < ρ,

0 otherwise.
(7)

Substituting ρ = |ξ| = |(ξ′, ξn)| yields

Hn

(
1

tn−1
∂

∂t
Fn−1(REf)

)(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
= C(λ)2(2π)n/2|ξ|2−n

|ξn|

∞∫
0

Fn−1f

(
ξ1
λ
,
ξ̃

ν
, βν

)
cos(ξnβ) dβ.

Since f is even with respect to xn, the last integral is the Fourier transform of f with respect to xn, so we
get

Hn

(
1

tn−1
∂

∂t
Fn−1(REf)

)(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
= 2(2π)n/2|ξ|2−n

|ξn|
λνn−2Fnf

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
. (8)

Taking the Fourier transform of R∗
Eg with respect to x yields

Fn

(
R∗

Eg
)(ξ1

λ
,
ξ̃

ν
,
ξn
ν

)
=

∫
Rn

e−ix·( ξ1
λ , ξ̃ν , ξnν )R∗

Eg(x) dx

=
∫
Rn

e−ix·( ξ1
λ , ξ̃ν , ξnν )

∫
Rn−1

g

(
u,

√
|u1 − x1|2

λ2 + |ũ− x̃|2
ν2 + x2

n

ν2

)
du dx

=
∫

Rn−1

e−iu·( ξ1
λ , ξ̃ν )

∫
Rn

e−i(x′−u,xn)·( ξ1
λ , ξ̃ν , ξnν )g

(
u,

√
|u1 − x1|2

λ2 + |ũ− x̃|2
ν2 + x2

n

ν2

)
dx du

= C(λ)
∫

Rn−1

e−iu·( ξ1
λ , ξ̃ν )

∫
Rn

e−ix·ξg
(
u, |x|

)
dx du

= (2π)n/2C(λ)
∫

Rn−1

e−iu·( ξ1
λ , ξ̃ν )(Hng(u, ·)

)(
|ξ|

)
du

= (2π)n/2C(λ)HnFn−1g

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
, (9)

where x = (x′, xn) = (x1, x̃, xn) ∈ R
n, u = (u1, x̃) ∈ R

n−1 and ξ = (ξ′, ξn) = (ξ1, ξ̃, ξn) ∈ R
n. Combining

Eq. (8) and Eq. (9), we get Eq. (5). �
Remark 2. Theorem 1 leads naturally to a Fourier type inversion formula for even functions, if one supple-
ments Eq. (5) with the inverse Fourier transform.

One can also obtain a useful relation with a convolution.
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Proposition 3. Let φ ∈ C∞
c (Rn−1 × [0,∞)) and f ∈ C∞

c (Rn) be even with respect to xn. If ψ = R∗
Eφ and

g = 1
tn−1

∂
∂tREf , then we have

g ∗ φ = 1
C(λ)tn−1

∂

∂t
RE(f ∗ ψ),

where

g ∗ φ
(
u, |ω|

)
=

∫
Rn

∫
Rn−1

g
(
u− u′,

∣∣ω − ω′∣∣)φ(u′,
∣∣ω′∣∣) du′ dω′.

Proof. Note that since (2π)n/2Hnf0 = Fnf for a radial function f on R
n and f0(|x|) = f(x), we get

Hn(f ∗ g) = (2π)n/2HnfHng. Taking the Fourier transform of g ∗ φ with respect to u and Hn with respect
to t, we get

HnFn−1(g ∗ φ)
(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
= (2π)n/2HnFn−1g

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
HnFn−1φ

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)

= 1
C(λ)HnFn−1g

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
Fnψ

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
.

In the last line we used Eq. (9). Eq. (8) implies

HnFn−1(g ∗ φ)
(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
= 2n/2+1πn/2|ξ|2−nνn−2λ

C(λ)|ξn|
Fnf

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)
Fnψ

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)

= 2n/2+1πn/2|ξ|2−nνn−2λ

C(λ)|ξn|
Fn(f ∗ φ)

(
ξ1
λ
,
ξ̃

ν
,
ξn
ν

)

= 1
C(λ)Hn

(
1

tn−1
∂

∂t
Fn−1(REf ∗ φ)

)(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
,

which proves our assertion. �
4. A different inversion method

In this section, we provide a different inversion formula for the elliptical Radon transform. To obtain this
formula, we start to take a transform, which is like the Fourier transform, but with kernel eiωt2 instead of
eiωt, of the derivative of REf in t, where ω is the transform variable (cf. [13]). To get f from this transform,
we change variables.

Theorem 4. Let f ∈ C∞
c (Rn) be even with respect to xn. If G(u,w) =

∫∞
0 ∂tREf(u, t)eiwt2 dt, then f(x) can

be reconstructed as follows:

|xn|
(2π)nC(λ)2

∫
R

∫
Rn−1

e−i |α|2
4γ eiα·(

x1
λ , x̃ν )e−iγ( x2

1
λ2 + |x̃|2

ν2 + x2
n

ν2 )G

(
λα1

2γ ,
να̃

2γ , γ

)
dα dγ, 1

where α = (α1, α̃) ∈ R× R
n−2 and C(λ) = λνn−1, as before.

1 A function G depends on n-dimensional variables (u,w) ∈ R
n−1 × R and for simplicity, we sometimes represent these variables

as (u1, ũ, w) ∈ R × R
n−2 × R.
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Proof. By the definition of G(u,w), we have

G(u,w) :=
∞∫
0

∂

∂t
REf(u, t)eiwt2 dt

= C(λ)
∞∫
0

tn−1
∫

|y|=1

f(λty1 + u1, νtỹ + ũ, tνyn)eiwt2 dσ(y) dt

= C(λ)
∫
Rn

f(λy1 + u1, νỹ + ũ, νyn)eiw|y|2 dy,

where in the second equality, we used Eq. (4) and in the last equality we switched from the polar to the
Cartesian coordinates. Making the change of variables x1 = λy1 + u1, x̃ = νỹ + ũ, and xn = νyn, we
get

G(u,w) =
∫
Rn

f(x)eiw( (x1−u1)2

λ2 + |x̃−ũ|2
ν2 + x2

n
ν2 ) dx

= eiw
u2
1

λ2 eiw
|ũ|2
ν2

∫
Rn

f(x)eiw( x2
1

λ2 + |x̃|2
ν2 + x2

n
ν2 )e−2iwu1

x1
λ2 e−2iw ũ·x̃

ν2 dx,

where x = (x1, x̃, xn) ∈ R
n and u = (u1, ũ) ∈ R

n−1. Next, make the change of variables

x1 = x1

λ
, x̃ = x̃

ν
, and r = x2

1
λ2 + |x̃|2

ν2 + x2
n

ν2 ,

so that

x1 = x1λ, x̃ = x̃ν, and xn = ν
√

r − x2
1 − |x̃|2.

The Jacobian of this transformation is

J =

∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0

0 ν · · · 0
...

...
. . .

...
−x1ν

2
√

r−x2
1−x̃2

−x̃ν
2
√

r−x2
1−|x̃|2 · · · ν

2
√

r−x2
1−|x̃|2

∣∣∣∣∣∣∣∣∣∣∣∣
= C(λ)

2
√
r − x2

1 − |x̃|2
,

so that

dx = C(λ)
2
√
r − x2

1 − |x̃|2
dx1 dx̃ dr.

Let the function k(x1, x̃, r) be defined by

k(x1, x̃, r) =
{

f(λx1,νx̃,ν
√

r−x2
1−|x̃|2)

2
√

r−x2
1−|x̃|2 0 < |x1|2 + |x̃|2 < r,

0 otherwise.
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Since f is even in xn, it is sufficient to consider the positive root of
√
r − x2

1 − |x̃|2. Then we can rewrite
G(u,w) as

G(u,w) = C(λ)eiw
u2
1

λ2 eiw
|ũ|2
ν2

∫
R

∫
Rn−2

∫
R

k(x1, x̃, r)eiwre−2iwx1u1
λ e−2iwx̃·ũ

ν dx1 dx̃ dr

= C(λ)eiw
u2
1

λ2 eiw
|ũ|2
ν2 K

(
2wu1

λ
, 2wũ

ν
,−w

)
,

where for (α1, α̃) ∈ R× R
n−2,

K(α1, α̃, γ) =
∫
R

∫
Rn−2

∫
R

e−i(α1,α̃,γ)·(x1,x̃,r)k(x1, x̃, r) dx1 dx̃ dr

= 1
C(λ)e

i
|(α1,α̃)|2

4γ G

(
−λα1

2γ ,
−να̃

2γ ,−γ

)
.

Since k(x1, x̃, r) is

1
(2π)n

∫
R

∫
Rn−2

∫
R

eiα1x1eiα̃·x̃eiγrK(α1, α̃, γ) dα dγ,

we get for xn > 0,

f(x) = xn

C(λ)k
(
x1

λ
,
x̃

ν
,
x2

1
λ2 + |x̃|2

ν2 + x2
n

ν2

)

= xn

(2π)nC(λ)

∫
R

∫
Rn−2

∫
R

eiα1
x1
λ eiα̃·

x̃
ν eiγ( x2

1
λ2 + |x̃|2

ν2 +x2
n

ν2 )K(α1, α̃, γ) dα1 dα dγ

= xn

(2π)nC(λ)2

∫
R

∫
Rn−2

∫
R

e−i |α|2
4γ eiα·(

x1
λ , x̃ν )e−iγ( x2

1
λ2 + |x̃|2

ν2 +x2
n

ν2 )G

(
λα1

2γ ,
να̃

2γ , γ

)
dα1 dα̃ dγ, (10)

where α = (α1, α̃) ∈ R× R
n−2. The evenness of f in xn completes our proof. �

5. A stability estimate

In this section, we obtain a stability estimate for the elliptical Radon transform. Let Hγ(Rn) be a regular
Sobolev space with a norm

‖f‖2
γ :=

∫
Rn

∣∣Fnf(ξ)
∣∣2(1 + |ξ|2

)γ
dξ.

Let us define Hγ
e (Rn) = {f ∈ Hγ(Rn): f is even with respect to xn} and let L2

n−1(Rn−1 × [0,∞)) be the
set of a function g on R

n−1 × [0,∞) with

‖g‖2 :=
∫

Rn−1

∞∫
0

∣∣g(u, t)∣∣2tn−1 dt du < ∞.

Then L2
n−1(Rn−1 × [0,∞)) is a Hilbert space. Also, by the Plancherel formula, we have ‖g‖ =

22n−2π3n/2−1Γ (n/2)‖g̃‖, where
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g̃
(
ξ, |ζ|

)
=

∫
Rn−1

∫
Rn

g
(
u, |w|

)
e−i(u,w)·(ξ,ζ) du dw.

Let Hγ(Rn−1 × [0,∞)) be the set of a function g ∈ L2
n−1(Rn−1 × [0,∞)) with ‖g‖γ < ∞, where

‖g‖2
γ :=

∫
Rn−1

∞∫
0

∣∣g̃(ξ′, η)∣∣2(1 +
∣∣ξ′∣∣2 + |η|2

)γ
ηn−1 dη dξ′.

Theorem 5. For γ � 0, there is a constant Cn such that f ∈ Hγ
e (Rn),

‖f‖γ � Cn

∥∥t1−n∂tREf
∥∥
γ+(n−1)/2.

Proof. Let g = t1−n∂tREf . Note that from Eq. (9), we have

Fn

(
R∗

Eg
)(ξ1

λ
,
ξ̃

ν
,
ξn
ν

)
= C(λ)

∫
Rn−1

e−iu·( ξ1
λ , ξ̃ν )

∫
Rn

e−ix·ξg
(
u, |x|

)
dx du = C(λ)g̃

(
ξ1
λ
,
ξ̃

ν
, |ξ|

)
. (11)

Combining Eq. (11) and Theorem 1, we have

Fnf(ξ) = |(λξ1, νξ̃, νξn)|n−2|νξn|
2n+1πnC(λ) g̃

(
ξ1, ξ̃,

∣∣(λξ1, νξ̃, νξn)
∣∣).

Hence, we have

‖f‖2
γ =

∫
Rn

(
1 + |ξ|2

)γ∣∣Fn−1f(ξ)
∣∣2 dξ

= 1
22n+2π2nC(λ)2

∫
Rn

∣∣(λξ1, νξ̃, νξn)
∣∣2n−4|νξn|2

(
1 + |ξ|2

)γ∣∣g̃(ξ1, ξ̃, ∣∣(λξ1, νξ̃, νξn)
∣∣)∣∣2 dξ

� Cn

∫
Rn

∣∣(λξ1, νξ̃, νξn)
∣∣2n−4|νξn|2

(
1 +

∣∣(λξ1, νξ̃, νξn)
∣∣2)γ∣∣g̃(ξ1, ξ̃, ∣∣(λξ1, νξ̃, νξn)

∣∣)∣∣2 dξ

� Cn

∫
Rn−2

∫
R

∞∫
0

(
η2 − λ2ξ2

1 − ν2|ξ̃|2
) 1

2 η2n−3(1 + η2)γ∣∣g̃(ξ1, ξ̃, η)∣∣2 dη dξ1 dξ̃.

In the last line, we change the variable ξn to η = |(λξ1, νξ̃, νξn)|. �
6. Uniqueness for the local problem

Theorem 1 implies that an even function f ∈ C∞
c (Rn) is uniquely determined by REf . The question

arises if f is uniquely determined by some partial information. The approach in this section is similar to
the one in [3].

Theorem 6. Let u0 ∈ R
n−1, ε > 0, and T > 0 be arbitrary. Let f ∈ C∞

c (Rn) be even with respect to xn and
suppose g = REf is equal to zero on the open set

UT,ε =
{
(u, t) ∈ R

n−1 × [0,∞):
∣∣u− u0∣∣ < ε, 0 � t < T

}
.
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Fig. 1. Ellipses Eu0,T , Eu,t, Eu′,t′ .

Then f equals zero on the open set

VT =
{
x ∈ R

n: (x1 − u0
1)2

λ2 + (x̃− ũ0)2

ν2 + x2
n

ν2 < T 2
}
.

Here x = (x1, x̃, xn) ∈ R
n and u0 = (u0

1, ũ
0) ∈ R

n−1. Also, g is equal to zero on the open cone

WT =
{
(u, t) ∈ R

n−1 × [0, T ): |u− u0| + t < T
}

(cf. Fig. 1).

Proof. Without loss of generality, we may assume u0 = 0. Let f ∈ C∞(Rn). Clearly, g is also differentiable.
Differentiating REf(u, t) with respect to u1 yields

∂

∂u1
REf(u, t) = C(λ)

∫
Rn

χ|x|<t
∂

∂u1
f(λx1 + u1, νx̃ + ũ, νxn) dx

= λC(λ)
∫
Rn

χ|x|<t
∂

∂x1
f(λx1 + u1, νx̃ + ũ, νxn) dx

= λC(λ)1
t

∫
|x|=t

x1f(λx1 + u1, νx̃ + ũ, νxn) dσ(x).

Here we used Eq. (3) and the divergence theorem. Similarly, we have for i = 2, . . . , n− 1

∂

∂ui
REf(u, t) = νC(λ)1

t

∫
|x|=t

xif(λx1 + u1, νx̃ + ũ, νxn) dσ(x).

Using Eq. (4), we get

∂

∂t
RE(xif)(u, t) = C(λ)

∫
|x|=t

(ui + νxi)f(λx1 + u1, νx̃ + ũ, νxn) dσ(x)

= ui
∂

∂t
g(u, t) + t

∂

∂ui
g(u, t).

Let the linear operator Di be defined by Dig(u, t) = ui∂tg(u, t) + t∂ui
g(u, t). Then ∂

∂tRE(xif)(u, t) is
Dig(u, t). By iteration, we obtain ∂

∂tRE(p(x′)f) = p(D)g where p is an n − 1-variable polynomial. If g is
zero in UT,ε, then p(D)g is also zero in UT,ε. Then we have for any point (u, t) ∈ UT,ε,
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∂

∂t
RE

(
p
(
x′)f)(u, t) = C(λ)

∫
|x|=t

p(u1 + λx1, ũ + νx̃)f(λx1 + u1, νx̃ + ũ, νxn) dσ(x)

= C(λ)
∫

|y|<t

p
(
u + (λy1, νỹ)

)
f
(
u + (λy1, νỹ), ν

√
t2 − |y|2

) dy√
t2 − |y|

= 0.

The Stone–Weierstrass theorem implies that for fixed u and t, we can choose a sequence of polynomials pj
such that pj(u+ (λy1, νỹ)) converge to f(u+ (λy1, νỹ, ν

√
t2 − |y|2)) uniformly for |y| � t and y = (y1, ỹ) ∈

R
n−1. It follows that f = 0 in VT and that g = 0 in WT . �

7. Conclusion

Several types of elliptical Radon transforms have been considered in SAR, URT, and radio tomography.
Among these, we study the elliptical Radon transform REf arising in radio tomography imaging [15–17].
This transform RE maps a given function f on R

n into the set of its integrals over the solid ellipses/ellip-
soids Eu,t. We describe two different ways of determining a function f from REf and present a stability
estimate and a local uniqueness result for RE .
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