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Abstract In this paper, applying the theory of evolution family and Schauder’s fixed point theorem, we

prove the anti-periodic mild solutions for semilinear nonautonomous evolution equations in Banach space

under conditions. Furthermore, an example is given to illustrate our results.
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1 Introduction

The study of the existence of anti-periodic solutions constitutes one of the most attractive topics in

qualitative theory of differential equations due to its applications in engineering, physics, control theory

and other subjects (see [1-4] and the references therein). Recently, the existence of anti-periodic solutions

to differential equations in Banach spaces by using semigroup theory has been established by many authors.

For example, we refer readers to [5-9].

In this paper, we study the existence of anti-periodic mild solutions to the semilinear nonautonomous

evolution equations
d

dt
u(t) = (A+B(t))u(t) + f(t, u(t)), t ∈ R, (1)

where A is a Hille-Yosida operator having the domain D(A) in Banach spaces X, B(t), t ∈ R is a family

of operators in L(D(A), X) , the part of (A+B(t))t≥0 in X0 generates the evolution family (U(t, s))t≥s≥0

and f : R×X0 → X is a suitable function.

To the best of our knowledge, the literature concerning the existence of anti-periodic mild solutions to

this problem is an untreated original problem, which constitutes one of the main motivations of this paper.

The paper is organized as follows: In Section 2, we give some definitions and fix notations which will be

used in the sequel. In Section 3, the existence, uniqueness of anti-periodic mild solution to some semilinear

nonautonomous evolution equations in Banach space are studied.

2 Preliminaries and basic results

We recall some definitions and fix notations which will be used in the sequel. Let X be a Banach space

endowed with the norm ‖ · ‖ and L(X,Y ) be the Banach space of all bounded linear operators from X to

Y . Cb(R,X) is the space of all bounded continuous functions from R → X. R+ = [0,+∞).

We give some basic results on extrapolation spaces of Hille-Yosida operators.

Definition 2.1 Let A be a linear operator with domain D(A). We say that (A,D(A)) is a Hille-

Yosida operator on X if there exists ω ∈ R and a positive constant M ≥ 1 such that (ω,∞) ⊆ ρ(A) and

sup{(λ−ω)n‖(λ−A)‖−n} ≤ M . The infinimum of such a ω is called the type of A. If the constant ω can

be chosen smaller than zero, A is said to be of negative type.
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From the Hille-Yosida theorem [10,Theorem II.3.8] we have the following result.

Lemma 2.1 Let (A,D(A)) be a Hille-Yosida operator on X, X0 = D(A), D(A0) = {x ∈ D(A) :

Ax ∈ X0} and A0 : D(A0) ⊂ X0 → X0 be the operator defined by A0x = Ax. The operator A0

generates a C0-semigroup (T0(t))t≥0 on X0 with ‖T0(t)‖ ≤ Meωt for t ≥ 0. Moreover, ρ(A) ⊂ ρ(A0) and

R(λ,A0) = R(λ,A)|X0 , for λ ∈ ρ(A).

Let λ ∈ ρ(A). we define a norm on space X0 by

‖x‖−1 = ‖R(λ,A0)x‖, x ∈ X0.

The completion of (X0, ‖ · ‖−1) will be called the extrapolation space of X0 associated with A0 and will

be denoted by X−1. One can show easily that, T0(t) has a unique bounded linear extension T−1(t) to

X−1. The operator family (T−1(t))t≥0 is a C0-semigroup on X−1, called the extrapolated semigroup of

(T0(t))t≥0. The domain of its generator A−1 is equal to A0.

For more details of Hille-Yosida operators and extrapolation spaces, we refer to [10-12] and the refer-

ences therein.

From [13] and [14,Theorem 2.3], we have the following Lemma:

Lemma 2.2 Let Σθ = {λ ∈ C : | arg λ| ≤ θ}⋃{0} ⊂ ρ(A(t)), θ ∈ (π
2
, π). If there exist a constant k0

and a set of real numbers α1, α2, · · · , αk, β1, · · · , βk with 0 ≤ βi < αi ≤ 2, i = 1, 2, · · · , k such that

‖A(t)(λ−A(t))−1(A(t)−1 −A(s)−1)‖ ≤ K0

k∑
i=1

(t− s)αi |λ|βi−1,

for t, s ∈ R, λ ∈ Σθ \ {0} and there exists a constant M ≥ 0 such that

‖(λ−A(t))−1‖ ≤ M

1 + |λ| , λ ∈ Σθ,

then there exists a unique evolution family {U(t, s), t ≥ s; s ∈ R}.
Definition 2.2 A set U = {U(t, s) : t ≥ s, t, s ∈ R} of bounded linear operators on X is called an

evolution family if

(i) U(t, s) = U(t, r)U(r, s) and U(s, s) = I for t ≥ r ≥ s and

(ii) (t, s) 
→ U(t, s) is strongly continuous for t > s.

We also need to recall the following notation concerning exponential dichotomy. An evolution family

U is called exponential dichotomy (or hyperbolic) if there are projections P (t), t ∈ R uniformly bounded

and strongly continuous in t and constants M,ω > 0 such that

(a) U(t, s)P (s) = P (t)U(t, s) for all t ≥ s;

(b) The restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s (and we set UQ(s, t) =

UQ(t, s)
−1). Here and below we let Q = I − P for a projection P ;

(c)‖U(t, s)P (s)‖ ≤ Me−ω(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Me−ω(t−s).

If U is hyperbolic, then the operator family

Γ(t, s) =

{
U(t, s)P (s), t ≥ s, t, s ∈ R

−UQ(t, s)Q(s), t < s, t, s ∈ R

is called Green’s function corresponding to U and P (·).
Definition 2.3 A function f ∈ Cb(R,X) is called anti-periodic provided that

f(t+ T ) = −f(t), ∀t ∈ R.

Denote by PTA(R,X) the set of all anti-periodic functions.

Lemma 2.3[7] Let fn ∈ PTA(R,X), such that fn → f uniformly on R. Then f ∈ PTA(R,X).

Lemma 2.4[7] Equipped with the supnorm, PTA(R,X) is a Banach space.
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Definition 2.4 Let evolution family U(t, s) be generated by the part of (A + B(t))t≥0 in X0. A

function

u(t) = U(t, s)u(s) + lim
λ→∞

∫ t

s

U(t, τ)λR(λ,A)f(τ, u(τ))dτ,

is called a mild solution to Eq.(1) for t ≥ s and s ∈ R, where A , B(t), t ∈ R are as in previous sections

and U(t, s) satisfies the variation-of-parameters formula

U(t, s) = T0(t− s) +

∫ t

s

T−1(t− τ)B(τ)U(τ, s)dτ.

For more details of mild solutions to Eq.(1), we refer to [15] and the references therein.

We give the famous Schauder’s fixed point theorem as follows:

Lemma 2.5 (Schauder’s fixed point theorem) Let D be a nonempty, closed, bounded, convex

subset of a Banach space X. Let F : D → D be a continuous and compact operator, then the operator

equation Fu = u has a fixed point in D.

3 Existence of anti-periodic mild solutions

To study the existence of anti-periodic mild solutions to Eq.(1), we will assume that the following

assumptions hold:

(H1) The evolution family U(t, s) is generated by the part of (A + B(t))t≥0 in X0 and satisfies the

hypotheses of Lemma 2.2, also U(t, s) has an exponential dichotomy with constants ω > 0, M ≥ 1 and

projections P (t) for t ∈ R. C = supt∈R{‖λP (t)R(λ,A)‖, ‖λ(I − P (t))R(λ,A)‖} < ∞;

(H2) (U(t, s))t≥s∈R is T -periodic, in the sense that there exists T > 0 such that U(t+T, s+T ) = U(t, s)

for t ≥ s;

(H3) The function f : R×X0 → X is continuous and f(t+ T,−u) = −f(t, u) for all t ∈ R, u ∈ X0;

(H4) The function f : R×X0 → X satisfies the Lipschitz condition:

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖

for all t ∈ R, x, y ∈ X0, where L(t) satisfies

‖L‖1loc = sup
t∈R

∫ t+1

t

L(s)ds < +∞.

Theorem 3.1 Under assumptions (H1)− (H3), for every t ∈ R, let

Λu(t) = lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds.

If u ∈ PTA(R,X0), then Λu(t) ∈ PTA(R,X0).

Proof Firstly, it is easy to see that

‖Λu(t)‖ = ‖ lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds‖

≤ MC

∫ ∞

−∞
e−ω|t−s|‖f(s, u(s))‖ds

≤ 2MC

ω
‖f‖∞.

Thus Λ is well defined and Λu is bounded.
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Secondly, for any t, h ∈ R

‖Λu(t+ h)− Λu(t)‖ = ‖ lim
λ→∞

∫ ∞

−∞
Γ(t+ h, s)λR(λ,A)f(s, u(s))ds

− lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds‖

= ‖ lim
λ→∞

∫ ∞

−∞
Γ(t+ h, s+ h)λR(λ,A)f(s+ h, u(s+ h))ds

− lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds‖

≤ C

∫ ∞

−∞
‖Γ(t+ h, s+ h)f(s+ h, u(s+ h))− f(s, u(s))‖ds

+ C

∫ ∞

−∞
‖(Γ(t+ h, s+ h)− Γ(t, s))f(s, u(s))‖ds.

Thus, ‖Λu(t+ h)− Λu(t)‖ → 0 as h → 0, which proves that Λu is continuous.

Finally, It follows from (H3) that for any u ∈ PTA(R,X0) and for each t ∈ R

Λu(t+ T ) = lim
λ→∞

∫ ∞

−∞
Γ(t+ T, s)λR(λ,A)f(s, u(s))ds

= lim
λ→∞

∫ ∞

−∞
Γ(t+ T, s+ T )λR(λ,A)f(s+ T,−u(s))ds

= − lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds

= −Λu(t).

Therefore, Λu is anti-periodic. The proof is complete.

Theorem 3.2 Under assumptions (H1) − (H4), if 0 <
2MC‖L‖1loc

1−e−ω < 1, then Eq.(1) has a unique

anti-periodic mild solution.

Proof Define the operator Λ as in Theorem 3.1 by

Λu(t) = lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds

for every t ∈ R. By Theorem 3.1, the operator Λ is well defined and maps PTA(R,X0) into itself.

Next, we prove that the operator Λ has a unique fixed point in PTA(R,X0).

Let u, v ∈ PTA(R,X0),then

‖Λu(t)− Λv(t)‖ = ‖ lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)[f(s, u(s))− f(s, v(s))]ds‖

≤ MC

∫ ∞

−∞
e−ω|t−s|‖f(s, u(s))− f(s, v(s))‖ds

≤ MC‖u− v‖(
∫ t

−∞
e−ω(t−s)L(s)ds+

∫ ∞

t

e−ω(s−t)L(s)ds)

≤ MC‖u− v‖(
∑
k≥0

e−ωk

∫ t−k

t−k−1

L(s)ds+
∑
k≥0

e−ωk

∫ t+k+1

t+k

L(s)ds)

≤ 2MC‖u− v‖
∑
k≥0

e−ωk‖L‖1loc

≤ 2MC‖L‖1loc
1− e−ω

‖u− v‖.

For 0 <
2MC‖L‖1loc

1−e−ω < 1, it follows from the Banach contraction mapping principle that Λ admits a unique

fixed point in PTA(R,X0).
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To end of the proof, we will prove that u ∈ PTA(R,X0) is a mild solution of Eq.(1).

In fact, if t ≥ s, then

u(t)− U(t, s)u(s) = lim
λ→∞

(

∫ ∞

−∞
Γ(t, τ)λR(λ,A)f(τ, u(τ))dτ −

∫ s

−∞
U(t, τ)P (τ)λR(λ,A)f(τ, u(τ))dτ

+

∫ t

s

U(t, τ)Q(τ)λR(λ,A)f(τ, u(τ))dτ +

∫ ∞

t

UQ(t, τ)Q(τ)λR(λ,A)f(τ, u(τ))dτ)

= lim
λ→∞

(

∫ ∞

−∞
Γ(t, τ)λR(λ,A)f(τ, u(τ))dτ −

∫ t

−∞
U(t, τ)P (τ)λR(λ,A)f(τ, u(τ))dτ

+

∫ t

s

U(t, τ)λR(λ,A)f(τ, u(τ))dτ +

∫ ∞

t

UQ(t, τ)Q(τ)λR(λ,A)f(τ, u(τ))dτ)

= lim
λ→∞

∫ t

s

U(t, τ)λR(λ,A)f(τ, u(τ))dτ,

which implies that u is a mild solution to Eq.(1). The proof is complete.

Corollary 3.1 If assumptions (H1)− (H3) hold true, the function f satisfies the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖

for all t ∈ R, x, y ∈ X0, where L > 0 is a constant and If 0 < 2MCL
ω

< 1, then the Eq.(1) has a unique

anti-periodic mild solution.

Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R, and h(t) → ∞ as |t| → ∞.

We consider the space

Ch(X) = {u ∈ C(R,X) : lim
|t|→∞

u(t)

h(t)
= 0}

endowed with the norm

‖u‖h = sup
t∈R

‖u(t)‖
h(t)

.

Lemma 3.1[16] A subset K ⊆ Ch(X) is a relatively compact set if it verifies the following conditions:

(i) The set K(t) = {u(t) : u ∈ K} is relatively compact in X for each t ∈ R;

(ii) The set K is equicontinuous;

(iii) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ K and all |t| > L.

To establish our next results, we consider the following assumptions.

(A1) f(t, x) is bounded continuous and there exists a continuous nondecreasing functionW : R+ → R+,

such that

‖f(t, x)‖ ≤ W (‖x‖)
for all t ∈ R, x ∈ X0;

(A2) For each κ ≥ 0, let β(κ) =
∫∞
−∞ e−ω|t−s|W (κh(s))ds ∈ Cb(R) and MCβ(κ) < ∞ ;

(A3) For each ε > 0, there is a δ > 0, such that for every u, v ∈ Ch(X0), ‖u− v‖h ≤ δ implies

sup
t∈R

∫ ∞

−∞
e−ω|t−s|‖f(s, u)− f(s, v)‖ds ≤ ε;

(A4) U(t, s) is a strongly continuous evolution family. Moreover, U(t, s) is compact.

Theorem 3.3 Under the previous assumptions, let V ⊆ PTA(R,X0) and Λ(V )(t) := {Λu(t) : u ∈ V },
where

Λu(t) = U(t, s)u(s) + lim
λ→∞

∫ t

s

U(t, τ)λR(λ,A)f(τ, u(τ))dτ,

then Λ(V )(t) is a relatively compact subset of X0 for each t ∈ R and V is equicontinuous.
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Proof Firstly, we will prove that Λ(V )(t) is a relatively compact subset of X0 for each t ∈ R.

For each s < t and ε > 0 is such that s ≤ t− ε,

Λu = U(t, s)u(s) + lim
λ→∞

∫ t−ε

s

U(t, τ)λR(λ,A)f(τ, u(τ))dτ

+ lim
λ→∞

∫ t

t−ε

U(t, τ)λR(λ,A)f(τ, u(τ))dτ

= U(t, t− ε)[U(t− ε, s)u(s) + lim
λ→∞

∫ t−ε

s

U(t− ε, τ)λR(λ,A)f(τ, u(τ))dτ ]

+ lim
λ→∞

∫ t

t−ε

U(t, τ)λR(λ,A)f(τ, u(τ))dτ

= U(t, t− ε)Λu(t− ε) + lim
λ→∞

∫ t

t−ε

U(t, τ)λR(λ,A)f(τ, u(τ))dτ.

Since {Λu(t − ε)} is bounded and U(t, t − ε) is compact, {U(t, t − ε)Λu(t − ε), t > ε} is a relatively

compact subset of X0. Secondly, for U(t, s) is strongly continuous and f is bounded continuous,

lim
λ→∞

∫ t

t−ε

U(t, τ)λR(λ,A)f(τ, u(τ))dτ → 0

as ε → 0. Thus, Λ(V )(t) := {Λu(t) : u ∈ V } is a relatively compact subset of X0 for each t ∈ R.

Finally, we will show that the set V is equicontinuous.

In fact, proceeding as above, for t1 < t2, t1, t2 ∈ R, we can decompose

Λu(t2)− Λu(t1) = (U(t2, s)− U(t1, s))u(s) + lim
λ→∞

∫ t2

s

U(t2, τ)λR(λ,A)f(τ, u(τ))dτ

− lim
λ→∞

∫ t1

s

U(t1, τ)λR(λ,A)f(τ, u(τ))dτ

= (U(t2, t1)− I)[U(t1, s))u(s) + lim
λ→∞

∫ t1

s

U(t1, τ)λR(λ,A)f(τ, u(τ))dτ ]

+ lim
λ→∞

∫ t2

t1

U(t2, τ)λR(λ,A)f(τ, u(τ))dτ

= (U(t2, t1)− I)u(t1) + lim
λ→∞

∫ t2

t1

U(t2, τ)λR(λ,A)f(τ, u(τ))dτ.

Since the set Λ(V )(t) is relatively compact in X0 and U(t, s) is strongly continuous, then

lim
t2−t1→0

‖(U(t2, t1)− I)u(t1)‖ = 0.

For U(t, s) is strongly continuous and f is bounded continuous, we obtain

lim
t2−t1→0

‖ lim
λ→∞

∫ t2

t1

U(t2, τ)λR(λ,A)f(τ, u(τ))dτ‖ = 0.

Therefore, combining the estimates, we have

lim
t2−t1→0

‖Λu(t2)− Λu(t1)‖ = 0

uniformly for u ∈ V . The proof is complete.

Theorem 3.4 If assumptions (A1)− (A4) hold true, then Eq.(1) has an anti-periodic mild solution.

Proof Let D = {u ∈ PTA(R,X0) ∩ Ch(X0)}, and Λ(D)(t) := {Λu(t) : u ∈ D}, where

Λu(t) = U(t, s)u(s) + lim
λ→∞

∫ t

s

U(t, τ)λR(λ,A)f(τ, u(τ))dτ.
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From the proof of Theorem 3.2, we have

Λu(t) = lim
λ→∞

∫ ∞

−∞
U(t, s)λR(λ,A)f(s, u(s))ds.

We divide the proof in several steps.

Step1. For u ∈ D, we have that

‖Λu(t)‖ = ‖ lim
λ→∞

∫ ∞

−∞
Γ(t, s)λR(λ,A)f(s, u(s))ds‖

≤ MC

∫ ∞

−∞
e−ω|t−s|‖f(s, u(s))‖ds

≤ MC

∫ ∞

−∞
e−ω|t−s|W (‖u(s)‖)ds

≤ MC

∫ ∞

−∞
e−ω|t−s|W (‖u‖hh(s))ds

≤ MCβ(‖u‖h).

It follows from condition (A2) that Λ : Ch(X0) → Ch(X0).

Step2. The map Λ is continuous. In fact, for ε > 0, we take δ involved in condition (A3). If

u, v ∈ Ch(X0) and ‖u− v‖h ≤ δ, then

‖Λu(t)− Λv(t)‖h =
‖ limλ→∞

∫∞
−∞ Γ(t, s)λR(λ,A)[f(s, u(s))− f(s, v(s))]ds‖

h(t)

≤ MC
∫∞
−∞ e−ω|t−s|‖f(s, u(s))− f(s, v(s))‖ds

h(t)

≤ ε,

which shows the assertion.

Step3. Applying condition (A2), we can show that

‖Λu‖
h(t)

≤ MC

h(t)

∫ ∞

−∞
e−ω|t−s|W (‖u‖hh(s))ds → 0, |t| → ∞

and this convergence is independent of u ∈ D.

From the proof of the Theorem 3.3 and Step 3, D satisfies conditions (i)-(iii) of Lemma 3.1, so D is a

relatively compact set in Ch(X0). It follows from the proof of step 1-step 3 that Λ is a compact operator.

Step4. Applying Theorem 3.1, we obtain that Λ(PTA(R,X0)) ⊆ PTA(R,X0). Consequently, combining

with step 1 and step 2 we infer that Λ(PTA(R,X0) ∩ Ch(X0)) ⊆ PTA(R,X0) ∩ Ch(X0), and also

Λ(PTA(R,X0) ∩ Ch(X0)
h
) ⊆ Λ(PTA(R,X0) ∩ Ch(X0))

h ⊆ PTA(R,X0) ∩ Ch(X0)
h
,

where D
h
denotes the closure of D in Ch(X0). Applying Lemma 2.5, we deduce that Λ has a fixed point

u ∈ PTA(R,X0) ∩ Ch(X0)
h
.

Step5. We prove that u ∈ PTA(R,X0).

Let (un)n be a sequence in PTA(R,X0) ∩ Ch(X0) that converges to u for the topology in Ch(X0). It

follows from condition (A3) that Γun → Γu as n → ∞, uniformly on R. This implies that u ∈ PTA(R,X0),

which completes the proof.

Remark 3.1 If assumption (A3) of Theorem 3.4 is fulfilled in the following situation:

‖f(t, h(t)x)− f(t, h(t)y)‖ ≤ W (‖x− y‖),
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for all t ∈ R, x, y ∈ X0, W (0) = 0, then Theorem 3.4 is still true.

In fact, we use the same notations as in Theorem 3.4.

‖Λu(t)− Λv(t)‖ = ‖
∫ ∞

−∞
Γ(t, s)λR(λ,A)[f(s, u(s))− f(s, v(s))]ds‖

≤ MC

∫ ∞

−∞
e−ω|t−s|W (

‖u(s)− v(s)‖
h(s)

)ds

≤ 2MC

ω
W (‖u− v‖h).

Since W is continuous, the above estimate shows that (A3) hold, the remains of proof is essentially the

same of Theorem 3.4.

4 Application

In this section we give an example to illustrate the above results. Consider the following retarded

partial differential equation [17]:

∂tu(t, x) = ∂2
xu(t, x) + au(t, x)− b(t)u(t− 1, x) + f(t, u(t, x)), t ∈ R, x ∈ [0, π], (2)

with boundary initial conditions

u(t, 0) = u(t, π) = 0, t ∈ R, (3)

where a, b ∈ R and f : R× [0, π] → R for all t ∈ R.

Let Y := C([0, π], R) and the operator B be defined on Y by Bv = v′′ + av, with domain

D(B) := {v ∈ C2([0, π], R) : v(0) = v(π) = 0}.

SetX = Y ×E, where E = C([−1, 0], Y ), w(t) = u(t, ·), L(t)w = −b(t)w(−1) and F (t, w) = f(t, u(t, ·)).
It is well known(see [15]) that Eq.(2)-(3) can be formulated as an abstract Cauchy problem

w′(t) = Aw(t) +B(t)w(t) + F (t, w)

where

A :=

(
0 Bδ0 − δ

′
0

0 d
dτ

)
, D(A) = {0} × {φ ∈ C1([−1, 0], Y ) : φ(0) ∈ D(B)}

with δ
′
0φ := φ

′
(0) for φ ∈ C1([−1, 0], Y ) and

B(t) :=

(
0 L(t)

0 0

)
.

It is shown in [18, Lemma 3.1] that A is a Hille-Yosida operator, the part A0 of A in X0 := D(A) =

{0} × E generates a C0-semigroup (T0(t))t≥0 on X0. Let (T−1(t))t≥0 denote the extrapolated semigroup

of (T0(t))t≥0 on X. For more details, see [15, 18]. Under the similar conditions of Section 3, we can prove

the Eq.(2)-(3) has a unique anti-periodic mild solutions.
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[7] G.M.N’Guérékata, V. Valmorin, Antiperiodic solutions of semilinear integrodifferential equations in Banach

spaces, Appl. Math. Comput. 218 (2012) 11118-11124.

[8] N. S. Al-Islam, S. M. Alsulami, T. Diagana, Existence of weighted pseudo anti-periodic solutions to some

non-autonomous differential equations, Appl. Math. Comput. 218 (2012) 6536-6548.

[9] J. H. Liu, S. H. Cheng, L.T. Zhang, Anti-periodic mild solutions of semilinear fractional differential equations,

Journal of Applied Mathematics and Computing(2014), doi:10.1007/s12190-014-0808-z.

[10] K.J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics,

vol. 194, Springer-Verlag, 2001.

[11] R. Nagel, E. Sinestrari, Inhomegeneous volterra integrodifferential equations for Hille-Yosida operators, Marcel

Dekker, Lect. Notes Pure Appl. Math.150 (1994),51-70.

[12] E. Hille, R. S. Philips, Functional analysis and semigroup, American Mathematical Society, Providence, RI,

1975.

[13] P. Acquistapace, B.Terreni, A unified approach to abstract linear parabolic equations,Rend.Sem.Math.Uni.

Padova, 78(1987),47-107.

[14] P. Acquistapace, Evolution operators and strong solution of abstract linear parabolic equations, Differential

Integral Equations,1(1998),433-457.
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