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We provide a two-sided inequality for the α-optimal partition value of a measurable 
space according to a finite number of nonatomic finite measures. The result extends 
and often improves Legut [Inequalities for α-optimal partitioning of a measurable 
space, Proc. Amer. Math. Soc. 104 (1988)] since the bounds are obtained considering 
several partitions that maximize the weighted sum of the partition values with 
varying weights, instead of a single one. Furthermore, we show conditions that make 
these bounds sharper.
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1. Introduction

Let (C, C) be a measurable space, μ1, . . . , μn be n nonatomic finite measures defined on the same 
σ-algebra C, and let P be the set of all measurable partitions (A1, . . . , An) of C (Ai ∈ C for all i = 1, . . . , n, ⋃n

i=1 Ai = C, Ai∩Aj = ∅ for all i �= j). Let Δn−1 denote the (n −1)-dimensional simplex. For this definition, 
and the many others taken from convex analysis, we refer to [9].

Definition 1. A partition (A∗
1, . . . , A

∗
n) ∈ P is said to be α-optimal, for α = (α1, . . . , αn)T ∈ riΔn−1, the 

relative interior of Δn−1, if

vα := min
i=1,...,n

{
μi(A∗

i )
αi

}
= sup

{
min

i=1,...,n

{
μi(Ai)
αi

}
: (A1, . . . , An) ∈ P

}
. (1)

This problem has a consolidated interpretation in mathematical economics. We adopt the model con-
sidered in Dubins and Spanier [6]. C is a non-homogeneous, infinitely divisible good to be distributed 
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among n agents with idiosyncratic preferences, represented by the measures. A partition (A1, . . . , An) ∈ P

describes a possible division of the good, with portion Ai (not necessarily connected) given to agent i. 
A satisfactory compromise between the conflicting interests of the agents, each having a relative claim αi, 
i = 1, . . . , n, over the cake, is given by the α-optimal partition. It can be shown that the proposed solution 
coincides with the Kalai–Smorodinsky solution for bargaining problems (see Kalai and Smorodinsky [11]
and Kalai [10]). When {μi}i=1,...,n are all probability measures, i.e. μi(C) = 1 for all i = 1, . . . , n, the claim 
vector α = (1/n, . . . , 1/n)T describes a situation of perfect parity among agents. The necessity to consider 
finite measures stems from game theoretic extensions of the models. For such extensions we refer to Legut 
[13], Legut et al. [14] and Dall’Aglio et al. [4].

When all the μi are probability measures, Dubins and Spanier [6] showed that if μi �= μj for some i �= j, 
then vα > 1. This bound was improved, together with the definition of an upper bound by Elton et al. [8]. 
A further improvement for the lower bound was given by Legut [12]. More recently, Legut and Wilczyńsky 
[16] gave an explicit formula for the value of vα (and of the corresponding optimal partition) for the case 
n = 2, based on the Neyman–Pearson lemma.

The aim of the present work is twofold: We provide further refinements for Legut’s bounds for any n, 
and we show conditions that make these bounds sharper. We consider here the same geometrical setting 
employed by Legut [12], i.e. the partition range, also known as Individual Pieces Set (IPS) (see Barbanel 
[2] for a thorough review of its properties), defined as

R :=
{(

μ1(A1), . . . , μn(An)
)

: (A1, . . . , An) ∈ P
}
⊂ R

n
+.

Let us consider some of its features. The set R is compact and convex (see Dvoretzky et al. [7]). The 
supremum in (1) is therefore attained. Moreover, as shown by Legut and Wilczyńsky [15],

vα = max
{
r ∈ R+ : (rα1, rα2, . . . , rαn)T ∩R �= ∅

}
. (2)

So, the vector (vαα1, . . . , vααn)T is the intersection between the Pareto frontier of R and the ray rα =
{(rα1, . . . , rαn)T : r ≥ 0}.

To find both bounds, Legut locates the solution of the maxsum problem sup{
∑n

i=1 μi(Ai) : (A1,

. . . , An) ∈ P} on the partition range. Then, he finds the convex hull of this point with the corner points 
of the partition range to find a lower bound, and uses a separating hyperplane argument to find the upper 
bound. We keep the same framework, but consider the solutions of several maxsum problems with weighted 
coordinates to find better approximations. Fix β = (β1, . . . , βn)T ∈ Δn−1 and consider

n∑
i=1

βiμi

(
Aβ

i

)
= sup

{
n∑

i=1
βiμi(Ai) : (A1, . . . , An) ∈ P

}
. (3)

Let η be a non-negative finite-valued measure with respect to which each μi is absolutely continuous (for 
instance we may consider η =

∑n
i=1 μi). Then, by the Radon–Nikodym theorem, for each A ∈ C,

μi(A) =
∫
A

fidη ∀i = 1, . . . , n,

where fi is the Radon–Nikodym derivative of μi with respect to η.
Finding a solution for (3) is straightforward:

Proposition 1. (See [6, Theorem 2], [1, Theorem 2], [3, Proposition 4.3].) Let β ∈ Δn−1 and let Bβ =
(Aβ

1 , . . . , A
β
n) be a partition of C. If
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βkfk(x) ≥ βhfh(x) for all h, k ≤ n and for all x ∈ Aβ
k , (4)

then (Aβ
1 , . . . , A

β
n) is optimal for (3).

Definition 2. Given β ∈ Δn−1, an efficient value vector (EVV) with respect to β, uβ = (uβ
1 , . . . , u

β
n)T , is 

defined by

uβ
i = μi

(
Aβ

i

)
, for each i = 1, . . . , n.

The EVV uβ is a point where the hyperplane

Hβ =
{
x ∈ R

n : βTx = βTuβ
}

(5)

touches the partition range R, so uβ lies on the Pareto border of R.

2. The main result

As proved in Legut [12], one EVV alone associated to the equitable β is enough to assure a lower bound. 
Here we give a general result for the case where several linearly independent EVVs are available. We derive 
this approximation result through a convex combination of these easily computable points in R, which lie 
around (vαα1, . . . , vααn)T .

Theorem 1. Consider m ≤ n linearly independent vectors u1, u2, . . . , um, where ui = (ui1, ui2, . . . , uin)T , 
i = 1, . . . , m is the EVV associated to βi, βi = (βi1, βi2, . . . , βin)T ∈ Δn−1. Assume

rank
(
u1, . . . ,um,α

)
= m, (6)

let U be the n ×m matrix U = (u1, u2, . . . , um) and let Ū be an m ×m submatrix of U with det(Ū) �= 0. 
Let ᾱ be the vector obtained from α by selecting the same rows as in Ū . Then,

(i)

α ∈ cone
(
u1,u2, . . . ,um

)
(7)

if and only if

det(Ū) det(Ūαi) ≥ 0 for all i = 1, . . . ,m, (8)

where Ūαi is the m × m matrix obtained by replacing the i-th column of Ū with ᾱ. Moreover, α ∈
ri(cone(u1, u2, . . . , um)) if and only if all the inequalities in (8) are strict.

(ii) For any choice of u1, u2, . . . , um,

vα ≤ min
i=1,...,m

(βi)Tui

(βi)Tα
. (9)

Moreover, if (8) holds, then

1
eT Ū

−1
ᾱ

≤ vα (10)

where e = (1, 1, . . . , 1)T ∈ R
m.
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Proof. To prove (i), let t = (t1, t2, . . . , tm)T and consider, for any r > 0, the linear system

Ut = rα (11)

with variables in t. By (6) this is equivalent to

Ūt = rᾱ, (12)

and, by Cramer’s rule, it admits the unique solution

t = r

(
det(Ūα1)
det(Ū)

, · · · , det(Ūαm)
det(Ū)

)T

. (13)

Now, (7) holds if and only if ti ≥ 0 for every i = 1, . . . , m, which in turn holds if and only if (8) holds. 
Moreover, ti > 0 for every i = 1, . . . , m if and only if all the inequalities in (8) are strict.

To prove (ii), consider, for any i = 1, . . . , m, the hyperplane (5) that intersects the ray rα at the point 
(r̄iα1, . . . , ̄riαn), with

r̄i = (βi)Tui

(βi)Tα
.

Since R is convex, the intersection point is not internal to R. So, r̄i ≥ vα for all i = 1, . . . , m, and, therefore, 
mini=1,...,m r̄i ≥ vα.

Assuming now that (8) holds, we choose r∗ > 0 so that the corresponding t∗ in (13) satisfies

eT t∗ = 1. (14)

r∗α is the convex combination of the vectors in U with weights in t∗, and is aligned with α. By the convexity 
of R, r∗ provides a lower bound for vα.

System (12) implies t∗/r∗ = Ū
−1

ᾱ, and, by (14),

1
r∗

= 1
r∗

eT t∗ = eT Ū
−1

ᾱ, (15)

which, in turn, implies (10). �
Remark 1. In the corollaries and the examples that follow, we will consider the situation where m = n. In 
such case, (6) is trivially satisfied, and an easy geometric interpretation can be given to condition (8). For 
any j ≤ n, consider the hyperplane

H−j =
{
x ∈ R

n : det
(
u1, . . . ,uj−1,x,uj+1, . . . ,un

)
= 0

}
,

passing through the origin and all the EVVs but uj . H−j separates uj and α (weakly or strictly, resp.) if 
and only if (8) (weakly or strictly, resp.) holds.

In what follows, u1, u2, . . . , um will be sometimes referred to as the supporting set of EVVs for the lower 
bound. We next consider two corollaries that provide bounds in case only one EVV is available. The first 
one works with an EVV associated to an arbitrary vector β ∈ Δn−1.
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Corollary 1. (See [5, Proposition 3.4].) Let μ1, . . . , μn be finite measures and let u = (u1, u2, . . . , un)T be 
the EVV corresponding to β ∈ Δn−1 such that

α−1
j uj = max

i=1,...,n
α−1
i ui. (16)

Then,

uj

αj +
∑

i�=j [μ
−1
i (C)(αiuj − αjui)]

≤ vα ≤ βTu

βTα
. (17)

Proof. Consider the corner points of the partition range

ei =
(
0, . . . , 0, μi(C), 0, . . . , 0

)T ∈ R
n, i = 1, . . . , n

where μi(C) is placed on the i-th coordinate, and

U =
(
e1, . . . ,ej−1,u, ej+1, . . . ,en

)
.

Now

det(U) = uj

∏
i�=j

μi(C) > 0

det(Uαj) = αj

∏
i�=j

μi(C) > 0

and, for all i �= j, by (16),

det(Uαi) = (αiuj − αjui)
∏

k �=i,k �=j

μk(C) ≥ 0.

Therefore, U satisfies the hypothesis (8) of Theorem 1. Since U has inverse

U−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
μ1(C) 0 · · · − u1

μ1(C)uj
· · · 0

0 1
μ2(C) · · · − u2

μ2(C)uj
· · · 0

...
...

. . .
...

. . .
...

0 0 · · · 1
uj

· · · 0
...

...
. . .

...
. . .

...
0 0 · · · − un

μn(C)uj
· · · 1

μn(C)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the following lower bound is guaranteed for vα:

vα ≥ r∗ = uj

αj +
∑

i�=j [μ
−1
i (C)(αiuj − αjui)]

.

The upper bound is, again, a direct consequence of part (ii) in Theorem 1. �
In case all measures μi are normalized to one and the only EVV considered is the one corresponding to 

the equitable β, we obtain Legut’s result.
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Fig. 1. The density functions in Example 1. Agent 1: tiny dashing; Agent 2: large dashing; Agent 3: continuous line.

Corollary 2. (See [12, Theorem 3].) Let μ1, . . . , μn be probability measures and let ueq = (ueq
1 , ueq

2 , . . . , ueq
n )T

be an EVV corresponding to βeq = (1/n, . . . , 1/n)T . Let ueq
j = maxi=1,...,n u

eq
i . Then,

ueq
j

ueq
j − αj(K − 1) ≤ vα ≤ K, (18)

where K =
∑n

i=1 u
eq
i .

Proof. Simply apply Corollary 1 with μi(C) = 1, for all i = 1, . . . , n, and βeq. Then

vα ≥ r∗ =
ueq
j

αj +
∑

i�=j(αiu
eq
j − αju

eq
i ) =

ueq
j

ueq
j − αj(K − 1) .

Finally, by part (ii) of Theorem 1, we have

vα ≤ (βeq)Tueq

(βeq)Tα =
n∑

i=1
ueq
i . �

It is important to notice that the lower bound provided by Theorem 1 does not necessarily improve on 
Legut’s lower bound, but it certainly does so when

cone
(
u1,u2, . . . ,um

)
⊆ cone

(
e1, . . . ,ej−1,ueq, ej+1, . . . ,en

)
, (19)

for, in such case, conv(u1, u2, . . . , um) lies above conv(e1, . . . , ej−1, ueq, ej+1, . . . , en), and the first set of 
EVVs provides a better bound then the latter.

Example 1. We consider a [0, 1] good that has to be divided among three agents (see Fig. 1) with equal 
claims, α = (1/3, 1/3, 1/3)T , and preferences given as density functions of probability measures w.r.t. the 
Lebesgue measure

f1(x) = 1 f2(x) = 2x f3(x) = 30x(1 − x)4 x ∈ [0, 1],

f3 being the density function of a Beta(2, 5) distribution. The preferences of the players are not concentrated 
(following Definition 12.9 in Barbanel [2]) and therefore there is only one EVV associated to each β ∈ Δ2
(cf. [2], Theorem 12.12).
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The EVV corresponding to βeq = (1/3, 1/3, 1/3)T is

ueq = (0.0501, 0.75, 0.8594)T .

Consequently, the bounds provided by Legut are

1.3437 ≤ vα ≤ 1.6594.

Consider now two other vectors in Δ2, β1 = (13/24, 6/24, 5/24)T and β2 = (3/12, 8/12, 1/12)T , which 
generate the following EVVs

u1 = (1, 0, 0)T and u2 = (0.1875, 0.9648, 0)T .

The vectors u1, u2 and ueq satisfy the hypotheses of Theorem 1 and the inclusion (19). The improved 
bounds are

1.3559 ≤ vα ≤ 1.625.

The next example shows that linearly independent (dependent, resp.) vectors {βi}i=1,...,m do not neces-
sarily lead to linearly independent (dependent, resp.) EVVs {ui}i=1,...,m.

Example 2. Consider again a [0, 1] good to be divided among three agents, and preferences given by the 
following density functions w.r.t. the Lebesgue measure

f1(x) = (2/3)I[0,1/2)(x) + (4/3)I(1/2,1](x),

f2(x) = 2I[0,2/5)(x) + (1/3)I(2/5,1](x),

f3(x) = (1/2)I[0,3/4)(x) + (5/2)I(3/4,1](x),

IA(x) being the indicator function of the set A.
To the following three linearly independent vectors in Δ2

β1 = (1/3, 1/3, 1/3)T β2 = (2/5, 1/5, 2/5)T β3 = (1/4, 1/3, 5/12)T

we associate, respectively, the optimal partitions

B1 = B2 =
(
(2/5, 3/4), [0, 2/5

)
,
(
3/4, 1]

)
,

B3 =
(
(1/2, 3/4),

[
0, 2/5

)
, (2/5, 1/2) ∪

(
3/4, 1

])
.

Consequently,

u1 = u2 = (2/5, 4/5, 5/8)T u3 = (1/3, 4/5, 27/40)T ,

which are linearly dependent. On the other hand, considering

β4 = (0, 0, 1)T β5 = (1/6, 1/6, 2/3)T

we have

B4 =
(
∅,∅, [0, 1]

)
and B5 = B3
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and

u4 = (0, 0, 1) and u5 = u3

Now β1, β4, β5 are linearly dependent, while the corresponding EVVs are not.

Establishing sufficient conditions that guarantee the linear independence (or dependence) of the EVVs 
remains an open issue.

3. Improving the bounds

The bounds for vα depend on the choice of the EVVs that satisfy the hypotheses (6) and (8) of Theorem 1. 
Any additional EVV yields a new term in the upper bound. Since we consider the minimum of these terms, 
this addition is never harmful. Improving the lower bound is a more delicate task, since we should modify 
the set of supporting EVVs for the lower bound. When we examine a new EVV we should verify whether 
replacing an EVV in the old set will bring to an improvement.

The following theorem provides simple tests to verify whether such replacement will bring an improvement 
in the bound and indicates how to make the replacement.

Theorem 2. Let u∗, u1, . . . , um be m + 1 EVVs, m ≤ n, with

rank
(
u∗,u1, . . . ,um

)
= m (20)

and the last m vectors linearly independent and satisfying conditions (6) and (8). Let x = (x1, . . . , xm) ∈ R
m, 

xk ≥ 0 for every k = 1, . . . , m, and y = (y1, . . . , ym) ∈ R
m, respectively, be the unique solutions of the 

following linear systems of equations

Ux =
m∑

k=1

xku
k = α (21)

Uy =
m∑
i=1

yiu
i = u∗ (22)

with U = (u1, . . . , um). Take j ≤ m such that yj �= 0. Then, replacing uj with u∗ in u1, . . . , um, the 
EVVs are linearly independent and satisfy assumption (6) of Theorem 1. Moreover, the same EVVs satisfy 
condition (7) in Theorem 1 if and only if

yj > 0 for some j ≤ m xk ≥ yk
yj

xj for all k �= j. (23)

When (23) holds, the same replacement also yields a sharper lower bound if and only if

xj > 0 and
m∑

k=1

yk > 1. (24)

Proof. Let Ū be an m ×m submatrix of U with det(Ū) �= 0 and let U∗ denote the matrix obtained from 
U by replacing uj , the j-th column of U , with u∗. Finally, let Ū∗ be the submatrix of U∗ with the same 
selection of rows operated in Ū . Since

det
(
Ū

∗) = yj det(Ū)

then yj �= 0 implies that the vectors u1, . . . , uj−1, u∗, uj+1, . . . , um are linearly independent.
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Consider now a solution x∗ = (x∗
1, . . . , x

∗
m) of the system of linear equations

U∗x∗ =
∑
k �=j

x∗
ku

k + x∗
ju

∗ = α. (25)

Since (22) holds, we can write (25) as

∑
k �=j

x∗
ku

k + x∗
j

(
m∑
i=1

yiu
i

)
= α

which, when yj �= 0, has the unique solution x∗
k = xk − yk

yj
xj for k �= j, and x∗

j = xj

yj
, with 

rank(U∗, α) = m. Moreover, x∗
k ≥ 0 for every k = 1, . . . , m, and α belongs to the cone generated by 

u1, . . . , uj−1, u∗, uj+1, . . . , um, if and only if (23) holds.
A comparison of the linear system (21) with (11) and (14) shows that the lower bound r∗ provided by 

Theorem 1 can be written as

r∗ = 1∑m
k=1 xk

.

Now 
∑m

k=1 x
∗
k <

∑m
k=1 xk if and only if

(
m∑

k=1

yk − 1
)
xj

yj
> 0.

Therefore, (23) and (24) imply that the new set of EVVs provides a strictly sharper lower bound. �
Theorem 2 could, in principle, be applied iteratively by verifying the assumptions of the theorem for 

each new EVV. It must be noted, however, that, when m < n, we do not know about general reasonable 
conditions to generate a new EVV in the linear span of the current supporting set of EVVs, so to make (20)
hold (see Example 2 in the previous section).

The same assumption, however, is trivially satisfied when m = n. Moreover, Theorem 2 guarantees that 
the new set of EVVs u∗, {ui}i�=j , which provides an improved lower bound, is linearly independent, and 
this new supporting set can be compared with a new EVV for a further application of the theorem. In the 
example that follows we consider an instance of the iterative procedure.

Example 1 (Continued). We consider a list of 1000 random vectors in Δ2 and, starting from the supporting 
set e1, e2 and e3, we iteratively pick each vector in the list. If this satisfies conditions (23) and (24), then 
the supporting set is updated. The update occurs 22 times and the resulting EVVs are

u1 = (0.5356, 0.5128, 0.3857)T

u2 = (0.4592, 0.4887, 0.5780)T

u3 = (0.5562, 0.4384, 0.4524)T

corresponding, respectively, to

β1 = (0.4612, 0.3304, 0.2084)T

β2 = (0.4484, 0.3136, 0.2380)T

β3 = (0.4674, 0.3119, 0.2207)T
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with bounds shrinking to

1.48514 ≤ vα ≤ 1.48978.

The previous example shows that updating the supporting set through a random selection of the new 
candidates is rather inefficient, since it takes little less than 50 new random vectors, on average, to find a 
valid replacement for supporting EVVs.

A more efficient method picks the candidate EVVs through some accurate choice of the corresponding 
values of β. In [5] a subgradient method is considered to find the value of vα up to any specified level of 
precision. In that algorithm, the bounds provided by Corollary 1 are used, but these can be replaced by the 
sharper bounds suggested by Theorem 1.

Example 1 (Continued). Considering the improved subgradient algorithm, we obtain the following sharper 
bounds

1.48771 ≤ vα ≤ 1.48772

after 25 iterations of the algorithm in which, at each repetition, a new EVV is considered. Bounds with the 
same precision (< 10−5) would have required 30 iterations using the algorithm described in [5].
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