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It is shown how delta shock waves which consist of Dirac delta distributions and 
classical shocks can be used to construct non-monotone solutions of the Buckley–
Leverett equation. These solutions are interpreted using a recent variational 
definition of delta shock waves in which the Rankine–Hugoniot deficit is explicitly 
accounted for [6]. The delta shock waves are also limits of approximate solutions 
constructed using a recent extension of the weak asymptotic method to complex-
valued approximations [15]. Finally, it is shown how these non-standard shocks can 
be fitted together to construct similarity and traveling-wave solutions which are 
non-monotone, but still admissible in the sense that characteristics either enter or 
are parallel to the shock trajectories.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Buckley–Leverett (BL) equation describes two-phase flow in a porous medium in the limit where 
capillary forces can be neglected. In non-dimensional variables, the equation can be written in normalized 
form as

∂tu + ∂x

(
u2

u2 + a(u− 1)2

)
= 0, (1.1)

where the unknown u represents the saturation of the wetting phase, and the constant a > 0 in the case of 
homogeneous systems represents the viscosity ratio between the fluids. In terms of the mathematical theory 
of hyperbolic conservation laws, the physical situation modeled by the equation is described by entropy 
admissible solutions of (1.1). As shown in [1], the mathematical entropy for this equation is given by the 
capillary energy, and admissible solutions with discontinuities must have characteristic curves which enter 
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Fig. 1. The classical admissible solutions consisting of simple waves. In the left panel u1
L < u∗, and the Riemann problem is solved 

by a single shock. In the right panel u2
L > u∗, and the Riemann problem is solved by the combination of a rarefaction wave and a 

shock.

Fig. 2. The flux in the u–f(u) plane. The right state is labeled uR. The point at which the graph of f is tangent to the chord 
originating at (uR, f(uR)) is labeled (u∗, f(u∗)). Two possible left states are indicated as u1

L and u2
L.

into or are parallel to the shock trajectories. For instance, one may consider the Riemann problem describing 
the evolution of two constant states separated by a single discontinuity. Such a configuration describes well 
the setup of many experiments started with initially homogeneous saturations, and where the proportion 
of the injected fluids is held constant during the experiment.

Mathematically, the Riemann problem consists of (1.1) supplemented with initial data given by

u(x, 0) =
{
uL, x < 0,
uR, x > 0. (1.2)

Depending on the size of uR and uL, the similarity solution to (1.1), (1.2) consists either of one shock wave, 
or of the combination of a shock wave followed by a rarefaction wave (see Figs. 1 and 2). The shock waves 
satisfy the usual Rankine–Hugoniot condition, and uniqueness of a solution to the Riemann problem can 
be established in the case of a combination of a shock and a rarefaction wave if it is required that the shock 
propagates at the same speed as the slowest part of the rarefaction wave [1,19,23].

In the current work, the focus is on solutions which consist of non-standard shocks which do not satisfy 
the Rankine–Hugoniot condition. These shocks feature a non-zero Rankine–Hugoniot deficit, and may be 
described with the help of Dirac delta distributions. The study of such measure-valued solutions goes back to 
the work of Korchinski [18] and Keyfitz and Kranzer [17]. There are a number of reasonable ways to multiply 
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Heaviside and Dirac distributions, such as [3–5], and using these, a number of definitions of measure-valued 
solutions of systems of conservation laws have been introduced, such as for example in [5,12,14,22].

More recently, a variational definition for delta shocks for systems of two conservation laws was put 
forward in [6]. The definition laid down in [6] is generally used in tandem with the weak asymptotics 
method, such as defined in [4], and is able to directly keep track of the Rankine–Hugoniot deficit, thus 
circumventing the need to include singular terms in the definition of the weak solution, and avoiding the 
problem of multiplication of distributions. The technique of using complex-valued corrections in the method 
of weak asymptotics was introduced in [15,16] extends the range of applicability of the variational approach 
to a larger class of fluxes. The method introduced in [15,16] also turns out to be crucial in the treatment of 
equations such as (1.1) which feature quotients of singular terms, and was also used in [2,24,25].

Solutions with non-monotone profiles were also found if the Buckley–Leverett equation is regularized with 
a third-order derivative term representing a physical effect known as dynamic capillarity [9,10]. In these 
works, solutions were found which do not satisfy the usual entropy conditions, but which are given as the limit 
of a regularized problem in which both equilibrium and dynamic capillarity were taken into account, and 
which satisfy the classical Rankine–Hugoniot conditions. In contrast, in the current work, we find solutions 
which are entropy-admissible in the classical sense, but which feature a non-zero Rankine–Hugoniot deficit.

The works [9,10] were motivated in part by laboratory experiments which indicate that under certain 
conditions, the saturation exhibits a non-monotone behavior. Indeed, as discussed in [11] (and the references 
contained therein) large fluxes often feature a behavior which is characterized by an initial overshoot of the 
concentration at the wetting front, and subsequent drainage of the wetting phase behind the front. Such a 
phenomenon was also observed in recent experiments on water infiltration into different types of sand by 
DiCarlo [7] in which the situation is essentially one-dimensional.

In the experiments presented in [7], a constant flux is applied to an initially dry medium, a situation 
which can be described mathematically by requiring that the saturation function u satisfies

u =
{
uL, x → −∞,

u = 0, x → +∞.

These experiments clearly show that non-monotone behavior is observed for large enough fluxes. A number 
of plausible mathematical explanations of this phenomenon have been put forward, including modifications 
of the Richards equation [8,11] and the regularization of the Buckley–Leverett equation by dynamic capil-
larity [9,10]. However, one particular feature of the experimental results, namely the constant width of the 
overshoot region has not been explained by any of the proposed mathematical models.

In the present note, it is not our purpose to offer an explanation of the non-monotone behavior in physical 
terms, but rather to demonstrate that non-monotone solutions may be found directly in the Buckley–
Leverett equation. The solutions found here are based on the variational theory laid down in [6], which 
defines solutions featuring a positive Rankine–Hugoniot deficit. The solutions are admissible in the sense 
that they are limits of regularized solutions in the weak asymptotic limit, and in addition are entropy-
admissible in the classical sense. While the Buckley–Leverett equation may not be precisely the correct 
model for the study of sand infiltration such as described in [7], our approach shows that non-monotone 
solutions exist – at least in a mathematical sense – directly in the hyperbolic theory. One may therefore 
speculate if variational definition of weak solutions is connected to possible modifications to conservation 
laws which break down due to the inadequacies of the continuum hypothesis.

The disposition of the paper is as follows. In the next section, we formulate a variational framework for 
delta-shock solutions of the Buckley–Leverett equation which mirrors the variational concept defined for 
2 ×2 systems in [6,15]. In Section 3, we justify the δ-shock solution mentioned above by the weak asymptotic 
method. Using the solution concepts laid down in Sections 2 and 3, we show how to construct non-monotone 
solutions of the Riemann problem in Section 4. Finally, in Section 5, we construct non-monotone traveling-
wave solutions of the Buckley–Leverett equation.
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2. Variational formulation of delta-shock solutions

We define the flux

f(u) = u2

u2 + a(u− 1)2 , (2.1)

and write the equation in the form

ut + f(u)x = 0. (2.2)

In order to allow solutions which are not admissible in the classical sense, we will make use of the concept 
of weak solutions which consist of shocks associated with Dirac masses placed on the path of the shock. The 
general definition follows the concept introduced in [6]. Suppose Γ = {γi | i ∈ I} is a graph in the closed 
upper half plane, containing Lipschitz continuous arcs γi, i ∈ I, where I is a finite index set. Let I0 be the 
subset of I containing all indices of arcs that connect to the x-axis, and let Γ0 = {x0

k | k ∈ I0} be the set 
of initial points of the arcs γk with k ∈ I0. Define the singular part by α(x, t)δ(Γ) =

∑
i∈I αi(x, t)δ(γi). Let 

u be a distribution of the form

u(x, t) = U(x, t) + α(x, t)δ(Γ),

where U ∈ L∞(R × R+). Let ∂ϕ(x,t)
∂l denote the tangential derivative of a function ϕ on the graph γi, and 

let 
∫
γi

denote the line integral over the arc γi.

Definition 2.1. The distribution u(x, t) = U(x, t) + α(x, t)δ(Γ) is called a generalized δ-shock wave solution 
of Eq. (1.1) with the initial data u(x, 0) = U0(x) +

∑
I0
αk(xk

0 , 0)δ
(
x − x0

k

)
if the integral identity

∫
R+

∫
R

(U∂tϕ + f(U)∂xϕ) dxdt +
∫
R

U0(x)ϕ(x, 0) dx

+
∑
i∈I

∫
γi

αi(x, t)∂ϕ(x,t)
∂l dx +

∑
k∈I0

αk(x0
k, 0)ϕ(x0

k, 0) = 0, (2.3)

holds for all test functions ϕ ∈ D(R × R+).

This definition applies to the case of general initial data. However, let us first look at the Riemann 
problem for (1.1) with initial data

U(x, 0) =
{
uL, x < 0,
uR, x > 0. (2.4)

Using Definition 2.1, it is not difficult to see that for any c ∈ R, and any given uL and uR, a solution of the 
form u(x, t) = U(x, t) + α(t)δ(x − ct) exists, where

U(x, t) =
{
uL, x < ct,

uR, x > ct,
(2.5)

and the amplitude of the singular part of the shock is given by

α(t) =
(
c[uR − uL] − [f(uR) − f(uL)]

)
t. (2.6)



886 H. Kalisch et al. / J. Math. Anal. Appl. 428 (2015) 882–895
Theorem 2.1. Given any uL, uR ∈ [0, 1], and given any c ∈ R, define the distribution u(x, t) = U(x, t) +
α(t)δ(x − ct), where U(x, t) is given by (2.5) and α(t) is given by (2.6). Then u(x, t) is a solution of the 
Riemann problem (2.2), (2.4) in the sense of Definition 2.1.

Proof. The proof of the theorem follows by substituting u into (2.3). After standard transformations, the 
identity

∫
R+

(c[U ] − [f(U)])ϕ(ct, t) dt−
∫
R+

α′(t)ϕ(ct, t) dt = 0

appears, where [U ] = uR − uL and [f(U)] = f(uR) − f(uL), and since α(0) = 0, the conclusion follows 
immediately. �

In the next section, we will justify the solution given above by the method of weak asymptotics. In general, 
if the weak asymptotic method, such as defined in [4,6] is used in tandem with the above definition, the 
solutions are thought to be admissible, although this admissibility concept does not yield uniqueness. The 
weak asymptotic method was recently extended to the case where complex-valued corrections are allowed 
[15,16], and it will appear in the next section that the use of complex-valued corrections plays a crucial role 
in the construction of weak asymptotic solutions to the Buckley–Leverett equation.

3. Weak asymptotics

In this section, we shall construct an approximative solution to the Buckley–Leverett equation posed with 
piecewise constant initial data. We shall show how to accomplish this in the case of the Riemann problem 
since the case of multiple steps is treated similarly. We begin with a general definition of what we shall 
mean by an approximate solution. First we define a vanishing family of distributions.

Definition 3.1. Let fε(x) ∈ D′(R) be a family of distributions depending on ε ∈ (0, 1). We say that fε =
oD′(1) if for any test function φ(x) ∈ D(R), the estimate

〈fε, φ〉 = o(1), as ε → 0

holds.

The estimate on the right-hand side is understood in the usual Landau sense. Thus we may say that a 
family of distributions approach zero in the sense defined above if for a given test function φ, the pairing 
〈fε, φ〉 converges to zero as ε approaches zero.

Definition 3.2. We say that the family of complex-valued distributions (uε) represents a weak asymptotic 
solution to (1.1) if there exist real-valued distribution u ∈ C

(
(0, ∞

)
; D′(R)), such that for every fixed 

t ∈ (0, ∞)

uε ⇀ u, as ε → 0,

in the sense of distributions in D′(R), and

∂tuε + ∂xf(uε), = oD′(1). (3.1)
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Let us remark that it is usually assumed that the relations oD′(R)(1) hold uniformly with respect to 
t ∈ (0, ∞). However, in the present case, Definition 3.2 is only used as an admissibility condition in tandem 
with Definition 2.1 defining singular solutions. Since we also use further admissibility conditions for the 
solutions constructed in Sections 4 and 5, we settle for the slightly weaker concept that the distributions 
(uε) converge to u pointwise in t. With these definitions in hand, the following theorem can be proved.

Theorem 3.1. For any uL, uR ∈ [0, 1], and every c ∈ R, there exists a family of functions (uε) representing 
the weak asymptotic solution to (1.1) such that

uε ⇀ U(x, t) + α(t)δ(x− ct), (3.2)

where U(x, t) is given by (2.5) and α(t) is given by (2.6).

Proof. In order to construct an approximate solution to (1.1) satisfying (3.2), we introduce a number of 
approximations. Denote by ω ∈ C∞(R) a smooth non-decreasing function such that 0 ≤ ω ≤ 1 and

ω(z) =
{

0, z ≤ −1,
1, z ≥ 1.

We denote the approximate Heaviside function and the approximate delta distribution, respectively by

Hε(x) = ω(z/ε), δε(x) = 1
ε
ω′(x/ε), x ∈ R.

In addition, we shall need the function χε, defined by

χε(x) =

⎧⎨
⎩

1, |x| ≤ ε/2,
0, |x| ≥ ε/2 + 2ε2,

1 − 1√
2ε

√
|x| − ε/2, otherwise.

This is a function which approximates the characteristic function of the interval (−ε/2, ε/2) ⊂ R in 
the sense that it is equal to unity in the interval (−ε/2, ε/2), and which has support on the interval 
(−ε/2 − 2ε2, ε/2 + 2ε2). We start with the following ansatz:

uε(x, t) = uRHε(x− ct− 10ε) + uLHε(−x + ct− 10ε)

+ α(t)
2 δε(x− ct− 20ε) + α(t)

2 δε(x− ct + 20ε) + up(t)/εχε(x− ct), (3.3)

where up(t)/ε is chosen such that

f(up(t)/ε) = p(t)
ε

.

It is not difficult to see that

up(t)/ε =
−a±

√
aε
p(t) − a

ε
p(t) − (a + 1) = a

a +
√

εa
p(t) − a

, (3.4)

if the plus sign is chosen. In this case, we clearly have |u(x, t)| ≤ 1. Moreover, we may define
up(t)/ε(p = 0) = 0. As will come to light, the function p(t) will have to be chosen as p(t) = cα(t), and, for 
such a choice, up(t)/ε will have a non-zero imaginary part for small enough ε. Notice also that
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Hε(x− ct− 10ε)Hε(−x + ct− 10ε) = 0,

Hε(x− ct− 10ε) δε(x− ct− 20ε) = δε(x− ct− 20ε),

Hε(−x + ct− 10ε) δε(x− ct + 20ε) = δε(x− ct + 20ε),

Hε(−x + ct− 10ε)χε(x− ct) = 0,

Hε(x− ct− 10ε)χε(x− ct) = 0.

Moreover, we have

f
(
up(t)/εχε(x− ct)

)
= p(t)

ε
, x ∈ (ct− ε/2, ct + ε/2), t > 0.

Now, it remains to insert uε into (3.1). Accordingly, for an arbitrary test function ϕ ∈ C∞
c (R), we have

∫
R

{
∂tuεϕ− f(uε)∂xϕ

}
dx

=
ct−30ε∫
−∞

{
0 − f(uL)ϕ′(x)

}
dx +

∞∫
ct+30ε

{
0 − f(uR)ϕ′(x)

}
dx

+
ct−15ε∫

ct−30ε

{[
α′(t)

2 δε(x− ct + 20ε) − α(t)
2 cδ′ε(x− ct + 20ε)

]
ϕ(x) − f(uε)ϕ′(x)

}
dx

+
ct+30ε∫

ct+15ε

{[
α′(t)

2 δε(x− ct− 20ε) − α(t)
2 cδ′ε(x− ct− 20ε)

]
ϕ(x) − f(uε)ϕ′(x)

}
dx

+
ct−5ε∫

ct−15ε

{
cuLδε(−x + ct− 10ε)ϕ(x) − f

(
uLHε(−x + ct− 10ε)

)
ϕ′(x)

}
dx

+
ct+15ε∫
ct+5ε

{
− cuRδε(x− ct− 10ε)ϕ(x) − f

(
uRHε(x− ct− 10ε)

)
ϕ′(x)

}
dx

+
ct+5ε∫

ct−5ε

∂tup(t)/εχε(x− ct)ϕ(x)dx− cup(t)/ε

ct+5ε∫
ct−5ε

∂xχε(x− ct)ϕ(x)dx

−
ct+ε/2∫

ct−ε/2

p(t)
ε

ϕ′(x)dx−
∫

(ct−ε/2−2ε2,ct+ε/2+2ε2)\(ct−ε/2,ct+ε/2)

f(up(t)/εχε(x− ct))ϕ′(x)dx.

The first two integrals on the right-hand side of the above equality converge to −f(uL)ϕ(ct) and f(uR)ϕ(ct), 
respectively, as ε → 0. The sum of the third and fourth integral converges to α′(t)ϕ(ct) + cα(t)ϕ′(ct) as 
ε → 0. The fifth and sixth integrals converge to cuLϕ(ct) and −cuRϕ(ct), respectively as ε → 0. As for 
the seventh integral, we note that both u p(t)

ε
and its time derivative are finite for any fixed t > 0 for small 

enough ε. Thus, since the size of the domain of integration of the seventh integral is 10ε, the integral tends 
to zero as ε → 0. It will be shown in Appendix A that the eighth integral and the very last integral both 
tend to zero as ε → 0. Then, it can be concluded that
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Fig. 3. Schematic picture of a non-monotone admissible solution to the Riemann problem. The shock δS1 has been slowed to match 
the characteristic speed of uM . Between uM and u∗, there is a rarefaction wave, and from u∗ to uR, there is another admissible 
(non-delta) shock S2.

∫
R

{
∂tuεϕ− f(uε)∂xϕ

}
dx =

(
− c[uR − uL] + [f(uR) − f(uL)]

)
ϕ(ct)

+ α′(t)ϕ(ct) + cα(t)ϕ′(ct) − p(t)
ct+ε/2∫

ct−ε/2

ϕ′(x)
ε

dx + oD′(1),

where oD′(1) → 0 as ε → 0. The proof of the theorem is concluded by taking p(t) = cα(t) and letting 
ε → 0. �

It should be noted that multiplication of distributions can also be studied in the context of Colombeau 
algebras, such as explained in [3,13,21]. In fact, Definition 3.2 can be understood as a variant of appropriate 
definitions in [4,20]. The main difference is that in the present case, a solution is found pointwise with 
respect to t ∈ R+, and it is required that the distributional limit of the weak asymptotic solution be a 
distribution.

Another comment is in order. Note that we have used the functional form of the flux given by (2.1)
for values of u on the real line. However, from a physical point of view, only the values of the flux for 
0 ≤ u ≤ 1 are important, and the definition of the flux for values other than these is essentially arbitrary. 
For instance, one could define f(u) to be monotone and unbounded outside of the interval u ∈ [0, 1]. While 
such a definition would not change the physical applicability of Eq. (2.2), it would change the definition of 
delta-shock solutions. In particular, if f(u) were unbounded, the use of imaginary corrections in (3.3) could 
possibly be avoided.

4. Riemann problem

The delta-shock solutions described in the previous section may be used to construct non-monotone 
solutions of the Riemann problem for (1.1). Let uI ∈ (0, 1) denote the value of u at which the inflection 
point of the graph of f(u) is located. Given initial data (1.2), with 0 ≤ uR < uI , a solution can be constructed 
by taking a delta shock δS1 from uL to a value uM . Thanks to the Rankine–Hugoniot defect, this shock is 
slowed to have the same speed as the characteristic speed f ′(uM ). The solution continues with a rarefaction 
wave from uM to u∗, where u∗ denotes the value of u where the extension of the region under the graph 
of f(u) to the convex hull to the point {uR, f(uR)} begins, and a classical shock from u∗ to uR with shock 
speed determined by the usual Rankine–Hugoniot condition. This solution is depicted in Fig. 3, and the 
features are summarized in the following theorem.
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Theorem 4.1. Suppose we are given Riemann data (1.2), such that 0 < uR < uI , and 0 < uL ≤ 1. If 
uM > u∗ is such that f ′(uM ) < f ′(uL), then there is a solution of the Riemann problem given by

u(x, t) = U(x, t) + α(t)δ(x− c1t), (4.1)

where U(x, t) is given by

U(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

uL, x < c1t,

uM , x = c1t,

[f ′]−1(x/t), c1t < x < c2t

uR, c2t < x.

The shock velocity of the delta shock δS1 is given by c1 = f ′(uM ), and the strength of δS1 is given by α(t) =
(c1[uM −uL] − [f(uM ) −f(uL)])t. The shock velocity of the shock S2 is given by c2 = [f(uR)−f(u∗)]

[uR−u∗] = f ′(u∗). 
The solution is admissible in the sense that both shocks are compressive.

The proof of the theorem follows easily from piecing together the delta shock δS1, the rarefaction wave, 
and the classical shock S2. It is straightforward to check that this is a solution both in the sense of Defini-
tion 2.1 and in the sense of Definition 3.2 if the strength of the delta shock δS1 is given by (2.6) as indicated. 
Moreover, as shown in the right panel of Fig. 3, the solution is admissible in the sense that characteristics 
are either entering the shock, or are parallel to the shock. Thus the solution is compressive, and it may also 
be shown that the solution is entropy admissible in the sense defined in [1].

It should be noted that the above construction works for both uL < u∗ and uL > u∗. Note also that 
the admissibility condition is not strong enough to yield uniqueness, as the value of uM is not uniquely 
determined from the initial data.

5. Traveling waves

The solution in the previous section may be modified by extending the region in which the solution u
takes the value uM to nonzero width. This region will then be sandwiched between the delta shock δS1 on 
the left and the rarefaction wave on the right. However, in this case the solution is not the solution of a 
Riemann problem. On the other hand, inclusion of the rarefaction wave precludes the possibility of constant 
width of the overshoot region, which is observed experimentally. In this final section, we shall consider the 
possibility of traveling-wave solutions which are steady waves which propagate without altering the solution 
profile in time.

Suppose the values uR and uL are given such that 0 ≤ uR < uI < uL < 1 and f ′(uR) < f ′(uL). As 
before, let {u∗, f(u∗)} be the point on the graph of f(u) which marks the right endpoint of the part of the 
convex hull which lies above the graph, as shown in Fig. 2. Suppose we have uR < uL < u∗. Then since 
uI < uL, we have f ′(uL) > f ′(u∗), and the solution consists of a delta shock, a constant region u = u∗ and 
a regular shock connecting u∗ and uR. The solution is illustrated in Fig. 4. Defining the L∞-part of the 
solution by

U(x, t) =

⎧⎨
⎩

uL, x < ct

u∗, ct ≤ x < ct + m

uR, ct + m ≤ x,

(5.1)

for an arbitrary m ∈ R, the following theorem can be formulated.

Theorem 5.1. Suppose we are given uR and uL, such that 0 ≤ uR < uI < uL < u∗, and f ′(uR) < f ′(uL). 
Then there exists a solution of (1.1) given by
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Fig. 4. Schematic picture of a traveling-wave solution. The shock δS1 has been slowed to match the characteristic speed of u∗. The 
shock S2 also matches the characteristic speed of u∗.

u(x, t) = U(x, t) + α(t)δ(x− ct), (5.2)

where U(x, t) is given by (5.1), the shock velocity of the delta shock δS1 and the classical shock S2 is given 
by c = f ′(u∗), and the strength of the δS1 is given by α(t) = (c[u∗ − uL] − [f(u∗) − f(uL)])t.

The solution is admissible in the sense that all characteristics either enter into or are collinear to shock 
trajectories.

In this theorem, c represents the velocity of the profile, and m denotes the width of the overshoot region. 
The proof follows immediately from the proofs of Theorem 2.1 and Theorem 3.1 since the two shocks are 
separated by a region of nonzero width m.

Note that this solution is steady, but is not a similarity solution such as the weak solution of a Riemann 
problem. A certain measure of uniqueness for the above solution follows from the principle of minimizing 
the number of delta shocks (cf. [16]) because choosing a value other than u∗ for the overshoot region would 
necessitate the inclusion of two delta shocks. However, this principle is not strong enough to provide overall 
uniqueness, as the width m is still undetermined.

Next, we treat the case where u∗ < uL. In this case, the solution contains two delta shocks. First, for an 
arbitrary m, define U(x, t) by

U(x, t) =

⎧⎨
⎩

uL, x < ct

uM , ct ≤ x < ct + m

uR, ct + m ≤ x.

(5.3)

Then the following theorem holds.

Theorem 5.2. Suppose we are given uR and uL such that 0 ≤ uR < u∗ < uL < 1, and f ′(uR) < f ′(uL). If 
uM can be chosen such that f ′(uR) < f ′(uM ) < f ′(uL), then there exists a solution of (1.1) given by

u(x, t) = U(x, t) + α1(t)δ(x− ct) + α2(t)δ(x− ct−m), (5.4)

where U(x, t) is given by (5.3). The shock velocity of the delta shocks δS1 and δS2 is given by c = f ′(uM ). 
The strength of δS1 is given by α1(t) = (c[uM − uL] − [f(uM ) − f(uL)])t, and the strength of δS2 is given 
by α2(t) = (c[uR − uM ] − [f(uR) − f(uM )])t.

The solution is admissible in the sense that all characteristics either enter into or are collinear to shock 
trajectories.

As explained above, the proof of this theorem also follows immediately from the proofs of Theorem 2.1
and Theorem 3.1 since the two shocks are separated by a region of nonzero width m. Note that there are 
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Fig. 5. Schematic picture of a non-monotone traveling-wave solution. The shock δS1 has been slowed to match the characteristic 
speed of uM . The shock δS2 also matches the characteristic speed of uM .

two possibilities for choosing uM . One is in the interval (uR, Ul), where Ul < uL and f ′(Ul) = f ′(uL), and 
the other is in the interval (uL, Ur), where Ur > uL is such that f ′(Ur) = f ′(ur). The former choice yields 
a monotone solution while the latter yields a non-monotone solution (see Fig. 5).

As already mentioned in the introduction, experimental results show that if a saturation overshoot 
develops, then the speed of the two fronts will generally be the same, so that the width of the domain 
of maximum saturation should remain unchanged in time. While the solutions constructed in this section 
exhibit such a behavior, the link to the physical modeling of an infiltration problem is unclear since the 
non-zero Rankine–Hugoniot deficit appears to upset the principle of mass conservation. Nevertheless, it has 
been shown in this paper that it is at least mathematically possible to construct non-monotone admissible 
solutions of the Buckley–Leverett equation with various requisite properties.
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Appendix A. Convergence of integrals

In this appendix, it will be shown that the eighth and tenth integrals in the expression for 
∫
R

{
∂tuεϕ −

f(uε)∂xϕ
}
dx in the proof of Theorem 3.1 converge to zero. Let us first look at the eighth integral.

Lemma A.1.

cup(t)/ε

ct+5ε∫
ct−5ε

∂xχε(x− ct)ϕ(x)dx (A.1)

approaches zero as ε → 0.

Proof. Note first of all that it follows from (3.4) that up(t)/ε is finite and uniformly bounded for all ε. Next, 
recall the definition of χε,
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χε(x) =

⎧⎨
⎩

1, |x| ≤ ε/2,
0, |x| ≥ ε/2 + 2ε2,

1 − 1√
2ε

√
|x| − ε/2, otherwise,

and note that we have

ε/2+2ε2∫
ε/2

|∂xχε(x)| dx = −
ε/2+2ε2∫
ε/2

∂xχε(x) dx = χ(ε/2) − χ(ε/2 + 2ε2) = 1. (A.2)

Since the test function ϕ is smooth, we can use a finite Taylor expansion with the Lagrangian form of the 
remainder to write

ϕ(x) = ϕ(ct) + [x− ct]ϕ′(ξ),

where ξ ∈ (ct − x, ct + x). Since the function ∂xχε(· − ct) is odd around ct, we have

ct+5ε∫
ct−5ε

∂xχε(x− ct)ϕ(x)dx = 2
ct+ε/2+2ε2∫
ct+ε/2

∂xχε(x− ct) [x− ct]ϕ′(ξ) dx

= 2
ε/2+2ε2∫
ε/2

∂xχε(x)xϕ′(ξ + ct) dx.

Thus it follows that

∣∣∣∣∣∣
ct+5ε∫

ct−5ε

∂xχε(x− ct)ϕ(x) dx

∣∣∣∣∣∣ ≤ 2
[
ε/2 + 2ε2]max |ϕ′|

ε/2+2ε2∫
ε/2

|∂xχε(x)| dx.

Using (A.2), we see that (A.1) approaches zero as ε → 0. �
Next, we show that the tenth integral in the expression for 

∫
R

{
∂tuεϕ − f(uε)∂xϕ

}
dx in the proof of 

Theorem 3.1 approaches zero.

Lemma A.2.
∫

(ct−ε/2−2ε2,ct+ε/2+2ε2)\(ct−ε/2,ct+ε/2)

f(up(t)/εχε(x− ct))ϕ′(x)dx (A.3)

approaches zero as ε → 0.

Proof. Note first that

ε/2+2ε2∫
ε/2

1
1 − χε(x) dx = 2

√
2ε

√
x− ε/2

∣∣ε/2+2ε2

ε/2 → 0 (A.4)

as ε → 0. The integral in question can be estimated as follows:
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∣∣∣∣∣∣∣
∫

(ct−ε/2−2ε2,ct+ε/2+2ε2)\(ct−ε/2,ct+ε/2)

f(up(t)/εχε(x− ct))ϕ′(x)dx

∣∣∣∣∣∣∣

≤ 2 max |ϕ′|
ct+ε/2+2ε2∫
ct+ε/2

∣∣f(χε(x− ct)up(t)/ε
)∣∣ dx

= 2 max |ϕ′|
ε/2+2ε2∫
cε/2

∣∣∣ 1
1 + a

(
1 − 1

χε(x)up(t)/ε

)2
∣∣∣ dx.

Now note that for any complex number, we have |Im(z)| ≤ |z|, so that the denominator of the integrand 
may be replaced by its imaginary part. Substituting the expression for up(t)/ε, we see that

Im
{

1 + a
(
1 − 1

χε(x)up(t)/ε

)2
}

= 2
√
a
√

1 − ε/p(t) 1
χε(x)

[ 1
χε(x) − 1

]
.

Hence the integral (A.3) can be estimated by

2 max |ϕ′|
2
√
a
√

1 − ε/p(t)

ε/2+2ε2∫
ε/2

χε(x)[
1

χε(x) − 1
] dx.

Finally, we have

lim
ε→0

2 max |ϕ′|
2
√
a
√

1 − ε/p(t)

ε/2+2ε2∫
ε/2

χε(x)
1

χε(x) − 1
dx = lim

ε→0

2 max |ϕ′|
2
√
a
√

1 − ε/p(t)

ε/2+2ε2∫
ε/2

χ2
ε(x)

1 − χε(x) dx

≤ lim
ε→0

2 max |ϕ′|
2
√
a

ε/2+2ε2∫
ε/2

1
1 − χε(x) dx,

since χε(x) is at most equal to unity. Invoking (A.4), we see that the integral does indeed approach zero. �
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