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1. Introduction

Let H be a Hilbert space with the inner product (.,.) and the norm ||.||, and let A: D(A) C H — H be
a linear, positive-definite, self-adjoint operator with compact inverse on H. For L > 0, consider the inverse
problem of finding the function w : [0, L] — H from the equation
d?u(z)

2 = Auz) + Gz uz), z€(0,L), (1.1)
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with the (initial) Cauchy conditions

u(0) = f, o)
du 1.2

where (f,h) are given data in H x H and the source function G : [0, L] x H — H will be defined later.
In practice, the data (f,h) € H x H is noisy and is represented by the perturbed data (f°,h°) € H x H
satisfying

172 = fllez + 100 =Rl <6, (1.3)

where the constant § > 0 represents a known upper bound of the measurement error.

It is well-known that in general the Cauchy problem for elliptic equations is severely ill-posed in
Hadamard’s sense, i.e. a small perturbation in the given Cauchy data (1.2) may cause a very large error in
the output solution u(z) for z € (0, L]. Moreover, the instability increases with increasing the distance z from
the boundary z = 0. Therefore, it is very difficult to solve the problem by using classical numerical methods
of inversion [22]. In order to overcome this instability, regularization methods are naturally required.

Equation (1.1) is an abstract version which generalizes many well-known equations. For a simple exam-
ple, if A = —A (Laplace operator) and G(z,u(z)) = —k?*u(z) with k real or purely imaginary, then the
equation (1.1) becomes the Helmholtz or modified Helmholtz equation, respectively, which arises in many
engineering applications related to propagating waves in different environments or heat transfer in fins.
More generally, for A = —A and G a nonlinear function of u, equation (1.1) becomes the nonlinear Poisson
equation which is encountered in numerous applications in heat and mass transfer, chemical reactions, gas
dynamics and fluid flow in porous media [2,3,19].

In the past, there have been many studies on the homogeneous problem given by equation (1.1) with
G =0 and (1.2). For instance, Elden and Berntsson [14] used the logarithmic convexity method to obtain
a stability result of Holder type. Alessandrini et al. [1] provided optimal stability results under minimal
assumptions, whilst Reginska and Tautenhahn [33] presented some stability estimates and a regularization
method for a Cauchy problem for Helmholtz equation. Many methods have been proposed to solve the
Cauchy problem for linear homogeneous elliptic equations, such as the method of successive iterations [10],
the alternating method [26], the conjugate gradient method [12,23], the iterative regularization method [15],
the quasi-reversibility method [25,30], the fourth-order modified method [29], the Fourier truncation regular-
ized (or spectral regularized) method [18,34], etc. Nevertheless, the literature devoted to the Cauchy problem
for linear homogeneous elliptic equations is very rich, see e.g. [4,5,7,9,11,13,16,21,25,28,32,34] and the ref-
erences therein. Recently, a linear inhomogeneous version of Helmholtz equation (i.e. G(z,u(z)) = G(z) in
equation (1.1)) has been considered in [35].

Although there are many works on the linear case, the literature on the nonlinear case is quite scarce.
We mention here a nonlinear elliptic problem of [37], where the authors approximated (1.1) and (1.2) by a
truncation method. However, their results are only given for globally Lipschitz source terms.

In practice, the applications of nonlinear problem requires the extended Lipschitz source term. For ex-
ample, if G(z,u) = sinu, then the equation (1.1) is called the elliptic-sine Gordon equation which occurs
in several areas of mathematical physics including the theory of Josephson effects, superconductors and
spin waves in ferromagnets, see e.g. [17,20]. Furthermore, the Lane-Emden equation Au = —u?, implying
G(z,u) = —uP, p > 1, plays a vital role in describing the structure of the polytropic stars, where p is called
the polytropic index [8]. Also, the reaction—diffusion equation Au = ®2u?, implying G(z,u) = ®?uP, governs
kinetic and diffusional phenomena in chemical reaction engineering. In this equation, p is the order of the
reaction and ®?2 is called the Thiele parameter representing the ratio of kinetic to transport resistances in
the domain, see [3] where other physical models such as thermal explosion G(z,u) = —exp(u — 1), and
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substrate inhibition G(z,u) = ®?u/(1 + au + Bu?), are also considered. Finally, for G (z,u) = u — u?®, we
have the Allen—-Cahn equation originally formulated in the description of bi-phase separation in fluids. From
this wide range of physical examples one can observe that, except for the sine-Gordon equation in which the
sine-nonlinearity is a global Lipschitz function, the other examples present a nonlinear function G which is
only locally Lipschitz, i.e. for all B > 0, there exists k(B) > 0 such that

1G(z,u) = G(z,0)|g < K(B) [lu =vly  Vze[0,L], if max{{ullg, |[vllg} < B. (1.4)

To the best of our knowledge, the Cauchy problem (1.1) and (1.2) for nonlinear elliptic equations with
a locally Lipschitz source term is yet to be investigated. Therefore, in the present paper, we propose a
new general filter function method to regularize the problem (1.1) and (1.2) in the case that G is locally
Lipschitzian with respect to u. Remark that it is impossible to solve the problem only with the assump-
tion (1.4) by applying directly the method of [37]. To overcome this technical difficulty, in this paper, we
propose a new idea in which the locally Lipschitz source function G is approximated by a sequence Gs of
globally Lipschitzian functions. Furthermore, assuming that the function k& given in (1.4) is increasing on
[0,400), we then choose a positive sequence {Bs}s>o satisfying 51ir(1)1+ Bs = 400 on which k(Bs) satisfies

certain constraints. We then define the function Gs from G as

B
Gs(z,v) =G (z,min {|v||6’ 1} v) , Y(z,v)€[0,L] x H. (1.5)
H
In particular, Gs5(z,0) = G(z,0). In fact, since lims_,g Bs = —+o0, for 6 small enough we have that

sup.cpo,r l[u(2)||lg < Bs. From (1.5) this implies that
Gs(z,u(z)) = G(z,u(z)), Vze€|[0,L], ford small enough. (1.6)
We also have the following lemma giving the Lipschitz constant for the function Gj.
Lemma 1.1. For 6 >0, z € [0, L] and vy, v € H, we have
1G5(2,01) = G5 (2, 02) || g < 2K(Bs) lvr = vl - (1.7)

Proof. Due to the continuity, it is enough to prove the lemma for non-zero elements v; and vo in H. We can
assume that [|v1| > ||vz|| > 0. Using the local Lipschitz property (1.4) of G and the definition (1.5) of Gs,
we have

B B
[Gs(evn) = Gstevaally = |6 (min { 21 ) = 6 (s { 2o )|
vl g l|vall o

. B; . Bs
min ,1 vy —min ,1pvo
vill g vl
It remains to show that

. Bs . Bs
ming ———,1>v; —ming ——,1 » v
vl g7 llvall ;7

This inequality is trivial if Bs > |lv1]| ; > [|v2]| - In the case ||vi||,; > |lv2| g = Bs, we have

, VYzel[0,L].
H

< 2|lvr — ol -
H
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B B - -
‘ - 20 ol =By b1—v 02l ”leH,UQ
Tl el Il forller ™ Torllr - Toeller Nl
B, ( v — v, ’ ozl — sl )
Torlle ™ 0 ol Teell 1
Bs
= o (o1 = wallg + [lleallg = lewll]) < 21lox = vall
Torl
Finally, if ||vi||; > Bs > ||v2|| then
B Bs —
’ S v —wf = ' : Hv_1||HU1 +u1 —v2
ol P T p
B[;— v
< 'wm + o1 — vl
vill g H
= |Bs = otll | + llor = vallr < 2fjor = vl -

This implies the desired result (1.7). O
2. Cauchy problem for elliptic equations

From now on, suppose that A : D(A) C H — H is a linear, positive-definite, self-adjoint operator with
compact inverse on H. As a consequence, the operator A admits an orthonormal eigenbasis {¢y }n>1 in H,
associated with the eigenvalues

O< A< X< <---< lim A\, =o0.

n—oo

We can divide the Cauchy problem for elliptic equations into three cases: homogeneous linear problem,
inhomogeneous linear problem and nonlinear problem.

2.1. Homogeneous linear problem

We first consider the homogeneous problem, i.e. G = 0, of finding a function w : [0, L] — H satisfying

d?u(z)
dz?

=Au, z€(0,L) (2.8)

subject to the Cauchy conditions (1.2). Let

u(z) = Z (u(2), Pn) Pn (2.9)

be the Fourier series of w in the Hilbert space H. From (2.8), we obtain the following homogeneous second-
order differential equation:

2

dz?
Solving this equation, we obtain

(u(2), dn) = Anemz + Bneﬂ/)‘i"z.
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It follows from (1.2) that (u(0),¢n) = (f, dn) and - (u(0), ¢) = (h, $,). The obtained results for A, and
B,, imply that

> sinh (\/Ez)
Z) = T; |f305h (\/Tnz) <f7 ¢n> + T <ha ¢n>] ¢na

leading us to define the linear operators P(z), S(z) : H — H,

27 =3 cosh (V/3ez) (1.6 Yo 210)
n=1

sinh \/_nz
2)f = Z e sinh (V)

<f, ¢n>¢n (2.11)
for z € [0, L] and f € H. The solution of the homogeneous problem (1.2) and (2.8) is then given by
uw(z) = P(2)f + S(z)h, z€][0,L]. (2.12)

2.2. Inhomogeneous linear problem and nonlinear problem

(i) We consider first the linear inhomogeneous problem of finding a function w : [0, L] — H satisfying

d?u(z)
dz?

=Au+G(z), 0<z<L (2.13)

subject to the Cauchy conditions (1.2). The solution u in this case has the Fourier series expansion (2.9),

where <u(z), ¢n> satisfies inhomogeneous second-order differential equation

j—;<u(z),q§n> — )\n<u(z)’¢n> = <G(Z)’¢">'

Solving this equation and using (1.2), we obtain the exact solution u to problem (1.2) and (2.13) given by

=) lcosh (VAnz) (F.0n)+ % (s dn)

n=1

. / sinh (v (2 —

T D) (Gg),0n )i | 6. (2.14)

With the definitions (2.10) and (2.11), equation (2.14) can be rewritten as

z

u(z) =P(2)f + S(z)h + /S(z —y)G(y)dy. (2.15)
0

Recently, Tuan et al. [35] regularized a simpler version of the equation (2.14) by truncation and quasi-
boundary value methods.
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(ii) For the nonlinear problem (1.1) and (1.2), its solution u satisfies the following integral equation:

o0

u(z) =3 [cosh (VAnz) (£ ) + %(h,%}

/ sinh ( An(z — y))
+ / TGl u(s), o) | 61 (216)
This integral equation can be rewritten as
u(z) = P(:)f + S(2)h + / S(z — )Gy, uly))dy. (2.17)

0

The transformation of (1.1) and (1.2) into (2.17) is easily proved by the separation of variables method, as
above. Prior to this study, a filter regularization method was applied for solving a backward heat conduction
problem [31] and for the Cauchy problem of the Helmholtz equation [36]. In the next section, we introduce
a new general filter regularization method to stabilize the integral equation (2.17).

3. A general filter regularization method for the nonlinear problem

In this section, we present a new general filter regularization method and establish convergence rates and
error estimates.

First, let us remark that P(z) and S(z) given by equations (2.10) and (2.11), respectively, are unbounded
linear operators. This means that the solution u of (2.17) is not stable. To approximate u, we introduce
a regularized solution ul obtained by replacing P(z), S(z) by bounded linear operators P3(z), S2(z),
respectively, as follows:

W (2) = PA2)f0 + SO + / S (2 — )Gy, wl. (1) dy. (3.18)
0

where G is defined in (1.5) and 0 < a = «(d) plays the role of the regularization parameter to be chosen
depending on the amount of noise d in (1.3). Here, P%(2) and S’ (z) are defined by

0 VAnz ~VAnz

Pi(e)f = Y AOAETTH RO (1 N, (319)
n=1
0 VAinz _ ~VAnz

s3] = 3 At 2;@%)6 (£, 60 ) (3.20)

Il
-

n

oo
for z € [0,L] and f = > <f, ¢n>q§n. In these expressions, Q(a, A,,) and R(a, \,,) are called “regulariz-

n=1
ing filter functions”. For more details on regularizing filter functions, we refer the reader to the book of

Kirsch [24]. With a regularization strategy a = «(0) for the regularization parameter satisfying

lim a(8) = lim |[ul(2) — u(2)||z =0, Vze€[0,L],
=0 =0

then we obtain a so-called “filter reqularization method”. Now consider the general regularizing filter Q
satisfying
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{OgcﬂmAMequﬁﬂﬂaV”La Vn € N* (3.21)

|Q(Oé, )\n) - 1|€m(sz) < M(a)lfz/[,’

where M (o) is some positive function satisfying lims_,o M () = 0. We also take the filter R(a, Ay,) to be
the function

R(a, \p) = Q(a, Ap) or, R(a,A,) =1 (3.22)

In this case, we only consider examples for @), and from this, the filter R is directly defined by (3.22). For
more illustration, we give a couple of examples for Q which satisfy (3.21).

Example 1. Let Ry, Q1 be as

e~ VAnL
Ri(a, M) = Qi(a, M) = PR e (3.23)
First, we can deduce the following inequality:
—VAn(L—2) —VAn(L—2)
0 < Q1(a, Ag)eV = = ‘ = ‘
o+ e*\/TnL Y, 1—z/L VXL z/L
(a +e n ) (a +e n )
—z/L
< (a + e_‘/)‘_"L) <o #L, (3.24)
By a similar technique, we get
—VAn(L—2)
_ VAn(z—L) — %7 < 1-z/L
|Q1(Oz, /\n) 1|6 a—l—e_\/)‘_nL S . (325)
Therefore, 1 given in (3.23) satisfies (3.21) with M («) = a = 0.
Example 2. Let us choose Ry and Q)5 as follows:
Rafa ) = Qala ) = { (3.20
Oé7 n) = Oé, n) = N
? ? 0, if Ay > Na,

where N, is some positive number satisfying lims_,o N5y = +00. It follows from

Vaaz o if A, < N,
QQ(a,/\n)emZ:{e v W An = Nay

0, if A, > Ng,
that
Qg(a,)\n)emz < eVNaz
and

|Q2(a7)\n) — 1|6m(27[’) < e\/Nia(sz).

Therefore, Q2 given in (3.26) satisfies (3.21) with M(a) = e LVNe = §. The solution of (3.18) with
filters (3.26) is called a “truncation solution”, and it has recently been studied in [37].
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At this stage, let us introduce the Gevrey-type space [6,27],

Gey = D(V) = {C € H:Y AVA(C 6, < oo}, (3.27)
n=1

for some 8 > 0. This is a Hilbert space with the norm

[¢llges = ||C||D(ewj> = | D VR du) 2.

n=1
Clearly, if ¢ € D(eﬁ v _A>, then the Fourier coefficients of ¢ must decay exponentially, as n — oo.

The next theorem states the main result of the paper.

Theorem 3.1 (General regularization filters). Assume that the problem (1.1) and (1.2) has a solution u €
C([0,L]; H). Choose M(«) such that 6 /M () is bounded and choose Bs such that

lim M(a)=*/E exp (%) =0, z€l0,L). (3.28)

Suppose that there exist positive constants Iy or Iy such that

L

P AL Rk, i | <CRIC)| IR (329)
0

e {HU(Z) D(e“*zwj)’ Ch:i(zZ)HD(e(Lz)m)} < Iy, (3.30)

0<2<L

Then, for & small enough, the solution u, of (3.18) satisfies the following estimates:

|

P, exp (WTB;S)> M(a)'=*/L, if (3.29) holds

IN

: 0, (3.31)

ub () — u(z)|

= Py exp (%) M(a)*=#/F ) if (3.30) holds

where

P =1+ (1 + %) % Py = 212max{1, V%} + (1 + \/QLT) M‘za). (3.32)

Moreover, there exists zs € [0, L] satisfying lims_,g 25 = 0 such that

H du(z) L

dz HH ln(m)

[ug,(25) — w(L) ||z < sup
0<2<L

+0. (3.33)

Remark 3.1. If in Theorem 3.1 we choose the regularization parameter @ from M («) = 0 then, by taking
Bs such that

Please cite this article in press as: N.H. Tuan et al., A new general filter regularization method for Cauchy problems for elliptic
equations with a locally Lipschitz nonlinear source, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2015.09.085




Doctopic: Partial Differential Equations YJMAA:19860

N.H. Tuan et al. / J. Math. Anal. Appl. e e e (e e ee) o0 e—0 o0 9
VAL -1
k(Bj) < In (In(o
(Bs) < Db 1n (n57™)
for some v > 0, we can conclude that (3.28) holds. Indeed, it is easy to see that

2k(B

lim M (a)'~*/ % exp (M) <lim &/ Fm(67Y) =0, Vzelo,L).

5—0 V1 5—0

For proving Theorem 3.1 the following lemmas are needed.

Lemma 3.1. The operators PS(z) and S%(z) defined by (3.19) and (3.20), respectively, are bounded and
linear, and their norms satisfy

(P2 gy < M ()™ E IS5y iy < Mo) /" z€[0,L] (3.34)
@ ]L(H) = 9 @ ]L(H) = m 9 ) ) .
where || - [|Lcm) stands for the operator norm on the space of bounded linear operators from H onto itself.

[ee]

Proof. Let f € H be arbitrary and represented as f = > <f, ¢n>¢n. Then, from (3.19), (3.21) and noting
n=1

that R(a, Ap)e V% < max{Q(a, A, ), 1}e~ V2% < max{M(a)~*/L 1} = M(a)~*/%, we have

2

P2 = 3 [t Rlod)en g2

n=1

2
= M ()Y |13

< M)/ 3| (£.n)

This latter estimate implies that
P2y gy < M()™/E, 2 € [0, L).

Similarly, we can easily show the second estimate of the lemma. Indeed, since A\, > Ay for n > 1, and
using (3.20), (3.21) and that (%_17)2 < # for a, b > 0, we have

155201 = i QAT = R AT )]
< MO S (o] = G

This latter inequality implies the second estimate of the lemma. O
Lemma 3.2. For each (f°, h?) € H x H, the integral equation (3.18) has a unique solution u®, € C([0, L]; H).

Proof. For each w € C([0, L]; H), we define
F(w)(2) = PI:)S° + S0 + [ 83z = 1)Galy, wl))dy.
0

It is sufficient to show that F' has a unique fixed point in C([0, L]; H). This fact will be proved by the
contraction principle.
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We claim by mathematical induction with respect to m = 1,2, ... that, for all w, v € C([0, L]; H),

(Cz/M(a))™

[F™ (w)(2) = F™(0)(2)[| < !

lw = wvll, vz e€[0,L], (3.35)

where |||.||| is the sup norm in C([0, L]; H) and C = C(A1, k(Bs)) is given by

(3.36)

For m = 1, using (1.7), (3.34) and (3.36) we have

z

IF()(e) ~ FE)E ) = | [ 836 -0 [Galy.wl) - Gty viw)] dy

go/(

< 2k(By) / W\\w@) — o), v

Sz — y)HL(H) HGa(y, w(y)) — Gs(y, v(y))Hde

0
C C2
< 7 / Jwt) = o) v < 375 e =l

Suppose that (3.35) holds for m = j. We prove that (3.35) holds for m = j + 1. Indeed, we have

[F7H (w)(2) = 7 (0)(2)]| = [|F(F (w))(2) = F(F? (0))(2)] 4

C [ J J
e / 1P w)(w) ~ X)) dy

1ol =l / (3 )

C J+1 Z]+1
“(@) g

Therefore, the inequality (3.35) holds for all m = 1,2,... by the induction principle. In particular, one has

177 w) ()~ P < Ty
Since
ml—1>r£oo % =0,

there exists a positive integer number mg such that F™° is a contraction mapping. It follows that F™° has
a unique fixed point «® in C([0, L]; H). Since F™ (F(u%)) = F(F™ (ul)) = F(ul), we obtain F(ud) = ul,
due to the uniqueness of the fixed point of F™°. The uniqueness of the fixed point of F' also follows from

the uniqueness of the fixed point of F™°. The unique fixed point u’, of F is the solution of (3.18). O
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Lemma 3.3. The integral equation

z

w(z) = P3(2)f + S3(2)h + / S% (= — )Gy, wly))dy (3.37)

0
has a unique solution v%, € C([0, L]; H). Furthermore, we have the following estimate:

ul (2) — 02 (2)||m < <1 + ﬁ) M(a)"*Fexp(C2)s, ze|0,L] (3.38)

Proof. Using Lemma 3.2, we conclude that the integral equation (3.37) has a unique solution v% €
C([0,L]; H). Using (1.7), (3.18) and (3.34), we have

(=) = 3l < |

P =),

o
+| [ 83 = ) Gatw. i) - Gotw i) a|
0
< NP2l 10 = Flla + 152(2) ey |1h° = Blla

+ [ 1830 = )l G(y. w8 (0) = Gty v20))
0

"/

< M)/t + MO g / \fM

Noow 1l (y) — v () |l mdy.  (3.39)

Multiplying both sides of (3.39) by M (a)*/%, it yields

M@ M) - )l < (14 =)o / M (@)Y (0) = () .
Applying Gronwall’s inequality, we obtain

M)/ M Ju () — o%(2) 1 < <1+ m)expmz)é.

Dividing both sides the latter estimate by M (a)?/L, we conclude that (3.38) holds. This completes the proof
of the lemma. 0O

Now, we present some estimates in the Gevrey space (3.27).

Lemma 3.4. Assume that f € D(eLv *A>. Then, we have the following estimates:

IP2(2)f = P(2)fllar < M(a)' " E|£] D(etv=A) (3.40)
and

M)
e W (v
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o0
Proof. Since f = > <f, ¢n>gz5n, noting that [R(a, A,) — 1)? < [Q(a, A\) — 1] and using (2.10), (2.11),

n=1

(3.19)-(3.21), we have

IPIG — P < 2 £.6)|"
n=1
< i {Q(a,)\n) - 1}262M(2_L)62mL <f, ¢n> i
n=1
< M(a)> % leeszKf’ ¢n> - M(a)z—%”fH?D(eLm)
and
o0 _ 2V A 2
18220 — SEAIE <> [260:00 Anl] ST
n=1
= [Qla ) —1] s :
= 7; M L 1.60)
2—2z 0 92z
- M(O;\)1 r ;esz <f, ¢n>)2 _ Ma)\;)lL”f”;(ew_A)'
Taking the square roots in these expressions we obtain the estimates (3.40) and (3.41). O
Lemma 3.5. For 6 small enough, we have:
(i) If the assumption (3.29) holds, then
08 (2) —u(2)||a < I exp(C2)M ()%, zel0,L]. (3.42)
(ii) If the assumption (3.30) holds and R(a, \p) =1, then
|08 (2) — u(2)|| i < 215 max {1, \/L)\_l} exp(C2)M(a)' /L, z€]0,L]. (3.43)
(iii) If the assumption (3.30) holds and R(a, An) = Q(a, Ay), then
08 (2) = u(2)||ar < Lyexp(Cz)M(a)*™**,  zel0,L]. (3.44)

Proof. We assume that § is small enough such that (1.6) holds. We divide the proof into two parts.

Part A. Assume that (3.29) holds. From (2.17) and Lemma 3.3, we have

z

W)~ u2) = [P = PEI] + [S26h - SER] + [ 83 - ) [Golw. 2 W) - Galvulw)]dy
0

z

+ / {Si(z —y)G(y,u(y)) — S(z — y)G(y, u(y»} dy.
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By taking the norms in H on both sides and using (1.6), (3.34), (3.40) and (3.41), we obtain

lva,(2) = u(2) | < 1P2(2)f = P(2)f i + 11Sa(2)h = S(2)hll 1

+ / 1886 = D)l || Gt v3.0)) = Gy uw))| dy

+ /|
0

< M(a)l_Z/LHfIID(

Sz = )Gy u) = S(= = Y)Gly. uw)||  dy

M(a)l—z/L
eL\/—_A) + TH}L”D(eLm)
+C/M(a)y2

0

z

dy.

200) ()| dy + 2= / M@= o]

eL\/j)

Multiplying by M (a)*/* both sides, we have
M ()"0 (2) = u(2)l|lu

110 |y + W) + g5 [P 000y
0

z

+C [ Myt od ) - )] dv
0

This together with (3.29) implies that

z

M@ P e () ~ ull < M) +C [ M@ o) - uly)| v
0

Then Gronwall’s inequality yields
M ()™ F[|02(2) = ul(2)llzr < M(a)L exp(Cz).
From this we obtain
log.(2) = u(@)llm < LM (@)~ Fexp(Cz), 2 € [0, L],
which is the desired estimate (3.42).

Part B. Assume that (3.30) holds.
For the proof of this part, we consider two cases, as follows.

Case 1: The filter R(a, A,) = 1.

Taking the inner product of u(z) and its derivative from (2.16), and adding the results give

du(z) . e
(u(2),6n) + MTM = /2 (f,60) + e;;: (hi6n)+ LA_””@(M@))’%W
0
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From (2.16), Lemma 3.3, and (3.19), (3.20) with R(a, A,) = 1, we obtain

- du(z)
3(2)  ul :g Q) )[<<>¢n> “T”]«ﬁ

+2 / S0 =) |Gy vy >>—G<y,u<y>>]dy]¢n.

Then the triangle inequality and equations (1.6), (1.7), (3.21) and (3.34) lead to

o <dZ@% n> 2

< M(Oz)l_z/L Z e2VAn(L=2) (u(z), ¢n) + A=t
n=1
—|—C/M(o¢)y;z

0

vﬁw—u@wH@

< M(a)le/L 2262\/E(L72) ( )

(u(2), 6n) +fz 2

)|

n=1

vﬂw—uwﬂH@

1-z/L 9 ) ’2 2
a) [u2)|| (o) T

+C/Mmff
0

+C/Mmf7
0

du(z)

2
Hp(euz)m)

vﬁw—uwwH@-

Multiplying by M (a)*/* both sides, we have

1 z
M@ H0(:) = @l < 2max {1 b+ © [ a@)Eodo) ~ ] v
0
Then Gronwall’s inequality yields

M(a)z/LHvi(z) —u(2)||lg < 2max {1, } M (a)Iz exp(C z).

1
oS

This implies that
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1
08 (2) — w(2)||zr < 205 max {1, —} M(a)'=#/Fexp(Cz), =zel0,L], (3.45)
VAL
which is the desired estimate (3.43).
Case 2: The filter R(d, A\p) = Q(0, Ay).
Let the function w® be defined by
s B oo
w(2) = > Qs M) (ul2), 6 ). (3.46)
n=1

From (3.19), (3.20) with R(a, A) = Q(4, A,,) we have

5 _ - 5 B = sinh(v/A,2)
Pa()f = 30 QM) cosh(v/Xu2)(f; 0n )bn,  Sa(2)h = 3 Qe ) == e (1,60 Y,
and it is easy to see that w? satisfies the following identity:
wl(2) = P + S+ [ 83~ )Gl ulw)dy. (3.47
0

This is equivalent to replacing in (2.16) the eigenfunctions ¢,, by the filtered ones ¢, +/Q(«, A,). Combin-
ing (3.37) and (3.47), we get

[452) ~ il = || [ 83 = 9)Gs o3y~ [ 83 = )G uiy]
0 0
Then (1.6), (1.7) and (3.34) lead to

[98(2) = wh@lr < [ 1856 = )y [Goto ) — Gotwruw))] o
0

<c / M(a) T[S ) —u(w)]|  dv. (3.48)
0

where we note again equation (1.6) holds for § small enough. Moreover, from (2.9), (3.21) and (3.46), we
deduce that

262\/E(27L)62\/E(L72) 2

(u(=), én)

2

Jwd () = w2l = J > |@tea) -1
M

(a)t—=/F Z e2VAn(L—2)

n=1

(u(=),én)

< M()' /" [lu(2)] < M()' /"L, (3.49)

D(e@—zwﬁ)

Summing up (3.48) and (3.49), and using the triangle inequality we obtain
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[452) — u@)l < M(@) 21+ C [ 3(0)'F u2w) - uto)| o (3.50)
0
Multiplying by M (a)?/% both sides of (3.50) we obtain
M@ o)~ u@)|, < M@+ C [ M) [odw) - )| dv (3.51)

Finally, Gronwall’s inequality yields

which is the desired estimate (3.44). O

Now, we shall finish the proof of Theorem 3.1. Applying triangle inequality together with (3.38), we

obtain

ug (2) — u(2) ug (2) —va(2) val(z) —u(2)

|
H

.

§<1+ ! )M(a)_z/Lexp(Cz)é-i-‘

H

v (2) — u(z)HH

V2M\
If assumption (3.29) holds then
‘ W (2) — u(z)” < M(a) /T exp(C2) |1 + (14 — o | (3.52)
@ H vV 2)\1 M(O[)

If assumption (3.30) holds then

Hence, the estimates (3.31) hold.
We shall show that for each fixed 0 < z < L, the function ul(z) gives a good approximation to u(z).

w(2) — u(z)H < M(a)'=*/L exp(C2) {2 max {1, —} I+ (1 +

Al o

H

However, it is difficult to derive its approximation at z = L. We therefore need an adjustment in choosing
the regularized solution. The main idea is that we first use the continuity of v to approximate the initial
value u(L) by u(zs) for some suitable small z5 < L, and then approximate u(zs) by u(zs). The parameter
zs will be chosen as follows. For every § > 0, there exists a unique zs € (0, L) such that

2]

(L —z5) = M(a)'" 7. (3.54)

In(L—z5) _ In(M(«))
L—zs - L

. To estimate the error we use the triangle inequality

It implies that
L
]\/I%a) )

. Using the inequality Inz > —% for every z > 0, we obtain L — z5 <

In(

lug (2) = w(L) | < [lu(L) = w(=)lla + lulz) — g (2)l|z
du(z)

-\ L — ) .
OilzlgLH dz HH( 2) + [|u(2) — ug (2) ||l u

IN

The estimate above applied for z = z5 together with the estimates (3.31) lead to
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du(z
o e) —u(Dlar < sup [P (L~ 2+ futzs) — o)l
0<z2<L z H
< o %57
o<z<r !l dz llH

hence (3.33) holds. This ends the proof of the main Theorem 3.1 about general regularization filters for
quasilinear Cauchy problems with locally Lipschitz nonlinear source.
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