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A triple of commuting operators for which the closed tetrablock E is a spectral set 
is called a tetrablock contraction or an E-contraction. The set E is defined as

E = {(x1, x2, x3) ∈ C
3 : 1 − zx1 − wx2 + zwx3 �= 0 whenever |z| ≤ 1, |w| ≤ 1}.

We show that every E-contraction can be uniquely written as a direct sum of 
an E-unitary and a completely non-unitary E-contraction. It is analogous to the 
canonical decomposition of a contraction operator into a unitary and a completely 
non-unitary contraction. We produce a concrete operator model for such a triple 
satisfying some conditions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A compact subset X of Cn is said to be a spectral set for a commuting n-tuple of bounded operators 
T = (T1, . . . , Tn) defined on a Hilbert space H if the Taylor joint spectrum σ(T ) of T is a subset of X and

‖r(T )‖ ≤ ‖r‖∞,X = sup{|r(z1, . . . , zn)| : (z1, . . . , zn) ∈ X} ,

for all rational functions r in R(X). Here R(X) denotes the algebra of all rational functions on X, that is, 
all quotients p/q of holomorphic polynomials p, q in n-variables for which q has no zeros in X. A triple of 
commuting operators (A, B, P ) for which the closure of the tetrablock E, where

E = {(x1, x2, x3) ∈ C
3 : 1 − zx1 − wx2 + zwx3 �= 0 whenever |z| ≤ 1, |w| ≤ 1},

is a spectral set is called a tetrablock contraction or an E-contraction.
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Complex geometry, function theory and operator theory on the tetrablock have been widely studied by a 
number of mathematicians [1,2,4–7,9,12,13] over past one decade because of the relevance of this domain to 
μ-synthesis problem and H∞ control theory. The following result from [1] (Theorem 2.4 in [1]) characterizes 
points in E and E and provides a geometric description of the tetrablock.

Theorem 1.1. A point (x1, x2, x3) ∈ C
3 is in E if and only if |x3| ≤ 1 and there exist c1, c2 ∈ C such that 

|c1| + |c2| ≤ 1 and x1 = c1 + c̄2x3, x2 = c2 + c̄1x3.

It is clear from the above result that the closed tetrablock E lives inside the closed tridisc D3 and 
consequently an E-contraction consists of commuting contractions. It is evident from the definition that 
if (A, B, P ) is an E-contraction then so is its adjoint (A∗, B∗, P ∗). We briefly recall from literature some 
special classes of E-contractions which are analogous to unitaries, isometries, co-isometries etc. in one 
variable operator theory.

Definition 1.2. Let A, B, P be commuting operators on a Hilbert space H. We say that (A, B, P ) is

(i) an E-unitary if A, B, P are normal operators and the joint spectrum σ(A, B, P ) is contained in the 
distinguished boundary bE of the tetrablock, where

bE = {(x1, x2, x3) ∈ C
3 : x1 = x̄2x3, |x2| ≤ 1, |x3| = 1}

= {(x1, x2, x3) ∈ E : |x3| = 1};

(ii) an E-isometry if there exists a Hilbert space K containing H and an E-unitary (Ã, B̃, P̃ ) on K such 
that H is a common invariant subspace of A, B, P and that A = Ã|H, B = B̃|H, P = P̃ |H;

(iii) an E-co-isometry if (A∗, B∗, P ∗) is an E-isometry;
(iv) a completely non-unitary E-contraction if (A, B.P ) is an E-contraction and P is a completely non-

unitary contraction;
(v) a pure E-contraction if (A, B.P ) is an E-contraction and P is a pure contraction, that is, P ∗n → 0

strongly as n → ∞.

Definition 1.3. Let (A, B, P ) be an E-contraction on a Hilbert space H. A commuting triple (V1, V2, V3) on 
K is said to be an E-isometric dilation of (A, B, P ) if (V1, V2, V3) is an E-isometry, H ⊆ K and

f(A,B, P ) = PHf(V1, V2, V3)|H

for every holomorphic polynomial f in three variables. Here PH denotes the projection onto H. Moreover, 
this dilation is called minimal if

K = span{f(V1, V2, V3)h : h ∈ H , f ∈ C[z1, z2, z3]}.

It was a path breaking discovery by von Neumann, [11], that a bounded operator T is a contraction if 
and only if the closed unit disc D in the complex plane is a spectral set for T . It is well known that to every 
contraction T on a Hilbert space H there corresponds a decomposition of H into an orthogonal sum of two 
subspaces reducing T , say H = H1 ⊕ H2 such that T |H1 is unitary and T |H2 is completely non-unitary; 
H1 or H2 may equal the trivial subspace {0}. This decomposition is uniquely determined and is called the 
canonical decomposition of a contraction (see Theorem 3.2 in Ch-I, [10] for details). Indeed, H1 consists of 
those elements h ∈ H for which

‖Tnh‖ = ‖h‖ = ‖T ∗nh‖ (n = 1, 2, . . .) .
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The main aim of this article is to show that an E-contraction admits an analogous decomposition into an 
E-unitary and a completely non-unitary E-contraction. Indeed, in Theorem 3.1, one of the main results of 
this paper, we show that for an E-contraction (A, B, P ) defined on H if H1 ⊕H2 is the unique orthogonal 
decomposition of H into reducing subspaces of P such that P |H1 is a unitary and P |H2 is a completely 
non-unitary, then H1, H2 also reduce A, B; (A|H1 , B|H1 , P |H1) is an E-unitary and (A|H2 , B|H2 , P |H2) is a 
completely non-unitary E-contraction.

The other contribution of this article is that we produce a concrete operator model for an E-contraction 
which satisfies some conditions. Before getting into the details of it we recall a few words from the literature 
about the fundamental equations and the fundamental operators related to an E-contraction.

For an E-contraction (A, B, P ), the fundamental equations were defined in [4] as

A−B∗P = DPX1DP , B −A∗P = DPX2DP ; DP = (I − P ∗P ) 1
2 . (1.1)

It was proved in [4] (Theorem 3.5, [4]) that corresponding to every E-contraction (A, B, P ) there were two 
unique operators F1, F2 in B(DP ) that satisfied the fundamental equations, i.e.,

A−B∗P = DPF1DP , B −A∗P = DPF2DP .

Here DP = Ran DP and is called the defect space of P . Also B(H), for a Hilbert space H, always denotes 
the algebra of bounded operators on H. An explicit E-isometric dilation was constructed for a particular 
class of E-contractions in [4] (Theorem 6.1, [4]) and F1, F2 played the fundamental role in that explicit 
construction of dilation. For their pivotal role in the dilation, F1 and F2 were called the fundamental 
operators of (A, B, P ).

It was shown in [4] (Theorem 6.1, [4]) that an E-contraction (A, B, P ) dilated to an E-isometry if the 
corresponding fundamental operators F1, F2 satisfied [F1, F2] = 0 and [F ∗

1 , F1] = [F ∗
2 , F2]. Here [S1, S2] =

S1S2 − S2S1 for any two bounded operators S1, S2. On the other hand there are E-contractions which do 
not dilate. Indeed, an E-contraction may not dilate to an E-isometry if [F ∗

1 , F1] �= [F ∗
2 , F2]; it has been 

established in [8] by a counterexample. So it turns out that those two conditions are very crucial for an 
E-contraction. In Theorem 4.4, we construct a concrete model for an E-contraction (A, B, P ) when the 
fundamental operators F1∗, F2∗ of (A∗, B∗, P ∗) satisfy [F1∗, F2∗] = 0 and [F ∗

1∗, F1∗] = [F ∗
2∗, F2∗]. In brief, 

such an E-contraction is the restriction to a common invariant subspace of an E-co-isometry and every 
E-co-isometry is expressible as the orthogonal direct sum of an E-unitary and a pure E-co-isometry, which 
has a model on the vectorial Hardy space H2(DT3), where T ∗

3 is the minimal isometric dilation of P ∗.
In section 2, we accumulate a few new results about E-contractions and also state some results from the 

literature which will be used in sequel.

2. The set EEE and EEE-contractions

We begin this section with a lemma that characterizes the points in E.

Lemma 2.1. (x1, x2, x3) ∈ E if and only if (ωx1, ωx2, ω2x3) ∈ E for all ω ∈ T.

Proof. Let (x1, x2, x3) ∈ E. Then by Theorem 1.1, |x3| ≤ 1 and there are complex numbers c1, c2 with 
|c1| + |c2| ≤ 1 such that x1 = c1 + c̄2x3, x2 = c2 + c̄1x3. For ω ∈ T if we choose d1 = ωc1 and d2 = ωc2 we 
see that |d1| + |d2| ≤ 1 and

ωx1 = ω(c1 + c̄2x3) = ωc1 + ωc2(ω2x3) = d1 + d̄2(ω2x3) ,

ωx2 = ω(c2 + c̄1x3) = ωc2 + ωc1(ω2x3) = d2 + d̄1(ω2x3).

Therefore, by Theorem 1.1, (ωx1, ωx2, ω2x3) ∈ E. The other side of the proof is trivial. �
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The following lemma simplifies the definition of E-contraction.

Lemma 2.2. A triple of commuting operators (A, B, P ) is an E-contraction if and only if

‖f(A,B, P )‖ ≤ ‖f‖∞,E = sup{|f(x1, x2, x3)| : (x1, x2, x3) ∈ E}

for all holomorphic polynomials f in three variables.

This actually follows from the fact that E is polynomially convex. A proof to this could be found in [4]
(Lemma 3.3, [4]).

Lemma 2.3. Let (A, B, P ) be an E-contraction. Then so is (ωA, ωB, ω2P ) for any ω ∈ T.

Proof. Let f(x1, x2, x3) be a holomorphic polynomial in the co-ordinates of E and for ω ∈ T let 
f1(x1, x2, x3) = f(ωx1, ωx2, ω2x3). It is evident from Lemma 2.1 that

sup{|f(x1, x2, x3)| : (x1, x2, x3) ∈ E} = sup{|f1(x1, x2, x3)| : (x1, x2, x3) ∈ E}.

Therefore,

‖f(ωA, ωB, ω2P )‖ = ‖f1(A,B, P )‖

≤ ‖f1‖∞,E

= ‖f‖∞,E.

Therefore, by Lemma 2.2, (ωA, ωB, ω2P ) is an E-contraction. �
The following result was proved in [4] (see Theorem 3.5 in [4]).

Theorem 2.4. Let (A, B, P ) be an E-contraction. Then the operator functions ρ1 and ρ2 defined by

ρ1(A,B, P ) = (I − P ∗P ) + (A∗A−B∗B) − 2 Re (A−B∗P ) ,

ρ2(A,B, P ) = (I − P ∗P ) + (B∗B −A∗A) − 2 Re (B −A∗P )

satisfy

ρ1(A, zB, zP ) ≥ 0 and ρ2(A, zB, zP ) ≥ 0 for all z ∈ D.

Lemma 2.5. Let (A, B, P ) be an E-contraction. Then for i = 1, 2, ρi(ωA, ωB, ω2P ) ≥ 0 for all ω ∈ T.

Proof. By Theorem 2.4,

ρ1(A,B, P ) ≥ 0 and ρ2(A,B, P ) ≥ 0.

Since (ωA, ωB, ω2P ) is an E-contraction for every ω in T by Lemma 2.3, we have that

ρ1(ωA, ωB, ω2P ) ≥ 0 and ρ2(ωA, ωB, ω2P ) ≥ 0 . �
The following theorem provides a set of characterizations for E-unitaries and for a proof to this one can 

see Theorem 5.4 in [4].
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Theorem 2.6. Let N = (N1, N2, N3) be a commuting triple of bounded operators. Then the following are 
equivalent.

(1) N is an E-unitary,
(2) N3 is a unitary and N is an E-contraction,
(3) N3 is a unitary, N2 is a contraction and N1 = N∗

2N3.

Here is a structure theorem for the E-isometries (see Theorems 5.6 and 5.7 in [4]).

Theorem 2.7. Let V = (V1, V2, V3) be a commuting triple of bounded operators. Then the following are 
equivalent.

(1) V is an E-isometry.
(2) V3 is an isometry and V is an E-contraction.
(3) V3 is an isometry, V2 is a contraction and V1 = V ∗

2 V3.
(4) (Wold decomposition) H has a decomposition H = H1 ⊕H2 into reducing subspaces of V1, V2, V3 such 

that (V1|H1 , V2|H1 , V3|H1) is an E-unitary and (V1|H2 , V2|H2 , V3|H2) is a pure E-isometry.

3. Canonical decomposition of an EEE-contraction

Theorem 3.1. Let (A, B, P ) be an E-contraction on a Hilbert space H. Let H1 be the maximal subspace of H
which reduces P and on which P is unitary. Let H2 = H�H1. Then H1, H2 reduce A, B; (A|H1 , B|H1 , P |H1)
is an E-unitary and (A|H2 , B|H2 , P |H2) is a completely non-unitary E-contraction. The subspaces H1 or H2
may equal the trivial subspace {0}.

Proof. It is obvious that if P is a completely non-unitary contraction then H1 = {0} and if P is a unitary 
then H = H1 and so H2 = {0}. In such cases the theorem is trivial. So let us suppose that P is neither a 
unitary nor a completely non-unitary contraction. Let

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
and P =

[
P1 0
0 P2

]

with respect to the decomposition H = H1 ⊕H2, so that P1 is a unitary and P2 is completely non-unitary. 
Since P2 is completely non-unitary it follows that if x ∈ H and

‖Pn
2 x‖ = ‖x‖ = ‖P ∗

2
nx‖, n = 1, 2, . . .

then x = 0.
The fact that A and P commute tells us that

A11P1 = P1A11 A12P2 = P1A12 , (3.1)

A21P1 = P2A21 A22P2 = P2A22 . (3.2)

Also by commutativity of B and P we have

B11P1 = P1B11 B12P2 = P1B12 , (3.3)

B21P1 = P2B21 B22P2 = P2B22 . (3.4)

By Lemma 2.5, we have for all ω, β ∈ T,
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ρ1(ωA, ωB, ω2P ) = (I − P ∗P ) + (A∗A−B∗B) − 2 Re ω(A−B∗P ) ≥ 0 ,

ρ2(βA, βB, β2P ) = (I − P ∗P ) + (B∗B −A∗A) − 2 Re β(B −A∗P ) ≥ 0 .

Adding ρ1 and ρ2 we get

(I − P ∗P ) − Re ω(A−B∗P ) − Re β(B −A∗P ) ≥ 0

that is
[
0 0
0 I − P ∗

2 P2

]
− Re ω

[
A11 −B∗

11P1 A12 −B∗
21P2

A21 −B∗
12P1 A22 −B∗

22P2

]

− Re β

[
B11 −A∗

11P1 B12 −A∗
21P2

B21 −A∗
12P1 B22 −A∗

22P2

]
≥ 0 (3.5)

for all ω, β ∈ T. Since the matrix in the left hand side of (3.5) is self-adjoint, if we write (3.5) as

[
R X
X∗ Q

]
≥ 0 , (3.6)

then
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) R ,Q ≥ 0 and R = − Re ω(A11 −B∗
11P1) − Re β(B11 −A∗

11P1)
(ii) X = −1

2{ω(A12 −B∗
21P2) + ω̄(A∗

21 − P ∗
1 B12)

+ β(B12 −A∗
21P2) + β̄(B∗

21 − P ∗
1 A12)}

(iii) Q = (I − P ∗
2 P2) − Re ω(A22 −B∗

22P2) − Re β(B22 −A∗
22P2) .

Since the left hand side of (3.6) is a positive semi-definite matrix for every ω and β, if we choose β = 1
and β = −1 respectively then consideration of the (1, 1) block reveals that

ω(A11 −B∗
11P1) + ω̄(A∗

11 − P ∗
1 B11) ≤ 0

for all ω ∈ T. Choosing ω = ±1 we get

(A11 −B∗
11P1) + (A∗

11 − P ∗
1 B11) = 0 (3.7)

and choosing ω = ±i we get

(A11 −B∗
11P1) − (A∗

11 − P ∗
1 B11) = 0 . (3.8)

Therefore, from (3.7) and (3.8) we get

A11 = B∗
11P1 ,

where P1 is unitary. Similarly, we can show that

B11 = A∗
11P1 .

Therefore, R = 0. Since (A, B, P ) is an E-contraction, ‖B‖ ≤ 1 and hence ‖B11‖ ≤ 1 also. Therefore, by 
part-(3) of Theorem 2.6, (A11, B11, P1) is an E-unitary.
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Now we apply Proposition 1.3.2 of [3] to the positive semi-definite matrix in the left hand side of (3.6). 

This proposition states that if R, Q ≥ 0 then 
[
R X
X∗ Q

]
≥ 0 if and only if X = R1/2KQ1/2 for some 

contraction K.
Since R = 0, we have X = 0. Therefore,

ω(A12 −B∗
21P2) + ω̄(A∗

21 − P ∗
1 B12) + β(B12 −A∗

21P2) + β̄(B∗
21 − P ∗

1 A12) = 0 ,

for all ω, β ∈ T. Choosing β = ±1 we get

ω(A12 −B∗
21P2) + ω̄(A∗

21 − P ∗
1 B12) = 0 ,

for all ω ∈ T. With the choices ω = 1, i, this gives

A12 = B∗
21P2 .

Therefore, we also have

A∗
21 = P ∗

1 B12 .

Similarly, we can prove that

B12 = A∗
21P2 , B∗

21 = P ∗
1 A12 .

Thus, we have the following equations

A12 = B∗
21P2 A∗

21 = P ∗
1 B12 (3.9)

B12 = A∗
21P2 B∗

21 = P ∗
1 A12 . (3.10)

Thus from (3.9), A21 = B∗
12P1 and together with the first equation in (3.2), this implies that

B∗
12P

2
1 = A21P1 = P2A21 = P2B

∗
12P1

and hence

B∗
12P1 = P2B

∗
12 . (3.11)

From equations in (3.3) and (3.11) we have that

B12P2 = P1B12 , B12P
∗
2 = P ∗

1 B12.

Thus

B12P2P
∗
2 = P1B12P

∗
2 = P1P

∗
1 B12 = B12 ,

B12P
∗
2 P2 = P ∗

1 B12P2 = P ∗
1 P1B12 = B12 ,

and so we have

P2P
∗
2 B

∗
12 = B∗

12 = P ∗
2 P2B

∗
12 .
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This shows that P2 is unitary on the range of B∗
12 which can never happen because P2 is completely 

non-unitary. Therefore, we must have B∗
12 = 0 and so B12 = 0. Similarly we can prove that A12 = 0. Also 

from (3.9), A21 = 0 and from (3.10), B21 = 0. Thus with respect to the decomposition H = H1 ⊕H2

A =
[
A11 0
0 A22

]
, B =

[
B11 0
0 B22

]
.

So, H1 and H2 reduce A and B. Also (A22, B22, P2), being the restriction of the E-contraction (A, B, P )
to the reducing subspace H2, is an E-contraction. Since P2 is completely non-unitary, (A22, B22, P2) is a 
completely non-unitary E-contraction. �
4. Operator model

Wold decomposition breaks an isometry into two parts namely a unitary and a pure isometry (see 
Section-I, Ch-1, [10]). We have in Theorem 2.7 an analogous decomposition for an E-isometry by which 
an E-isometry splits into two parts of which one is an E-unitary and the other is a pure E-isometry. The 
following theorem gives a concrete model for pure E-isometries. Before going to the theorem, we recall the 
definition of Toeplitz operator with operator-valued kernel.

For a Hilbert space E let L2(E) be the space of all E-valued square integrable functions on T and let 
H2(E) be the space of analytic elements in L2(E). Also let L∞(B(E)) denote the space of B(E)-valued func-
tions on T with finite supremum norm. For φ ∈ L∞(B(E)), the Toeplitz operator Tφ with operator-valued 
symbol φ is defined by

Tφ : H2(E) → H2(E)

Tφ(f) = P (φf)

where f ∈ H2(E) and P is the projection of L2(E) onto H2(E).

Theorem 4.1. Let (T̂1, T̂2, T̂3) be a pure E-isometry acting on a Hilbert space H and let A1, A2 denote the 
fundamental operators of the adjoint (T̂1

∗
, T̂2

∗
, T̂3

∗
). Then there exists a unitary U : H → H2(DT̂3

∗) such 
that

T̂1 = U∗TϕU, T̂2 = U∗TψU and T̂3 = U∗TzU,

where ϕ(z) = G∗
1 +G2z, ψ(z) = G∗

2 +G1z, z ∈ T and G1, G2 are restrictions of UA1U
∗ and UA2U

∗ to the 
defect space DT̂∗

3
. Moreover, A1, A2 satisfy

(1) [A1, A2] = 0;
(2) [A∗

1, A1] = [A∗
2, A2]; and

(3) ‖A∗
1 + A2z‖ ≤ 1 for all z ∈ D.

Conversely, if A1 and A2 are two bounded operators on a Hilbert space E satisfying the above three condi-
tions, then (TA∗

1+A2z, TA∗
2+A1z, Tz) on H2(E) is a pure E-isometry.

See Theorem 3.3 in [8] for a proof to this theorem. The following dilation theorem was proved in [4] and 
for a proof one can see Theorem 6.1 in [4].

Theorem 4.2. Let (A, B, P ) be a tetrablock contraction on H with fundamental operators F1 and F2. Let DP

be the closure of the range of DP . Let K = H ⊕DP ⊕ DP ⊕ · · · = H ⊕ l2(DP ). Consider the operators V1, 
V2 and V3 defined on K by
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V1(h0, h1, h2, . . .) = (Ah0, F
∗
2 DPh0 + F1h1, F

∗
2 h1 + F1h2, F

∗
2 h2 + F1h3, . . .)

V2(h0, h1, h2, . . .) = (Bh0, F
∗
1 DPh0 + F2h1, F

∗
1 h1 + F2h2, F

∗
1 h2 + F2h3, . . .)

V3(h0, h1, h2, . . .) = (Ph0, DPh0, h1, h2, . . .).

Then

(1) V = (V1, V2, V3) is a minimal tetrablock isometric dilation of (A, B, P ) if [F1, F2] = 0 and [F1, F ∗
1 ] =

[F2, F ∗
2 ].

(2) If there is a tetrablock isometric dilation W = (W1, W2, W3) of (A, B, P ) such that W3 is the minimal 
isometric dilation of P , then W is unitarily equivalent to V . Moreover, [F1, F2] = 0 and [F1, F ∗

1 ] =
[F2, F ∗

2 ].

The following result of one variable dilation theory is necessary for the proof of the model theorem for 
E-contractions and since the result is well-known we do not give a proof here.

Proposition 4.3. If P is a contraction and W is its minimal isometric dilation then P ∗ and W ∗ have defect 
spaces of same dimension.

The next theorem is the main result of this section and it provides a model for the E-contractions which 
satisfy some conditions.

Theorem 4.4. Let (A, B, P ) be an E-contraction on a Hilbert space H and let F1, F2 and F1∗, F2∗ be 
respectively the fundamental operators of (A, B, P ) and (A∗, B∗, P ∗). Let F1∗, F2∗ satisfy [F1∗, F2∗] = 0 and 
[F ∗

1∗, F1∗] = [F ∗
2∗, F2∗]. Let (T1, T2, T3) on K∗ = H⊕DP∗ ⊕DP∗ ⊕ · · · be defined as

T1 =

⎡
⎢⎢⎢⎢⎣

A DP∗F2∗ 0 0 · · ·
0 F ∗

1∗ F2∗ 0 · · ·
0 0 F ∗

1∗ F2∗ · · ·
0 0 0 F ∗

1∗ · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ , T2 =

⎡
⎢⎢⎢⎢⎣

B DP∗F1∗ 0 0 · · ·
0 F ∗

2∗ F1∗ 0 · · ·
0 0 F ∗

2∗ F1∗ · · ·
0 0 0 F ∗

2∗ · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ ,

T3 =

⎡
⎢⎢⎢⎢⎣

P DP∗ 0 0 · · ·
0 0 I 0 · · ·
0 0 0 I · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ .

Then

(1) (T1, T2, T3) is an E-co-isometry, H is a common invariant subspace of T1, T2, T3 and T1|H = A, 
T2|H = B and T3|H = P ;

(2) there is an orthogonal decomposition K∗ = K1 ⊕K2 into reducing subspaces of T1, T2 and T3 such that 
(T1|K1 , T2|K1 , T3|K1) is an E-unitary and (T1|K2 , T2|K2 , T3|K2) is a pure E-co-isometry;

(3) K2 can be identified with H2(DT3), where DT3 has same dimension as that of DP . The operators T1|K2 , 
T2|K2 and T3|K2 are respectively unitarily equivalent to TG1+G∗

2 z̄, TG2+G∗
1 z̄ and Tz̄ defined on H2(DT3), 

G1, G2 being the fundamental operators of (T1, T2, T3).

Proof. We apply Theorem 4.2 to (A∗, B∗, P ∗) to obtain a minimal E-isometric dilation for (A∗, B∗, P ∗). If 
we denote this E-isometric dilation by (V1∗, V2∗, V3∗) then it is evident from Theorem 4.2 that each Vi∗ is 
defined on K∗ = H⊕DP∗ ⊕DP∗ ⊕ · · · and with respect to this decomposition
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V1∗ =

⎡
⎢⎢⎢⎣

A∗ 0 0 0 . . .
F ∗

2∗DP∗ F1∗ 0 0 . . .
0 F ∗

2∗ F1∗ 0 . . .
0 0 F ∗

2∗ F1∗ . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎦ , V2∗ =

⎡
⎢⎢⎢⎣

B∗ 0 0 0 . . .
F ∗

1∗DP∗ F2∗ 0 0 . . .
0 F ∗

1∗ F2∗ 0 . . .
0 0 F ∗

1∗ F2∗ . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎦ ,

V3∗ =

⎡
⎢⎢⎢⎣

P ∗ 0 0 0 . . .
DP∗ 0 0 0 . . .

0 I 0 0 . . .
0 0 I 0 . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎦ .

Obviously (T ∗
1 , T

∗
2 , T

∗
3 ) = (V1∗, V2∗, V3∗). It is clear from the block matrices of Ti that H is a common 

invariant subspace of each Ti and T1|H = A, T2|H = B and T3|H = P . Again since (T ∗
1 , T

∗
2 , T

∗
3 ) is an 

E-isometry, by Theorem 2.7, there is an orthogonal decomposition K∗ = K1 ⊕ K2 into reducing subspaces 
of Ti such that (T1|K1 , T2|K1 , T3|K1) is an E-unitary and (T1|K2 , T2|K2 , T3|K2) is a pure E-co-isometry.

If we denote (T1|K1 , T2|K1 , T3|K1) by (T11, T12, T13) and (T1|K2 , T2|K2 , T3|K2) by (T21, T22, T23), then with 
respect to the orthogonal decomposition K∗ = K1 ⊕K2 we have that

T1 =
[
T11 0
0 T21

]
, T2 =

[
T12 0
0 T22

]
, T3 =

[
T13 0
0 T23

]
.

The fundamental equations T1 − T ∗
2 T3 = DT3X1DT3 and T2 − T ∗

1 T3 = DT3X2DT3 clearly become
[
T11 − T ∗

12T13 0
0 T21 − T ∗

22T23

]
=

[
0 0
0 DT23X12DT23

]
, X1 =

[
X11
X12

]

and [
T12 − T ∗

11T13 0
0 T22 − T ∗

21T23

]
=

[
0 0
0 DT23X22DT23

]
, X2 =

[
X21
X22

]
.

Thus T3 and T23 have same defect spaces, that is DT3 and DT23 are same and consequently (T1, T2, T3) and 
(T21, T22, T23) have the same fundamental operators. Now we apply Theorem 4.1 to the pure E-isometry 
(T ∗

21, T
∗
22, T

∗
23) = (T ∗

1 |K2 , T
∗
2 |K2 , T

∗
3 |K2) and get the following:

(i) K2 can be identified with H2(DT23)(= H2(DT3));
(ii) (T ∗

21, T
∗
22, T

∗
23) can be identified with the commuting triple of Toeplitz operators (TG∗

1+G2z, TG∗
2+G1z, Tz)

defined on H2(DT3), where G1, G2 are the fundamental operators of (T1, T2, T3).

Therefore, T1|K2 , T2|K2 and T3|K2 are respectively unitarily equivalent to TG1+G∗
2 z̄, TG2+G∗

1 z̄ and Tz̄ defined 
on H2(DT3). The fact that DT3 and DP have same dimensions follows from Proposition 4.3 as T ∗

3 is the 
minimal isometric dilation of P ∗. �
Remark 4.5. Theorem 4.4 is obtained by applying Theorem 4.1 and Theorem 4.2 (which is Theorem 6.1 
in [4]). Theorem 4.1 has intersection with Theorem 5.10 in [4]. Theorem 5.10 in [4] gives the form of 
a pure E-isometry stated in Theorem 4.1. In Theorem 4.1 it has been shown that the operator-valued 
kernels τ1, τ2 associated with the Toeplitz operators occurring in Theorem 5.10 of [4] can be identified with 
the fundamental operators of the adjoint of the mentioned pure E-isometry.
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