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The main result of this paper states that a universally complete real vector lattice 
admits a band preserving complex structure if and only if it contains no locally one-
dimensional bands. A description of order bounded disjointness preserving complex 
structures on Archimedean semiprime f -algebras is also given.
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1. Introduction

A real vector space X is said to admit a complex structure if there exists a linear operator S on X
with S ◦ S = −IX or, equivalently, with S invertible and S−1 = −S. Such operator S (often called itself a 
complex structure) enables one to define on X a structure of vector space over the complexes C by putting 
zx = (α + iβ)x := αx + βS(x) for all z = α + iβ ∈ C and x ∈ X. Moreover, if X is a Banach space and S
is bounded, then one can define a complex norm |x| := sup{‖eiθx‖ : θ ∈ [0, 2π]} on X which is equivalent 
to the original one. Denote by XS the resulting complex vector (Banach) space. A finite-dimensional vector 
space admits complex structures if and only if the dimension of the space is even. In the infinite-dimensional 
setting, there are real Banach spaces admitting no complex structure. This is the case of the James’ space, as 
it was shown by Dieudonné [7]. More examples of this kind have been constructed over the years: uniformly 
convex examples due to Szarek [25], indecomposable space of Gowers and Maurey [12] or, more generally, 
any space such that every operator on it is a strictly singular perturbation of a multiple of the identity, 
etc. (see also [11,13]). We refer to the recent papers by Ferenczi [8] and Ferenczi and Galego [9] for further 
discussion.
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This line of development may be continued in two opposite directions: to look either for real Banach spaces 
(lattices) without complex structure but having some additional metric properties, or for complex structures 
on vector spaces (lattices) with some additional order properties. For example, there is a strong way for 
a Banach space to lack complex structure: A real Banach space X is said to be extremely non-complex
if ‖IX + T 2‖ = 1 + ‖T 2‖ holds for every bounded linear operator T on X. There are infinitely many 
nonisomorphic extremely non-complex Banach spaces (and even Banach lattices), see Koszmider, Martín, 
and Merí [16] and [17]. At the same time it is an interesting question whether or not a real vector lattice 
admits a complex structure which is band preserving? To the best of the author’s knowledge no research in 
this direction has been attempted.

The paper is organized as follows. In Section 2 it is proved that there is no order bounded band preserving 
complex structure on an Archimedean vector lattice and an explicit description of order bounded disjointness 
preserving complex structures on Archimedean semiprime f -algebras is given. Section 3 collects necessary 
information about d-bases in vector lattices. Section 4 contains the main result of this paper stating that 
every real non-locally one-dimensional universally complete vector lattice admits a band preserving complex 
structure (which is not order bounded according to Proposition 2.1) and is isomorphic to the complexification 
of some real vector lattice. Some additional remarks are presented in Section 5.

2. Disjointness preserving complex structures

Recall that a linear operator on E is said to be band preserving if it leaves every band invariant. If E
is a vector lattice with a projection property, then a linear operator in E is band preserving if and only 
if it commutes with all band projections [3, Theorem 8.3]. For the theory of vector lattices and positive 
operators we refer to the book [3].

Proposition 2.1. If E is an Archimedean vector lattice then there is no order bounded band preserving complex 
structure on E.

Proof. An order bounded band preserving complex structure in E is an orthomorphism by definition. For 
every Archimedean vector lattice E, the space of all orthomorphisms Orth(E) under composition is an 
Archimedean f -algebra, having the identity operator I as its multiplicative unit, see [3, Theorem 8.24]. But 
if an f -algebra squares are positive, so the relations S ∈ Orth(E) and S2 = −I are not compatible. �

Proposition 2.1 is no longer true beyond the class of disjointness preserving operators. A linear operator 
S on E is said to be disjointness preserving if |x| ∧|y| = 0 implies |Tx| ∧|Ty| = 0 for all x, y ∈ E. Evidently, 
a band preserving operator is disjointness preserving. The following simple example shows that there exists 
an order bounded disjointness preserving complex structure.

Example 2.2. There exist order bounded disjointness preserving complex structures on C(K) space. Take 
K := [−2, −1] ∪ [1, 2] and a continuous function b : [1, 2] → R \ {0}. Let a ∈ C(K) be such that a
coincides with b on [1, 2] and a(t) = −1/b(t) for t ∈ [−2, −1]. Define a linear operator S in C(K) by 
(Sx)(t) = a(t)x(σ(t)), (t ∈ K) with the continuous function σ : K → K given by σ(t) = −t. Then S is an 
order bounded disjointness preserving complex structures on C(K).

Next we describe all order bounded disjointness preserving complex structures on Archimedean semiprime 
f -algebras. To do this we need the following result by Hart [15].

Theorem 2.3. Let A and B be Archimedean semiprime f -algebras and h be a bijective order bounded dis-
jointness preserving operator from A onto B. Then there exists a unique f -algebra isomorphism h̃ from 
Orth(A) onto Orth(B) such that h(xy) = h̃(x)h(y) for all x, y ∈ A.
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We need one more f -algebra concept. An f -algebra A is called n-root closed if for every x ∈ A+ there 
exists n

√
x ∈ A+ with ( n

√
x)n = x.

Proposition 2.4. Let A be an Archimedean semiprime f -algebra which is n-root closed for some 1 < n ∈ N. 
An order bounded linear operator S : A → A is a disjointness preserving complex structure if and only if 
there exists an invertible orthomorphism w ∈ Orth(A) and a unique f -algebra isomorphism h : A → A such 
that

h ◦ h = IA, w ◦ h̃(w) = −IA, S = w ◦ h.

Proof. Assume that A satisfies the stated requirements. It was proved by Boulabiar, Buskes, and Triki in 
[6, Corollary 6.2] that an order bounded disjointness preserving operator S : A → A is representable as 
S = w ◦ h, whenever S is bijective, w ∈ Orth(A) is invertible and h : A → A is an f -algebra isomorphism. 
If S is a complex structure then applying this representation and Theorem 2.3 we deduce

−x = S(Sx) = wh(wh(x)) = wh̃(w)h(h(x)),

so that π ◦ h2 = −IA where π := wh̃(w). It follows that

−xy = π(h2(xy)) = h2(x)π(h2(y)) = −h2(x)y

for all x, y ∈ A and hence h2 = IA. Moreover, π = π ◦ h2 = −IA. The converse is straightforward. �
Corollary 2.5. Let A be an Archimedean f -algebra with unit element 1. An order bounded linear operator 
S : A → A is a disjointness preserving complex structure if and only if there exists a unique f -algebra 
isomorphism h : A → A such that the representation S(x) = S(1)h(x) holds for all x ∈ A with h ◦ h = IA
and S(1)h(S(1)) = −1.

Proof. This can be deduced from Proposition 2.4 or, alternatively, proved making use of the following result 
due to Boulabiar, Buskes and Henriksen [5]: An order bounded disjointness preserving operator S : A → A

is representable as Sx = S(1)h(x), (x ∈ A), where h : A → A is an f -algebra isomorphism, provided that 
S−1 is also band preserving. �
Corollary 2.6. Let K be a compact Hausdorff space. An order bounded linear operator S : C(K) → C(K) is 
a disjointness preserving complex structure if and only if there exists a unique homeomorphism σ : K → K

such that

σ ◦ σ = IK , a(a ◦ σ) = −1,

Sx = a(x ◦ σ) (x ∈ C(K)),

with a = S(1) and 1 being the function identically equal to one on K.

Proof. This can be deduced from Corollary 2.5 or, alternatively, proved making use of following result due to 
Arendt [4]: An order bounded disjointness preserving operator S : C(K) → C(K) is a weighted composition 
operator, i.e. there exists a mapping σ : K → K such that

(Sx)(t) = a(t)x(σ(t)) (x ∈ C(K), t ∈ K)),

with a = S(1) and σ uniquely defined and continuous on {t ∈ K : a(t) 	= 0}. �
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3. d-bases

With the use of a Hamel basis, it can be proved that there exist nontrivial additive involutions on R, that 
is, nonzero functions f : R → R with f ◦ f = IR, see Kuczma [18, Theorem 12.5.2]. We carry out similar 
constructions making use of a d-basis instead of a Hamel basis for the proof of our main result. Before 
launching into details we state some needed properties of d-bases from Abramovich and Kitover [1].

Recall that a vector lattice is universally complete if it is Dedekind complete and laterally complete. Let E
be a universally complete vector lattice. A subset E ⊂ E is called d-independent, if for each band projection 
ρ on E the set {ρe : ρe 	= 0, e ∈ E} is linearly independent, that is, the collection of all non-zero members 
of the set ρE is linearly independent. Any maximal (by inclusion) set of d-independent vectors is called a 
d-basis. A universally complete vector lattice E with weak order unit 1 is called locally one-dimensional
if {1} is a d-basis in E, [1, Definition 6.1]. For the notions of d-independence and d-basis for an arbitrary 
vector lattice see Abramovich and Kitover [2].

Lemma 3.1. Let E be a fixed d-basis in a universally complete vector lattice E. Then for each x ∈ E there 
exists a collection (ρξ)ξ∈Ξ of pairwise disjoint band projections (depending on x) such that 

∑
ξ∈Ξ ρξ = IE

and the following representation holds:

x =
∑
ξ∈Ξ

∑
e∈E

αξ,eρξe, (1)

where αξ,e are some scalars (depending on x), such that for each ξ ∈ Ξ only a finite number of coefficients 
αξ,e may be nonzero.

Proof. See [1, p. 33] and [19, Proposition 5.1.1 (3)]. �
The expression (1) is called a d-expansion of x with respect to d-basis E . A d-expansion is not unique, 

as we always can subdivide any projection band Ei into the direct sum of two or more complementary 
projection bands.

Theorem 3.2. If E is a universally complete vector lattice, then for each non-zero band B in E there is a 
non-zero band B0 ⊆ B such that there exists a d-basis in B0 consisting of weak order units in B0.

Proof. See [1, Theorem 6.4] and [20, Theorem 4.6.9]. �
Theorem 3.3. Let E be a d-basis in a universally complete vector lattice consisting of weak units. Then either 
E is a singleton, or E is of infinite cardinality.

Proof. See [1, Theorem 6.8]. �
The following result was obtained by Abramovich and Kitover in [1, Theorem 14.9] and by McPolin and 

Wickstead in [22, Theorem 3.2].

Theorem 3.4. A universally complete vector lattice is locally one-dimensional if and only if every band 
preserving linear operator in it is order bounded.

Proof. The proof is based on d-basis technique (see Abramovich and Kitover [1, Theorem 14.9]), while the 
Boolean valued proof is presented by Kusraev and Kutateladze in [20, Theorem 4.6.4]. �

We need one more tool. Say that a Dedekind complete vector lattice E is principally universally complete
if each principal band in E is universally complete, see [1, Definition 14.1].
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Theorem 3.5. Let E be a Dedekind complete real vector lattice and S : E → Eδ be a band preserving linear 
operator. Then there exists a maximal band E0 in E such that the restriction of S to E0 is order bounded, 
and hence the restriction of S to any nonzero ideal in E⊥

0 is not order bounded. Moreover, for every x ∈ E+
and for every λ ∈ R+ there exists an element u ∈ E such that 0 ≤ u ≤ x and |Su| ≥ λx. In particular, E⊥

0
is principally universally complete.

Proof. See [1, Theorem 14.8]. �
4. Main results

We will also need the following auxiliary fact.

Lemma 4.1. Let E be a universally complete vector lattice and (Eξ)ξ∈Ξ be a collection of pairwise disjoint 
bands with (

⋃
ξ∈Ξ Eξ)⊥ = {0}. If Sξ : Eξ → Eξ is a band preserving linear operator for all ξ ∈ Ξ, then there 

exists a unique band preserving linear operator S : E → E such that S|Eξ
= Sξ. Moreover, S is a complex 

structure on E if and only if Sξ is a complex structure on Xξ for all ξ ∈ Ξ.

Proof. Define an operator S on E by putting

Sx :=
∑
ξ

Sξxξ (x ∈ E),

where xξ ∈ Eξ, πξx = πξxξ (ξ ∈ Ξ), and πξ is a band projection corresponding to Eξ. Obviously, S is the 
operator sought. �

Now we are ready to state and prove the main result.

Theorem 4.2. A universally complete real vector lattice E admits a band preserving complex structure if and 
only if there is no locally one-dimensional band in E.

Proof. Necessity. If E is locally one-dimensional, then every band preserving linear operator is order bounded 
by Theorem 3.4. Thus, there is no band preserving complex structure on E in accordance with Proposi-
tion 2.1.

Sufficiency. Assume that E has no locally one-dimensional band. According to Theorem 3.2 there exists 
a family of pairwise disjoint non-zero bands (Bξ) in E such that (

⋃
ξ∈Ξ Bξ)⊥ = {0} and each of them has 

a d-basis consisting of weak order units. In a view of Lemma 4.1 there is no loss of generality in assuming 
that there exists a d-basis E in E, consisting of weak units.

According to our assumption E is not a singleton and hence E is of infinite cardinality by Theorem 3.3. 
Therefore, there exists a decomposition E = E1 ∪ E2, with E1 ∩ E2 = ∅ and E1 and E2 having the same 
(infinite) cardinality. Hence there exists a one-to-one mapping g from E1 onto E2. Thus the function g−1 is 
defined on E2 and maps E2 onto E1. Now we define an operator S : E → E as follows:

S(e) =
{
−g(e), for e ∈ E1,

g−1(e), for e ∈ E2.

Given the d-expansion (1) of x ∈ E we define Sx by

Sx =
∑(

−
∑

αξ,eρξg(e) +
∑

αξ,eρξg
−1(e)

)
. (2)
ξ∈Ξ e∈E1 e∈E2
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In particular, S(πe) = πSe for all π ∈ P(E) and e ∈ E , since S(πe) = −πg(e) (e ∈ E1) and S(πe) = πg−1(e)
(e ∈ E2) by definition. The definition of S is sound. Indeed, if x has two distinct d-expansions of the form 
(1) with two different partitions of unity (πη) and (ρξ), then the two values of Sx defined by (2) using these 
partitions of unity, coincide with the value of Sx defined by (2) using the common refinement (πηρξ) of 
given partitions of unity as can be easily seen changing the order of summation. In a similar way one can 
prove that S is linear.

To see that the operator S constructed is band preserving note first that the equation πx = α0π
⊥e0 +∑

ξ∈Ξ
∑

e∈E αξ,eπρξe with e0 ∈ E and α0 = 0 implies by definition

S(πx) =
∑
ξ∈Ξ

(
−

∑
e∈E1

αξ,eρξπg(e) +
∑
e∈E2

αξ,eρξπg
−1(e)

)
.

Now, taking into account that a linear operator is band preserving if and only if it commutes with all band 
projections, it is sufficient to observe

S(πx) =
∑
ξ∈Ξ

(
−

∑
e∈E1

αξ,eρξπg(e) +
∑
e∈E2

αξ,eρξπg
−1(e)

)
=

= π
∑
ξ∈Ξ

ρξ

(
−

∑
e∈E1

αξ,eπe +
∑
e∈E2

αξ,eπe

)
= πSx.

It remains to show that S2 = −IE . For every fixed ξ we have by (2) that

ρξS
2x = (ρξS)2x = ρξS

(
−

∑
e∈E1

αξ,eρξg(e) +
∑
e∈E2

αξ,eρξg
−1(e)

)
=

= −
∑
e∈E1

αξ,eρξSg(e) +
∑
e∈E2

αξ,eρξSg
−1(e) = −ρξx

holds for all ξ. The proof is complete. �
Given a complex structure S on a real vector lattice E, denote by ES the complex vector space with the 

underlying additive group E and the complex multiplication defined as zu = (α + iβ)u := αu + βS(u) for 
all z = α + iβ ∈ C and u ∈ E. If S is band preserving, then the corresponding complex multiplication is 
also band preserving, i.e. u ⊥ v implies zu ⊥ v for all z ∈ C and u, v ∈ E. Thus, we have the following easy 
corollary.

Corollary 4.3. A universally complete real vector lattice without locally one-dimensional bands admits a struc-
ture of a complex vector space with a band preserving complex multiplication.

Remark 4.4. A complex vector lattice is the complexification XC = X + iX of a real vector lattice X with 
modulus defined by

|x + iy| := sup
0≤s<2π

|x cos s + y sin s| (x, y ∈ X).

The right-hand supremum exists whenever X is uniformly complete and in this case we have the modulus 
mapping | · | : XC → X, see [23]. (An axiomatic approach see in Mittelmeyer and Wolff [24].) Observe that 
ES is a uniformly complete real vector lattice and a complex vector space simultaneously, but ES is not 
a complex vector lattice. Indeed, if ES were a complex vector lattice, i.e. ES = XC for some real vector 
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lattice X, we would have |Sx| = |ix| = |x| for all x ∈ X, hence S would be order bounded. But S cannot 
be order bounded by Proposition 2.1.

Theorem 4.5. Assume that a universally complete real vector lattice E contains no locally one-dimensional 
band and fix a band preserving complex structure S on E. Then there exists an order dense vector sublattice 
X ⊂ E such that ES � XC, i.e. ES and XC are isomorphic as complex vector spaces.

Proof. Take a non-locally one-dimensional universally complete real vector lattice E and denote by ∗ the 
complex multiplication on E associated with a fixed band preserving complex structure S on E. Let X
consist of all elements x ∈ E admitting the representation (1) with E := E1. The proof of the fact that X is 
a real subspace of E is similar to the proof of soundness and linearity of S given above in Theorem 4.2. If 
x ∈ X and π ∈ P(E) is the band projection onto the band {x+}⊥⊥, then x+ = πx =

∑
ξ∈Ξ

∑
e∈E1

αξ,eρξπe

and hence x+ ∈ X. It follows that X is a vector sublattice of E. If 0 < u ∈ E, then for an arbitrary e ∈ E1
there exists a band projection π on E and a positive real λ such that 0 < λπe ≤ x. This means that X is 
order dense in E, since λπe ∈ X by definition.

Denote by Y the vector sublattice of E constructed as X but using E2 instead of E1. From the relations 
E1 ∩ E2 = {0} and E = E1 ∪ E2 using the representation (1), we deduce easily that X ∩ Y = {0} and 
E = X + Y . Moreover, the restriction S0 := S|X is an R-linear bijection from X onto Y . Now, if PX and 
PY stand for the canonical projections onto X and Y , respectively, then the mapping u �→ (PXu, S−1

0 PY u)
is an R-linear isomorphism from E onto X ×X. It follows that for every u ∈ E there exists a unique pair 
(x, y) ∈ X ×X such that u = x + Sy. Clearly the mapping ϕ : u �→ x + iy is an R-isomorphism from E to 
XC. Identifying x + iy with (x, y), it remains to observe that

ϕ(z ∗ u) = αϕ(u) + βϕ(S(u))) = α(x, y) + βϕ(−y + Sx)

= (αx− βy, αy + βx) = (α + iβ)(x,−y) = zϕ(u).

It follows that ϕ is a C-isomorphism. �
Remark 4.6. The modulus |u| of an element u ∈ XC exists and belongs to E. Moreover, the mapping u �→ |u|
of XC into E satisfies the properties: |u| = 0 ⇐⇒ u = 0; |λu| = |λ||u|; |u + v| ≤ |u| + |v| for all λ ∈ C and 
u, v ∈ X.

Remark 4.7. Evidently, T := S−1 is also a complex structure on E provided that S is a complex structure 
on E. Moreover, T is band preserving provided that so is S, see Abramovich and Kitover [1, Theorem 7.4]. 
Thus, we can define one more complex multiplication on E by letting z � u = (α + iβ) � u := αu + βT (u)
for all z = α+ iβ ∈ C and u ∈ E. Denote ES := (E, ∗) and ET := (E, �). Then T is a C-isomorphism of ES

onto itself and S is a C-isomorphism of ET onto itself. Indeed,

T (z ∗ u) = αT (u) + βT (Su) = αT (u) + βS(Tu) = z ∗ T (u),

S(z � u) = αS(u) + βS(Tu) = αS(u) + βT (Su) = z � S(u).

Moreover, S(z ∗ u) = (iz) ∗ S(u) and T (z � u) = (iz) � T (u).

Remark 4.8. The complex vector lattice YC shares the properties of XC; in particular, ET � YC. Moreover, 
the mapping x + iy �→ S0x + iS0y with S0 := S|X is a C-isomorphism of XC onto YC. But this isomorphism 
is not modulus preserving.

Theorem 4.9. A Dedekind complete real vector lattice admitting a band preserving complex structure is 
principally universally complete.
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Proof. Let E be a Dedekind complete vector lattice and S be a complex structure on E. Then the restriction 
of S to any nonzero band in E is again a complex structure which is not order bounded by Proposition 2.1. 
By Theorem 3.5 E0 = {0} and E = E⊥

0 , where E0 is a band of regularity of S, and hence E is principally 
universally complete. �
5. Concluding remarks

The Wickstead problem. Theorem 4.2 enables one to specify the Wickstead problem raised in [26]: In 
which vector lattices is each band preserving linear operator automatically order bounded? An overview 
of the main ideas and results on the Wickstead problem and its variations may be found in [1,14,20]. 
Theorem 3.4 says that in the class of universally complete vector lattices this phenomena happens only 
in locally one-dimensional case. Combining this fact with Theorem 4.2 shows that the existence of band 
preserving complex structures is intimately related to the absence of locally one-dimensional bands.

Corollary 5.1. Let E be a nonzero universally complete vector lattice. Then the following assertions are 
equivalent:

(1) There is a locally one-dimensional band in E.
(2) There is a nonzero band of E in which all band preserving linear operators are order bounded.
(3) There is no band preserving complex structure on E.

Vector lattice of real measurable functions. Consider an important particular cases of the vector lattice 
of cosets of (almost everywhere equal) real measurable function. Let (Ω, Σ, μ) be a measure space and 
let L0 := L0(Ω, Σ, μ) denote the f -algebra of all cosets of real measurable functions on Ω. If (Ω, Σ, μ) is 
a Maharam (localizable) measure space then L0 is a universally complete vector lattice, see Fremlin [10]. 
Moreover, L0 is locally one-dimensional if and only if the Boolean algebra B := B(Ω, Σ, μ) := Σ/μ−1(0) of 
measurable sets modulo negligible sets is atomic (and so isomorphic to the boolean P(A) of a nonempty 
set A), see Kusraev and Kutateladze [20, Proposition 4.7.11 and Corollary 4.13.8].

Corollary 5.2. If (Ω, Σ, μ) is an atomless Maharam measure space then the vector lattice L0(Ω, Σ, μ) admits 
a structure of complex vector space with a band preserving complex multiplication.

Proof. This is immediate from the above remarks and Theorem 4.2. �
Kernel representation. Sections 2 and 4 provide some insight to the existence and description of complex 

structures on real vector lattices with band preserving or disjointness preserving multiplication. It is an 
interesting question whether there are similar results for another classes of operators. An easy fact follows.

Proposition 5.3. Let (Ω, Σ, μ) be a non-atomic σ-finite measure space and X be an order dense ideal in 
L0(Ω, Σ, μ). There does not exist a complex structure on X admitting a kernel representation.

Proof. Since (Ω, Σ, μ) is non-atomic, there exists an order bounded sequence (xn) in X which converges to 
zero in measure but doesn’t converge to zero almost everywhere. Assume that a complex structure S on X
admits a kernel representation. Then (yn) with yn = Sxn converges to zero almost everywhere and hence 
(xn) also converges to zero almost everywhere, since xn = −Tyn; a contradiction. �

Boolean valued approach. A result similar to Theorem 4.2 can be proved for fields:

Theorem 5.4. Let F be a proper subfield of R. Then there exists a discontinuous F-linear function f : R → R

such that f ◦ f = −IR.
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The proof of this result rely upon Hamel basis and is similar to that of Kuczma [18, Theorem 12.5.2], 
taking into account the fact that a subfield F of R is proper if and only if R is an infinite dimensional 
vector space over F, see Lang [21, Ch. VI, Corollary 9.3]. It should be noted that despite of a drastic 
difference between the concepts of a Hamel basis and a d-basis, they are essentially equivalent: d-basis is an 
interpretation of Hamel basis in a Boolean valued model of set theory, see [20, Theorem 4.5.7].

It is shown by Kusraev and Kutateladze in [20, Theorem 4.13.5] that interpreting Theorem 5.4 in an 
appropriate Boolean valued model yields that if a universally complete real vector lattice is not locally 
one-dimensional, then there exist band preserving complex structures on it. This gives another proof of 
Theorem 4.2.
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