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DISSIPATIVE OPERATORS, SYMPLECTIC GEOMETRY, AND
LIMIT-CIRCLE SOLUTIONS

SIQIN YAO, JIONG SUN, AND ANTON ZETTL

ABSTRACT. For a general symmetric ordinary differential expression M and
a positive weight function w, the authors characterized the dissipative and
strictly dissipative extensions of the minimal operator generated by M in terms
of subspaces of a symplectic geometry space. Here we characterize these sub-
spaces in terms of LC solutions, namely, we characterize the boundary condi-
tions of the dissipative and strictly dissipative extensions by LC solutions in a
Hilbert space.

1. INTRODUCTION

Given a symmetric (formally self-adjoint) differential expression M of even or odd
order and a positive weight function w the self-adjoint realizations of the equation

(1.1) My =X wyonJ=(ab), —-co<a<b< oo

are generally studied in the framework of the Hilbert space H = L%(J,w). The
expression M generates minimal and maximal operators Sy,in and Spax in H with
domains Dpin = D(Smin), Dmax = D(Smax) and the self-adjoint extensions S of
Smin SatiSfy

(12) Srnin C S = S* C Smax

Thus these operators S differ from each other only by their domains and the
characterization of these domains is of considerable interest. Although these op-
erators S are generally described as extensions of the minimal operator Sy, it is
clear from (1.2) that they are also restrictions of the maximal operator Spax.

In 1999 Everitt and Markus (EM) [5], [6] characterized the self-adjoint domains
for even and odd order expressions M in terms of Lagrangian subspaces of complex
symplectic spaces. Given a general symmetric expression M whose minimal oper-
ator has equal deficiency indices, there exists a natural one-to-one correspondence
between the set of all self-adjoint operators generated by M and the set of all com-
plete Lagrangian subspaces in the complex symplectic space S = Doz /Dimin with
symplectic product [:] given by

[]E : g] = [f + Dmin - g + D’min] = [f : g] = [f7 Q]Z
For the even order case with real coefficients, Wang, Sun and Zettl [16] con-
structed limit-circle (LC) solutions of (1.1) and Hao, Sun, Wang and Zettl [§]
characterized the domains of self-adjoint extensions of Sy, in terms of LC solu-
tions in the Hilbert space H. These LC solutions are higher order analogues of the
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celebrated Titchmarsh-Weyl limit-circle solutions in the second order case but, in
contrast to the second order case, only some of the solutions in H are LC solutions
in general. Recently, this LC characterization has been used to obtain information
about the spectrum of these operators S [10], [9], [15].

In 2013 [20] the authors found a 1-1 correspondence between the characteriza-
tions in these two very different spaces and thereby added the methods of symplectic
geometry to the investigation of the spectrum of self-adjoint differential operators
in Hilbert space.

In 2014 [21] the authors identified the subspaces of the complex symplectic space
S which characterize the dissipative and strictly dissipative extensions of Sy, in
H and named these subspaces Dissipative and strictly Dissipative subspaces of S,
respectively.

In this paper we characterize these Dissipative and strictly Dissipative subspaces
of S in terms of boundary conditions of equation (1.1) determined by LC solutions
and identify three classes of subspaces: separated, coupled and mixed as in the
self-adjoint case.

The organization of this paper is as follows: This Introduction is followed by a
brief summary of symplectic geometry, symmetric differential expressions M and
LC solutions in Section 2. Section 3 contains the characterization of the dissipative
and strictly dissipative extensions of the minimal operator Sy, in terms of LC
solutions and the construction of a new basis for the EM space. In Section 4 the
boundary conditions of the dissipative extensions are classified into three mtually
exclusive classes: separated, coupled and mixed.

2. MAXIMAL AND MINIMAL OPERATORS, LC SOLUTIONS, SYMPLECTIC
GEOMETRY

In the first subsection we recall the maximal and minimal operators Sy, and
Smin and the Lagrange identity; the second subsection contains the construction of
LC solutions, the third some basic definitions for general symplectic spaces and the
introduction of the symplectic space used here.

2.1. Maximal and Minimal Operators. For a general symmetric quasi-differential
expression M of order n = 2k with real coefficients and a positive weight function
w, see [25] for a detailed definition and historical comments, the minimal and max-
imal operators Sin, Smax With domains, Dyin, Dmax, respectively, can be defined
as follows:

Duax = {y€ L*(Jw): Yyl e ACo(J), w My e L*(J,w)}, r=1,--- ,n—1}
Smaxy = w My, y € Dax.

Smin = Smaxs Smax = S:;lin

Dumin = D(Smin)-

Here yl"l denotes the r — th quasi-derivative. Let d denote the deficiency index
of Smin in H. See [25] for a definition of yl"l and d. It is well known that Smin
and Spax are densely defined closed operators in H, and Sy, is symmetric and
Smax = S:;lin'

The symmetric quasi-differential expressions M considered here are much more
general than those studied by Naimark in [12] and assume no smoothness conditions

on the coefficients. In particular the coefficients may be piece wise continuous.
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Fundamental to the study of boundary value problems is the Lagrange identity:

Lemma 1. For any vy, z in Dpax we have

b P
(2.1) / {2My — y3TZ} = [y, 2](b) - [y, 2)(a).

Here [y, z] is the Lagrange bracket and [y, z](b), [y, z](a) exist as finite limits for
all y, z in Dpax.

Proof. See [3] or [11] O

2.2. LC Solutions. In this subsection we briefly recall the Wang-Sun-Zettl [16]
and Hao et. al. [8] construction of LC solutions in H.

Theorem 1. Let M be a symmetric differential expression and w a weight function.
Consider the equation

(2.2) My = \wy.

Let ¢ € (a,b) and let d, and dy denote the deficiency indices of (2.2) on (a,c) and
(¢,b), respectively. Assume that for some X\ = A\, € R, the equation (2.2) has d,
linearly independent solutions u; on (a,c) which lie in L*((a,c),w) and for some
X = Xy the equation (2.2) has dy linearly independent solutions v; on (c,b) which
lie in L?((c,b),w), i =1, -+, dgq, j =1, -+, dy. Then
(1) For m, = 2d, — 2k the solutions u;, i = 1,---,d, can be ordered such that
the mg X mg matric U = ([u;,uj](c)), 1 <i,j < mg, is given by

(2.3) U= (_1)k+1Ema7 By = ((=1)"0rmy+1-5) s -

r,s

(2) For my, = 2dy — 2k the solutions v;, j = 1,---,dy on (¢,b) can be ordered
such that the my x mp matriz V = ([v;,v;](c)), 1 < 1,5 < my, is given by

(2~4) V= (_1)k+1E777«b7 Emb = ((_1)7'57',m2+1—5):}sb~
(3) For every y € Dmax(a,b) we have
(2.5) ly,ujl(a) =0, forj=m,+1,---,dg,
(26) [y”u]](b) :07 fOTj:mb+17"',db.
(4) For1<i,j<dg1<rs<dy, wehave
(2.7) [ui, us](a) = [uiu;](c).
(2.8) [vr, vs](b) = [vr,vs](c).

(5) The solutions u; can be extended to (a,b) such that the extended functions,
also denoted by w;, satisfy u; € Dpax(a,b) and u; is identically zero in a
left neighborhood of b, j =1, -+, d,.

(6) The solutions v; can be extended to (a,b) such that the extended functions,
also denoted by v;, satisfy v; € Dmax(a,b) and vj is identically zero in a
right neighborhood of a, j =1,-- -, dp.

Proof. See Theorem 4.1 in [8]. O

Tt is well known [19], [25] that d = d, + d — 2k and hence 2d = m, + my,.
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Remark 1 (LC and LP Solutions). The solutions uy,- - -, Upm, and vi,-- -, Upy, are
LC solutions at the endpoints a and b, respectively. The solutions Uy, 41, ,Ud,
and Uy, 41, -+ , Vg, are LP solutions at a and b, respectively. For example if n =4
and d, = 3 = dyp, then mg = 2 = my and thus for X\ = X\, two of the three
solutions in H are LC solutions, the third is an LP solution. This terminology
was introduced by Wang-Sun-Zettl in analogy with the celebrated Weyl limit-circle,
limit-point terminology in the second order case. But in the second order case, at
each endpoint, either all solutions are LC or none are (for real \) and it is well
known, see [24], that the LC solutions can be used to characterize the self-adjoint
domains whereas the LP solutions play no role in this characterization. There is no
boundary condition required or allowed at an LP endpoint in the second order case.
Thus the identification of LC and LP solutions by Wang-Sun-Zettl in the higher
order cases is critical for the characterization of the self-adjoint domains. Also in
the second order case all solutions are in H for some A € C if and only if this is
true for all X € C. The solutions not in H also play no role in the characterization
of the self-adjoint domains.

Next we state a theorem of Hao-Sun-Wang-Zettl which gives a decomposition of
the maximal domain; it is proven in [8] using a method of Sun [14]. We believe it
is of independent interest.

Theorem 2. Let the notation and hypotheses of Theorem 1 hold. Then
(29) -Dmax(aa b) - Dmin(a; b) 57 span{ulv Y uma} @ Span{vh Y vmb}-

2.3. General Complex Symplectic Space. In this subsection we recall the def-
inition of complex symplectic space and define the space S = Dynaz/Dimin which is
used below.

Definition 1. [5] A complex linear space S, together with a complez-valued function
on the product space S x S,

u,v— [u:v], Sx8—C

is a pre-symplectic space if this function
(7) is sesquilinear, i.e.

[cru 4 cov s w] = erfu s w] + eav : wl, [u s c3v + cqw] = E3fu V] + Eafu : w],

for all u,v,we S, andc; € C, j=1,---,4; and

(#9) skew-hermitian

(#) [u:v]=—[v:u], for all u,v € S.
If yin addition to properties (i) and (i), it is
(#it) non-degenerate
[u:S] =0 implies u =0,

then S, together with the non-degenerate, skew-Hermitian, sesquilinear form [], is
a complex symplectic space.

Definition 2. [5] A linear subspace L in the complex symplectic space S is called
Lagrangian in case [L : L] = 0, that is,

[u:v] =0 for all vectors u,v € L.
Furthermore, a Lagrangian manifold L C S is said to be complete in case

uwe Sand [u: L] =0 imply u € L.



Definition 3. [5] Let S be a complex symplectic space with symplectic form [:].
Then linear subspaces S— and Sy are symplectic ortho-complements in S, written
as
S=5_®85,,
m case
(1) S = span{S_, Sy}, (ii) [S—:S54]=0.
In this case S_ NSy =0, so S is the direct sum of S_ and S;.

Definition 4. [21] A linear subspace © in the complex symplectic space S is called
Dissipative in case

Sfu:u] >0 for all vectors u € D.

A linear subspace 2L in the complex symplectic space S is called Accumulative in
case
Su:u] <0 for all vectors u € .

Definition 5. [21] A Dissipative subspace D C S is said to be mazximal, if for any
Dissipative subspace ® such that ® C D we have D = D.

An Accumulative subspace 2 C S is said to be maximal, if for any Accumulative
subspace 2 such that A C A, we have A = .

Definition 6. [21] A Dissipative subspace ® is called strictly Dissipative in case
Slu,u] >0, forVueD, u#0.
An Accumulative subspace U is called strictly Accumulative in case
Sv,v] <0,  for Yo e, v#0.
We denote the strictly Dissipative (Accumulative) subspaces as D5 (Us).
2.3.1. The Complex Symplecticﬁpace S = Dinas/Dmin. Here we briefly discuss

the complex symplectic space S = Dynas/Dmin with the symplectic product [:]
inherited from D, defined by

[fg] = [f + Dmin : g+ Dmin] == [f : 9],
where the skew-Hermitian form [f : ¢] is defined for f, g € D00 by

[f: gl =< M(f),g>— < f,M(9) >=[f, 9]’
Here <, > is the inner product of Hilbert space H, and [f, ¢] is the Lagrange bracket
(see Lemmal).
Hence
Dmin = {f S Dmam : [f : Dmaz] - 0}

Theorem 3. [20][21] Let S be the symplectic spase defined above, then

(1) p=q=d, dimS = 2d, and Ex =0, ) )

(2) there exist complete Lagrangian subspaces L of S,

(3) there are more then one maximal (strictly) Dissipative subspaces.

Proof. Item (1) follows from Lemma 7 in [20], (2) from Theorem 2 in [6] and (3)
from Corollary 1 in [21]. O

Theorem 4. [20] Let the notation and hypotheses of Theorem 1 hold, and S =
Dmax/Dminy then
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(1) S = Spa’n{ﬂh e 7ﬂmaa 1717 e 76mb}-

(2) S is the complezification of the unique real symplectic space R*®.
(3) S is symplectic isomorphic to a complex symplectic space C3?.
(4) For the basis {1, ,Um,, 01, ,0m,}, let

-U, 0
H = Mg XMy ,
( O Vmb Xmy )

then H is a skew-Hermitian matriz, and for every f = (fi,-- , fmus f1oo -+ » frny)
and g = (glv' o 7gmavgl7' o 7gmb) mn S: we have

[fg] = (f17"' 7fma:f1:"' 7fmb)H(gl7"' 7gmavgla"' 7gmb)*~
Here U is defined by (2.3) and V is defined by (2.4) in Theorem 1.

3
4

Proof. See [20]. O

3. A REPRESENTATION OF DOMAINS OF DISSIPATIVE EXTENSIONS

There exists a natural bi-unique correspondence between the set of all dissipative
extensions T of S,,;, and the set of all Dissipative subspaces Din S , and studying
the properties of the Dissipative subspaces is easier then studying the dissipative
extension domains directly.

In this section we represent the dissipative extension domains D(7Tp) with Limit-
Circle solutions after carefully investigating Dissipative subspaces. We start by
recalling some lemmas from [21].

Lemma 2. Consider a complex symplectic space S, with symplectic form [:], and
finite dimension D > 1. Then ® C S is a Dissipative but not strictly Dissipative
subspace if and only if there exists a Lagrangian subspace D1 C D and a strictly
Dissipative subspace ®s C D such that

(3.1) D=9,
Proof. See [21] for the proof. O

Lemma 3. Let M be a general symmetric differential expression and S = Diax/Dmmin,
then

(1) there exists a natural one-to-one correspondence between the set of all dissi-
pative operators Tp generated by M and the set of all Dissipative subspaces
D in the complex symplectic space S = Dinax/Dmin- Namely, for each such
dissipative extension Tp with domain D(Tp) C Dmax, the corresponding
Dissipative subspace ® is defined by

© = D(Tp)/Dmin-

(2) there exists a natural one-to-one correspondence between the set of all strictly
dissipative operators Ts generated by M and the set of all strictly Dissipative
subspaces D4 in the complex symplectic space S = Dmax/Dimin -

Proof. See [21] for a proof. O

Given the natural one-to-one correspondence between the dissipative operator
extensions and the Dissipative subspaces in Lemma 3, we now study the dissipative
subspaces of S instead of the dissipative operator extensions in H directly. This



allows us to study dissipative operators in the Hilbert space H by using methods
of synplectic geometry to study dissipative subspaces in the symplectic space S .

Theorem 5. Let the notation and hypotheses of Theorem 1 and Theorem 4 hold.
A linear subspace D(Tp) of Dmax is the domain of a dissipative but not strictly
dissipative extension Tp of Smin if and only if there exist

Vi, 05 € C¥ k=1, ,rp, j=1,---,rs, are linearly independent,

and satisfying

(3.2) [vi:vel =0, i, k=1, ,rg,

(33) %[aj : aj] > Oa .7: 1a"' y s,y

(34) [’ykaj]:07 k:].,"',TL,j:].,"',T'S,

(3.5) %[Z cjoy chaj} >0, j=1,--,rs,
i=1 i=1

such that

D(TD) = Dmin 2] Span{w17w27' . 'w'rL} 2] Spa”{XuXm e 7X'rs}7
where
wk:’YkW XJ:Of]W, k?:l, sTLy j:]w 5 Tsy
W = (u17... ’uma7v17... 7'Umb)T_

Proof. (=) Let D(Tp) be the domain of a dissipative but not strictly dissipative
extension Tp. By Lemma 3, D(Tp)/Dmin is a dissipative but not a strictly dis-
sipative subspace of S, then from Lemma 2 there exists a Lagrangian subspace
D, C D(Tp) and a strictly dissipative subspace ©, C D(Tp) such that

D(Tp) =D & Ds.
Denote r;, = dim®y, ry = dim Dy, and let
Wi :’YkW7 k:]~7 y 'Ly ande :OZJWJ:L yTs
be a basis for ®7, and D, where W = (uy, -+ ,Um,, V1, ;Um, )", then
Vi Oy GCZd k:L ,TL, .7: 17 3 Ts
are linearly independent.

From the definition of a Lagrangian subspace we have v, € C>4 k=1,--- rp
satisfy (3.2), and from the definition of the strictly Dissipative subspace we get
aj € CH) j=1,--- ry satisfy (3.3) and (3.5), and from Lemma 2, we get (3.4).

(«=) From (3.2), we conclude that

Wk :’YkW» k= 17 yTLy
construct a Lagrangian subspace ©; C S. From (3.3) and (3.5), we conclude that
X] :a]WJ: ]'7 y s

construct a strictly dissipative subspace ©s C S. Then from (3.4) and Lemma 2,
D @ Dy is a Dissipative but not a strictly Dissipative subspace of S. So from
Lemma 3, we conclude that

D(TD) = Dinin @ Span{w17w27 o 'wTL} D Span{XhXZa T 7X'rs}7
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is the domain of a dissipative extension of Spin- O

Note that [y; : v.], [ : ;] etc. which appear in Theorem 5 and Corollary 1
and Theorem 6 below are the symplectic product in C?? as [y, : v,] = v HYj,
where H is the skew-Hermitian matrix defined in item (4) of Theorem 4. Since
S is symplectic isomorphic to C*?, we don’t distinguish it from its corresponding
element in S.

Corollary 1. Let the notation and hypotheses of Theorem 1 and Theorem 4 hold. A
linear subspace D(TsD) of Duax s the domain of an rs strictly dissipative extension
TsD of Smin if and only if there exist

a; € c2, 7 =1,---,7s are linearly independent,

satisfying
(3.6) Syt 5] >0, j=1,-- 7,

Ts Ty
(3.7) %[chaj : chozj} >0, j=1,---,rs,

i=1 i=1
such that

D(TsD) = Dumin © span{xy, Xa, " - 7er}7

where x; = a;W, j =1, rs, and W = (w1, -+ ,Um,, V1, s Oy ) L

Proof. Since D(Ts) is the domain of a strictly dissipative extension T of Suin,
there are no nontrivial Lagrangian elements in the strictly Dissipative subspace
D(Ts)/Dpin and thus this Corollary follows from Theorem 5. O

Remark 2. Note that conditions (3.5) and (3.7) are not easy to check. Below we
will find alternative conditions which are easier to check.

Example 1. Consider the complex symplectic space S = span{ei,es, a1, a2}

with customary basis vectors
[ej . ej} = i, [aj : (lj] = —i, ] = 1,2,

and all other symplectic products are zero. That is, we use the skew-Hermitian
matrix H = diag{i,i, —i,—i} to define the symplectic structure on S = C*.

Define

D1 = span{2e1 + a1,2es + a1},

in D1, 2e; +ay and 2e; + ay are dissipative elements, and [2e; +a; : 2e5 +a1] = —1,
i.e. 2e; + ay and 2es + a; are not symplecticly orthogonal. But it is easy to verify
that a(2e1 4+ a1) + B(2e2 + a1), Vo, 8 € C is a dissipative element, therefore © is
a Dissipative subspace of C*.

Define

Do = span{ey, ea},

in D, since e; and ey are dissipative elements and [e; : ea] = 0, clearly ae; + fSea,
for o, B € C are dissipative elements, therefore ®, is a Dissipative subspace of C%.

Define

D3 = span{be; + 4ay, 6ey + Hay },

in ©3, bey+4a; and 6ea+5a; are dissipative elements, but (5e1+4a;1)+(6ea+5aq) =
5e1 + 6es + 9aq, is not a dissipative element, therefore ©3 is not a Dissipative
subspace of C*.
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Now we extend condition (3.5) to get a sufficient condition for D(Tp) to be the
domain of a dissipative extension.

Theorem 6. Let the notation and hypotheses of Theorem 1 and Theorem 4 hold,
assume that there exist

Vi, € CH k=1, ,rpL, 7 =1,--- .75 are linearly independent,
satisfying
(3.8) Vvl =0, i, k=1, ,rp.
(3.9) eyt ay] >0, j=1,---,rs.
(3.10) Ve:a;] =0, k=1,---,rp, j=1,--- 1
(3.11) la; i) =0, i j, i,j=1,---,rs.
Then
(312) D(TD) = Dmin 2] Span{w17w27 e w’l‘L} 53] SPCL’I'L{X]_, X2, " 7er}'
is the domain of a dissipative extension Tp. Here wy = v,W, x; = a;W, k =
Loooyrp, =1, rg, W= (U1, ,Up, V1, 7Umb)T

Proof. We know that [ : o] =0, @ # 4, i,j = 1,--- ,rs is a sufficient but not
necessary condition for

T Ts
%[chaj : choz]-] >0, j=1,---,rs.
i=1 i=1

Sov, aj €CH¥ k=1, ry, j=1, -7, satisfying (3.8)-(3.11) define a domain
of a dissipative extension of Spiy,. O

Remark 3. Although we obtain the complete characterization of the domains of
dissipative extensions in terms of LC solutions in Theorem 5, Corollary 1 and
Theorem 6, it may be complicated to check a specific dissipative extension, since the
characterization of a Dissipative subspace under the basis ty,- - ,Upm,, V1, " ,Vm,
is complicated. Next we construct a new basis for S in terms of LC solutions which
makes this easier.

Lemma 4. There exists a nonsingular mg X mg matriz Q. and an my X my matric
Qp such that

Qa(_Um" ><ma)Q:, = dzag{u e 77;7 _i7 T _2}7
—— ———
m 1r;1
QQ(VmQsz)QS = d’LCLg{’L, e 72'7 _iv e 7_2}
—— —— —
mo mo

2 2
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Proof. (1) If k is even and "5 is even, let

1 i

(2) If k is even and "5 is odd, let

1 i

T

(3) If & is odd and “5* is even, let

i 1
1 i

R I

(4) If k is odd and %= is odd, let

i

Qa=1| - - - - - =
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then it is easy to check that

Qa(—Uma,Xmu,)QZ = dzag{z7 T 7i7 _7:7 B _Z}
o o
Similarly @, can be constructed. O

Theorem 7. Let the notation and hypotheses of Theorem 1, Lemma 4 hold, let

(&1, JEma, Fma g, TZm )T = Qaln, -+ iim,) T,
(21, - ’g%’g%b+p .. ,gmb)T = Qu(1,- - ,f)mb)T_
Then
(1) span{zy,--- ,fi%} and span{zy,- - ,2%} are strictly Dissipative subspaces
of S.
(2) span{fc%ﬂ, e T, +oand sp(m{émTy,H7 e Zm, }oare strictly Accumula-

tive subspaces of S.

Proof. From (4) of Theorem 4, ([%; : 4;]) = —Um, xma, ([Ui : U;]) = Viny xms, and
from Lemma 4,

Qa(_UmaXma)QZ = dZ{lg{’L, R - 7i7_i7' y * 7_i}7
Qb(vmmeb)QZ = diag{i,~-~ 2y =, 7_i}7
E
so we have
([#; : 75]) = Qa(lt; : 4;))Qq = diag{i, -~ ,i,—i,- -+, —i},
5t =a

and from Corollary 1 and Theorem 6, item (1) is obtaind. Similarly item (2) can
be proven. ]

Theorem 8. Let the notation and hypotheses of Theorem 1 and Theorem 7 hold.
Let

D:Span{illf" ail";”7217"' aémb}a

A= Span{j%Jrlv Ty, 2’"75+1a o Zmy b

Then R

D is a mazimal Dissipative subspace of S.

A is a mazimal Accumulative subspace of S. And

S—Dad [D:A =0

Proof. From the constructions of the new basis of S: .- s Tma, Tma g, Ty,
21yt ,Z%, 2%+17 “++, Zm, and Theorem 6, D is a maximal Dissipative subspace
of S, and A is a maximal Accumulative subspace of S. Furthermore, from the

definition of symplectic ortho-complement subspace, we have

S—Dod [D: =0
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4. CLASSIFICATION OF BOUNDARY CONDITIONS OF DISSIPATIVE EXTENSIONS

In this section, we classify the boundary conditions of the dissipative extensions
into separated, coupled and mixed and we illustrate these three cases.

Lemma 5. [20] Let the notation and hypotheses of Theorem 1 hold, and let S =
Dinaz/Dmin be the complex vector space defined above. Assume that

Si={f €S :[f,n](b) = =[f,vm,](b) = 0},
Se={f€S:[f,wm](a) = = [f,umal(a) = 0}.
Then
Sy = span{iiy, o, - T, }
S'T = span{01, D2, , O, },
and S = 5’1 @ S'T.
Proof. See [20] for a proof. O

Lemma 6. Each of S, and S, is itself a complex symplectic space. Specifically,
Sy is symplectic isomorphic to C™=, with [:] defined by the skew-Hermitian matriz
—U, and S, is symplectic isomorphic to C™  with [:] defined by the skew-Hermitian
matriz V. Furthermore, let

Dl7 pis qi, Ala Eml and -DT7 Prs Qr, Ara Emr

denote the corresponding symplectic invariants for 5'1, and S, respectively, then

Mg
(4.1) Di=mq, m=q=>L1=—, Bz =0,
(42) DT:mb7 pr:(I'r:Ar:%v E-TTZO
Proof. See [20] for the proof. O

Definition 7. Let S = Dinaz/Dmin be the complex vector space defined in subsec-
tion 2.3 having a direct sum decomposition given by Lemma 5
S=25a&S8, with[S;:S,]=0.
(1) A non-zero vector v € S is called separated at the left (right) in case v € S
(v € S,), and v is coupled otherwise.
(2) A Dissipative subspace D € S is called separated if for every v € D it is
separated at the left and at the right.
(3) A Dissipative subspace D € S is called coupled if for every v € D it is
coupled.
(4) A Dissipative subspace D € S is called mized if D is neither separated nor
coupled.

Definition 8. Let M be a symmetric differential expression studied in subsection
2.1, then

(1) the boundary condition of a dissipative extension Tp of Smin is called sep-
arated if the Dissipative subspace D(Tp)/Dmin is separated,

(2) the boundary condition of a dissipative extension Tp of Smin 18 called cou-
pled if the Dissipative subspace D(Tp)/Duin is coupled,
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(3) the boundary condition of a dissipative extension Tp of Smin s called mized
if the Dissipative subspace D(Tp)/Dmin s mized.

Theorem 9. Let the notation and hypotheses of Theorem 1 hold. Let D defined as
in Theorem 8:

D = span{@1, -+ ,Tma, 21, 7Z";b}.

Then

(1) The dissipative subspace D is separated.
(2) The dissipative subspace D has the following property:

Dy —dimD (]S =
D, —dimD( S, = —.
m m 3

and D; — dimﬁﬂgl =D, —dimD N S, if and only if mg = my.
Proof. From the construction of Zy,--- Tma, 2y, ,%mz,, we have &; € S, i =

1,---, %% and z; € S, j=1,---,% So the dissipative subspace D is separated.
It is obviously that

s NEs L Ma . =N
dimD (]S = 7‘1 dimD() S, = R
then D; — dimD (S, = D, — dimD (S, if and only if m, = my. O
Remark 4. Note that every coupled Dissipative subspace D. has the balanced in-
tersection property with the direct sum decomposition S=95,®8, when mg = my,
as

D, — dim@cﬂgl =mg=mp =D, — dim@cﬂg}.
Although the mazimal Dissipative subspace D defined in Theorem 8, and every
coupled Dissipative subspace D, have some balanced intersection property with the

direct sum decomposition S =58®S8, when mg = myp, we find that other dissipative
subspaces may not have the balanced intersection property even if mq = my.

Next we give an example which has separated coupled and mixed subspaces. Of
course, the corresponding differential equations (1.1) have self-adjoint realizations
with all three types of boundary conditions: separated, coupled and mixed.

Example 2. Let the notation and hypotheses of Theorem 1 and Theorem 7
hold, and, for convenience, assume that m, = m; = 6. Then S has a basis

X1,T2,X3,T4,T5,T6,21,722,23, 24,25, %6,

such that the associated skew-Hermitian matrix H is given by

Usxs 0
H = ,
( 0 Vexe >

where
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Define

Dy = span{xy,xa, 23,21, 22, 23},
then from Theorem 9, ®, is a maximal strictly Dissipative subspace and it is strictly
separated with

D) — dim®, ﬂ S, = D, — dim®, ﬂ S, = 3.

Define
D5 = span{2x1 + 24,229 + 25},
then ©j5 is a coupled Dissipative subspace with

D) — dim®s ﬂ S, = D, — dim®s ﬂ S, = 6.

Define
D¢ = span{2x1 + 24,221 + 25},
then D¢ is a mixed Dissipative subspace with

Dy — dim®5 (S =6, D, — dim®5() S, = 5.
ACKNOWLEDGEMENTS

The work of the first and second authors are supported by the National Nature
Science Foundation of China (Grant No.11161030 and Grant No.11561050). The
first author is also supported by the Program of Higher-level talents of Inner Mon-
golia University(SPH-IMU) and the National Nature Science Foundation of Inner
Mongolia (Grant No.2015BS0104).

The third author was supported by the Ky and Yu-fen Fan US-China Exchange
Fund through the American Mathematical Society. This made his visit to the
University of Inner Mongolia possible where some of this work was done. The third
author thanks the School of Mathematical Sciences of Inner Mongolia University
for its extraordinary hospitality.

REFERENCES

[1] W. N. Everitt and F. Neuman, A concept of adjointness and symmetry of differential ex-
pressions based on the generalized Lagrange identity and Green’s formula, Lecture Notes in
Math. 1032, Springer-Verlag, Berlin (1983), 161-169.

[2] W. D. Evans and E. I. Sobhy, Boundary conditions for general ordinary differential operators
and their adjoints. Proceedings of the Royal Society of Edinburgh, 1990,114A: 99-117.

[3] W. N. Everitt and A. Zettl, Generalized symmetric ordinary differential expressions I: The
general theory. Nieuw Archief voor Wiskunde (3), 27, (1979), 363-397.

[4] W. N. Everitt and V. K. Kumar, On the Titchmarsh-Weyl theory of ordinary symmetric
differential expressions I: the general theory. Nieuw Archief voor Wiskunde, 1976, 34(3):1-48.

[5] W. N. Everitt and L. Markus, Boundary value problems and symplectic algebra for ordi-
nary differential and quasi-differential operators. Mathematical Surveys and Monographs 61.
American Math. Soc.,1999.

[6] W. N. Everitt and L. Markus, Complex symplectic geometry with applications to ordinary
differential operators. Transactions of the American Mathematical Society, 1999, 351(12):
4905-4945.

[7] H. Frentzen, Equivalence, adjoints and symmetry of quasi-differential expressions with
matrix-valued coefficients and polynomials in them, Proc. Roy. Soc. Edinburgh (A) 92 (1982),
123-146.

[8] X. Hao, J. Sun, A. Wang and A. Zettl, Characterization of Domains of Self-Adjoint Ordinary
Differential Operators II. Results in Mathematics, vol. 61 (2012), 255-281

[9] X. Hao, J. Sun, and A. Zettl, Real-Parameter Square-Integrable Solutions and the Spectrum
of Differential Operators, J. Math. Anal. and Appl. 376 (2011), 696-712.



15

[10] X. Hao, J. Sun, and A. Zettl, The Spectrum of Differential Operators and Square-Integrable
Solutions,

[11] M. Moller and A. Zettl, Semi-Boundedness of ordinary differential operators, J. Differential
Equations, 115 (1995), 24-49.

[12] M. A. Naimark, Linear differential operators, English Transl. Ungar, New York, 1968.

[13] J. Qi and S. Chen, On an open problem of J. Weidmann: Essential spectra and square
integrable solutions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics
(2011), 141: 417-430.

[14] J. Sun, On the self-adjoint extensions of symmetric ordinary differential operators with middle
deficiency indices. Acta Math. Sincia, New Series, 1986, 2 (2): 152-167.

[15] J. Sun, A. P. Wang and A. Zettl, Continuous Spectrum and Square-Integrable Solutions of
Differential Operators with Intermediate Deficiency Index, Journal of Functional Analysis,
2008, Vol. 255, 3229-3248.

[16] A. Wang, J. Sun, A. Zettl, Characterization of Domains of Self-Adjoint Ordinary Differential
Operators, Journal of Differential Equations, 2009, vol. 246, 1600-1622.

[17] A. Wang, J. Sun, A. Zettl, The Classification of Self-Adjoint Boundary Conditions: Sepa-
rated, Coupled, and Mixed, Journal of Functional Analysis, 2008, v. 255, 1554-1573.

[18] J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, Springer-
Verlag, Berlin, 1980.

[19] J. Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathemat-
ics 1258, Springer-Verlag, Berlin, 1987.

[20] S. Yao, J. Sun, and A. Zettl, Self-Adjoint Domains, Symplectic Geometry, and Limit-Circle
Solutions, J. Math. Anal. Appl. 397 (2013), 644-657.

[21] S. Yao, J. Sun, and A. Zettl, Symplectic Geometry and Dissipative Differential Operators, J.

Math. Anal. Appl. 414(2014), 434-449.

A. Zettl, Adjoint linear differential operators, 1965, Proc. Amer. Math. Soc. 16, 1239-1241.

A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain Journal of Math-

ematics 5 (1975), 453-474.

A. Zettl, Sturm-Liouville Theory, American Mathematical Society, Mathematical Surveys

and Monographs, v. 121, 2005.

[25] A. Zettl and J. Sun, Survey: Self-Adjoint Ordinary Differential Operators And Their Spec-
trum, Rocky Mountain Journal of Mathematics, 45 (2015), 1-83.

[22
[23

(24

SIQIN YAO, MaTH. DEPT., INNER MONGOLIA UNIVERSITY, HOHHOT, 010021, CHINA
E-mail address: siqin@imu.edu.cn

JIONG SUN, MATH. DEPT., INNER MONGOLIA UNIVERSITY, HOHHOT, 010021, CHINA
E-mail address: masun@imu.edu.cn

ANTON ZETTL, MATH. DEPT., NORTHERN ILLINOIS UNIVERSITY, DEKALB, IL. 60115, USA
E-mail address: zettl@msn.com



