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The classical Bohl transformation [4] from 1906 concerns the second order 
linear differential equations and states, roughly speaking, that a pair of linearly 
independent solutions of a second order differential equation can be expressed 
via the sine and cosine functions. Since that time, this transformation has been 
extended in various directions and became e.g. the theoretical basis for the deeply 
developed transformation theory of second order linear differential equations [8]. In 
our paper we discuss this transformation for linear Hamiltonian differential systems 
and discrete symplectic systems. We provide an alternative proofs to some know 
results and these new proofs enable to give a new insight into the topics. We also 
formulate some open problems associated with the discrete Bohl transformation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider the second order linear differential equation in the Jacobi form

x′′ + p(t)x = 0, (1)

where p is a continuous function in an interval under consideration. Let x1, x2 be a pair of linearly indepen-
dent solutions of (1) with the wronskian w = x1x

′
2 + x1x

′
2 = 1. Then by a direct computation (see [4]) one 

can verify that the function h =
√

x2
1 + x2

2 is a solution of the second order nonlinear differential equation

h′′ + p(t)h = w2

h3 . (2)

The previous result easily extends to the more general Sturm–Liouville equation(
r(t)x′)′ + p(t)x = 0 (3)
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and (2) then reads as

(
r(t)h′)′ + p(t)h = w2

r(t)h3 , w = r(x1x
′
2 − x′

1x2) (4)

The previous equation can be seen from the transformation point of view as follows. Consider the transfor-
mation of (3) x = f(t)y, where f is a sufficiently smooth function. Then we have the identity (which can 
be verified by an easy computation, see e.g. [1])

f(t)
[
(r(t)x′)′ + p(t)x

]
= (R(t)y′)′ + P (t)y

with

R(t) = f2(t)r(t), P (t) = f(t)
[
(r(t)f ′(t))′ + p(t)f(t)

]
.

In particular, if we take f(t) = h(t) =
√

x2
1 + x2

2 with the wronskian w = 1 of x1, x2 and we denote q = 1
rh2 , 

then y is a solution of the equation (
1

q(t)y
′
)′

+ q(t)y = 0 (5)

which is explicitly solvable with the pair of linearly independent solutions

y1(t) = sin
t∫
q(s) ds, y2(t) = cos

t∫
q(s) ds.

If we allow solutions of (3) to be also complex-valued and we put x1 = u + iv, x2 = u − iv, u, v, being 
the real solutions of (3) with r(u′v − uv′) = 1

2 , equation (4) takes the form

(
rh′)′ + ph = − 1

rh3

since w = r(x1x
′
2 − x′

1x2) = i, i.e. w2 = −1 in this case, and equation (5) has the form(
1

q(t)y
′
)′

− q(t)y = 0.

The setup of the paper is as follows. In the next section we recall the concept of trigonometric Hamiltonian 
differential system and discrete trigonometric system together with basic properties of their solutions. In 
Section 3 we provide alternative proofs of the Bohl transformations for Hamiltonian and symplectic systems 
(comparing with those given in [6,10]). We also show how these new proofs are related to the so-called 
hyperbolic Hamiltonian and symplectic transformation when complex solutions are also considered. The 
last section is devoted to some open problems concerning geometric oscillation theory associated with 
Hamiltonian and symplectic systems.

2. Preliminaries

The principal concern in our paper are the linear Hamiltonian differential system

z′ = JH(t)z, H =
(
−C AT

A B

)
, J =

(
0 I
−I 0

)
(6)
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with 
(
x
u

)
∈ R

2n, A, B, C ∈ R
n×n continuous, B, C, symmetric, i.e., B = BT , C = CT (then, of course, 

HT = H), and its discrete counterpart, then symplectic difference system

zk+1 = Skzk, ST
k JSk = J , Sk =

(
Ak Bk

Ck Dk

)
(7)

with z =
(
x
u

)
∈ R

2n, A, B, C, D ∈ R
n×n.

The common feature of (6) and (7) is that they are the more general first order linear systems with the 
property that their fundamental matrix is symplectic whenever it has this property at an initial condition.

Sometimes, we will need to write (6) and (7) in entries and then we will write these systems in the form

x′ = A(t)x + B(t)u, u′ = C(t)x−AT (t)u,

resp.

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk.

The concept of trigonometric (Hamiltonian) differential system was introduced by Barrett and Reid [3,18]
in the fifties of the last century in the connection with the Prüfer transformation for (6). A trigonometric 
differential system is a special system (6) where A = 0, B = −C =: Q, i.e., written in the matrix form for (
S
C

)
∈ R

2n×n it is the system

S′ = Q(t)C, C ′ = −Q(t)S. (8)

Note that the letter C here has nothing to do with the C in the coefficient matrix of (6). The letter C in 
(8) prompts the cosine function which is a solution of (8) in the scalar case, see later.

The concept of trigonometric (symplectic) difference system was introduced by D. Anderson [2] as a 
special symplectic difference system (written for 

(
S
C

)
∈ R

2n×n in entries)

Sk+1 = PkSk + QkCk, Ck+1 = −QkSk + PkCk, (9)

with the coefficient matrices satisfying

PT
k Pk + QT

kQk = I, PT
k Qk = QT

kPk. (10)

The adjective “trigonometric” system for (8) and (9) is motivated by the fact that if n = 1, i.e., the previous 
matrix quantities reduce to scalars, then

S(t) = sin
t∫
Q(s) ds, C(t) = cos

t∫
Q(s) ds

is a solution of (8), while a solution of (9) is

Sk = sin
(

k−1∑
ϕj

)
, Ck = cos

(
k−1∑

ϕj

)
,

where ϕ are given by the formula

sinϕj = Qj , cosϕj = Pj (11)
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Concerning oscillatory properties of trigonometric differential systems (8) in the general case, if Q(t) ≥ 0
(nonnegative definite) and TrQ(t) > 0 (Tr denotes the trace, i.e., the sum of diagonal entries), then (8) is 
nonoscillatory (i.e., there exists a 2n × n matrix solution 

(
S
C

)
with STC = CTS such that detS(t) �= 0 for 

large t) if and only if (see [15])

∞∫
TrQ(t) dt < ∞. (12)

As for the discrete counterpart of (12), if the matrices Qk > 0 for large k (positive definiteness), then (9)
is nonoscillatory (i.e., there exists a 2n × n solution 

(
Sk

Ck

)
with

KerSk+1 ⊆ KerSk, SkS
†
k+1Qk ≥ 0 (13)

for large k, here Ker denotes the kernel of a matrix and † stands for the Moore–Penrose generalized inverse) 
if and only if (see [6])

∞∑
k=1

arccotλ1
(
Q−1

k Pk

)
< ∞, (14)

where λ1 is the smallest eigenvalue of the matrix indicated.
At the end of this section let us mention another common feature of trigonometric systems, namely, in 

addition to symplecticity of the fundamental matrix this matrix is also orthogonal whenever it has this 
property at an initial condition, i.e. ZT (t)Z(t) = I. In the continuous case it follows from the fact that the 
coefficient matrix in (8) is antisymmetric, while in the discrete case the coefficient matrix in (9) is orthogonal 
and orthogonal matrices form the group with respect to the matrix multiplication. Note that the condition 
of positive definiteness of Q in (14) was recently relaxed to nonnegative definiteness in the recent paper 
[11], but we will not need this more general statement in our paper.

3. Bohl transformation

An alternative terminology for the Bohl transformation is the trigonometric transformation. Here we 
prefer the terminology Bohl transformation since our approach is closer to the original one of Bohl form 
1906 (and also to that of [16]) and better illustrates the main idea of this section. Main results of this section 
show that every linear Hamiltonian differential system resp. symplectic difference system can be transformed 
into trigonometric system without changing oscillatory nature of transformed systems. In a modified form, 
these statements can be found in [6,10] but the proofs presented here are completely different from those 
given in the above mentioned papers and enable to clarify the relationship of the considered transformation 
to the so-called hyperbolic transformation.

Theorem 1. Consider system (6). There exist a nonsingular differentiable matrix H(t) ∈ R
n×n and a dif-

ferentiable matrix G(t) ∈ R
n×n such that the matrix

R(t) =
(
H(t) 0
G(t) HT−1(t)

)
∈ R

2n×2n (15)

is symplectic and the transformation (
x
)

= R(t)
(
s
)

u c
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transforms (6) into a trigonometric system (8) with the matrix Q given by the formula

Q(t) = H−1(t)B(t)HT−1(t).

Proof. The transformation (
x

u

)
=

(
H 0
G HT−1

)(
x̃

ũ

)
with H, G satisfying HTG = GTH transforms (6) into the system of the same form

x̃′ = Â(t)x̃ + B̂(t)ũ, ũ′ = Ĉ(t)x̃− ÂT (t)ũ, (16)

with the matrices Â, B̂, Ĉ given by the formulas

Â =H−1(−H ′ + AH + BG),

B̂ =H−1BHT−1,

Ĉ = −GT (−H ′ + AH + BG) + HT (−G′ + CH −ATG).

(17)

Let 
(
X X̃
U Ũ

)
∈ R

2n×2n be a symplectic fundamental matrix of (6), i.e., ZTJZ = J = ZJZT , which 

in entries of Z reads as

XT Ũ − UT X̃ = I = XŨT − X̃UT ,

XTU = UTX, X̃T Ũ = ŨT X̃, XX̃T = X̃XT , UŨT = ŨUT .
(18)

Let H̃ be any matrix for which H̃H̃T = XXT +X̃X̃T and G = (UXT + ŨX̃T )H̃T−1. We have using (18)

GT H̃ − H̃TG = H̃−1(XUT + X̃ŨT )H̃ − H̃T (UXT + ŨX̃T )H̃T−1

= H̃−1[(XUT + X̃ŨT )(XXT + X̃X̃T )

− (XXT + X̃X̃T )(UXT + ŨX̃T )
]
H̃T−1

= H̃−1[XUTXXT + XUT X̃X̃T + X̃ŨTXXT + X̃ŨT X̃X̃T

−XXTUXT −XXT ŨX̃T − X̃X̃TUXT − X̃X̃T ŨX̃T
]
H̃T−1

= H̃−1[X(UT X̃ −XT Ũ)X̃T + X̃(ŨTX − X̃TU)XT
]
H̃T−1

= H̃−1(−XX̃T + X̃XT )H̃T−1 = 0,

i.e., the matrix R is symplectic, and

Â = H̃−1(−H̃ ′ + AH̃ + BG) = H̃−1(−H̃ ′H̃T + AH̃H̃T + BUXT + BŨX̃T )HT−1

= H̃−1(−H̃ ′H̃T + A(XXT + X̃X̃T ) + BUXT + BŨX̃T )H̃T−1

= H̃−1(−H̃ ′H̃T + X ′XT + X̃ ′X̃T )H̃T−1.

Then

Â + ÂT = H̃−1[−H̃ ′H̃T − H̃H̃T ′ + X ′XT + XXT ′ + X̃ ′X̃T + X̃X̃T ′] = 0,
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i.e., the matrix Â is antisymmetric. Denote

C1 = −GT (−H̃ ′ + AH̃ + BG), C2 = H̃T (−G′ + CH̃ −ATG).

We have

C1 = −GT (−H̃ ′H̃T + A(XXT + X̃X̃T ) + B(UXT + ŨX̃T ))H̃T−1

= GT (H̃ ′H̃T −X ′XT − X̃ ′X̃T )H̃T−1.

C2 = H̃T
{[

−(CX −ATU)XT − U(XTAT + UTB)

− (CX̃ −AT Ũ)X̃T − Ũ(X̃TAT + ŨTB)
]
H̃T−1

+ (UXT + ŨX̃T )H̃T−1H̃T ′H̃T−1 + CH̃ −AT (UXT + ŨX̃T )H̃T−1}
= H̃T

{
−CXXT + ATUXT − UXTAT − UUTB − CX̃X̃T + AT ŨX̃T

− ŨX̃TAT − Ũ ŨTB + GH̃T ′ + CH̃H̃T −ATUXT −AT ŨX̃T
}
HT−1

= H̃T
{
−UXTAT − UUTB − ŨX̃TAT − Ũ ŨTB + GH̃T ′} H̃T−1

= H̃−1 {(XXT + X̃X̃T )(−UXT − ŨX̃T )AT

− (XXT + X̃X̃T )(UUT + Ũ ŨT )B + H̃H̃TGH̃T ′} H̃T−1

= H̃−1 {−XXTUXTAT −XXT ŨX̃TAT − X̃X̃TUXTAT − X̃X̃T ŨX̃TAT

−XXTUUTB −XXT Ũ ŨTB − X̃X̃TUUTB − X̃X̃T Ũ ŨTB

+ (XUT + X̃ŨT )H̃H̃T ′} H̃T−1

= H̃−1 {(−(XXTUXT + XXT ŨX̃T + X̃X̃TUXT + X̃X̃T ŨX̃T )AT

− (XXTUUT + XXT Ũ ŨT + X̃X̃TUUT + X̃X̃T Ũ ŨT )B

+ H̃GT H̃H̃T ′ + H̃GT (XXT ′ + X̃X̃T ′) − H̃GT (XXT ′ + X̃X̃T ′)
}
H̃T−1

= H̃−1 {−(XXTUXT + XXT ŨX̃T + X̃X̃TUXT + X̃X̃T ŨX̃T )AT

− (XXTUUT + XXT Ũ ŨT + X̃X̃TUUT + X̃X̃T Ũ ŨT )B

+ (XUT + X̃ŨT )[X(XTAT + UTB) + X̃(X̃TAT + ŨTB)]
}
H̃T−1

+ H̃−1[H̃GT H̃H̃T ′ − H̃GT (XXT ′ + X̃X̃T ′)
]
H̃T−1

= H̃−1 {[X(−XTU + UTX)XT + X(−XT Ũ + UT X̃)X̃T

+ X̃(−X̃TU + ŨTX)XT + X̃(−X̃T Ũ + ŨT X̃)X̃T
]
AT

+
[
X(−XTU + UTX)UT + X(−XT Ũ + UT X̃)ŨT

+ X̃(−X̃TU + ŨTX)UT + X̃(−X̃T Ũ + ŨT X̃)ŨT
]
B
}
H̃T−1

+ GT (H̃H̃T ′ −XXT ′ − X̃X̃T ′)HT−1

= H̃−1 {(−XX̃T + X̃XT )AT + (−XŨT + X̃UT )B
}
H̃T−1

+ GT (H̃H̃T ′ −XXT ′ − X̃X̃T ′)H̃T−1

= −H̃−1BH̃T−1 + GT (H̃H̃T ′ −XXT ′ − X̃X̃T ′)H̃T−1.

Consequently,
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Ĉ = C1 + C2 = −GT (−H̃ ′H̃T + X ′XT + X̃ ′X̃)H̃T−1 − H̃−1BH̃T−1

+ GT (H̃H̃T ′ −XXT ′ − X̃X̃T ′)H̃T−1

= −H̃−1BH̃T−1 + GT (H̃ ′H̃T −X ′XT − X̃ ′X̃T + H̃H̃T ′ −XXT ′ − X̃X̃T ′)H̃T−1

= −H̃−1BH̃T−1 = −B̂.

Now, let R be the fundamental matrix of the system R′ = Â(t)R. Since the matrix Â is antisymmetric 
(Â + ÂT = 0), the matrix R is orthogonal, i.e., RTR = I. Let us apply the transformation x̃ = R(t)s, 
ũ = RT−1c to system (16). According to (17), this transformation transforms (16) into the system

s′ = R−1B̂RT−1c, c′ = −RT ĈRs.

Since RT = R−1, denoting Q = −RT ĈR = R−1B̂RT−1 = H−1BHT−1 with H = H̃R we see that the last 
system is the trigonometric Hamiltonian system. �
Theorem 2. Consider the discrete symplectic system (7). There exist nonsingular matrices Hk ∈ R

n×n and 
Gk ∈ R

n×n such that the matrix

Rk =
(
Hk 0
Gk HT−1

k

)
∈ R

2n×2n

is symplectic and the transformation (
xk

uk

)
= Rk

(
sk
ck

)
transforms (7) into (9) with the matrices P, Q given by the formulas

Pk = H−1
k+1

(
AkHk + BkGk

)
, Qk = H−1

k+1BkH
T−1
k . (19)

Moreover, the matrices Hk can be chosen in such a way that the matrix Q is symmetric and Qk ≥ 0.

Proof. We have the transformation formulas for the transformed system (no index by a matrix means index 
k), see e.g. [5],

Â =H−1
k+1(AH + BG), B̂ = H−1

k+1BHT−1

Ĉ = −GT
k+1(AH + BG) + HT

k+1(CH + DG),

D̂ = −GT
k+1BHT−1 + HT

k+1DHT−1.

Let 
(
X
U

)
, 
(
Y
Z

)
be the conjoined bases of (7) satisfying (18) with Y, Z instead of X̃, Ũ , H be any matrix 

satisfying HHT = XXT + Y Y T , and G = (UXT + ZY T )HT−1. Then using the fact that 
(
X
U

)
and 

(
Y
Z

)
are 

also solutions of the reversed system

Xk = DT
k Xk+1 − BT

k Uk+1, Uk = −CT
k Xk+1 + At

kUk+1 (20)

Ĉ = −GT
k+1(AH + BG) + HT

k+1(CH + DG)

=
{
−GT

k+1(AHHT + BGHT ) + HT
k+1(CHHT + DGHT

}
HT−1

=
{
−GT

k+1(AXXT + AY Y T ) + B(UXT + ZY T )
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+ HT
k+1[CXXT + CY Y T + D(UXT + ZY T )]

}
HT−1

= −H−1
k+1(Xk+1U

T
k+1 + Yk+1Z

T
k+1)(AHHT + B(UXT + ZY T ))HT−1

+ HT
k+1(CXXT + CY Y T + DUXT + DZY T )HT−1

= H−1
k+1

{
−(Xk+1U

T
k+1 + Yk+1Z

T
k+1)A(XXT + Y Y T )

− (Xk+1U
T
k+1 + Yk+1Z

T
k+1)B(UXT + ZY T )

+ Hk+1H
T
k+1C(XXT + Y Y T ) + Hk+1H

T
k+1D(UXT + ZY T )

}
HT−1

= H−1
k+1

{
−(Xk+1U

T
k+1 + Yk+1Z

T
k+1)(Xk+1X

T + Yk+1Y
T )

+ (Xk+1X
T
k+1 + Yk+1Y

T
k+1)(Uk+1X

T + Zk+1Y
T )

}
HT−1

= H−1
k+1

{
−(Xk+1U

T
k+1 + Yk+1Z

T
k+1)Xk+1(XT

k+1D − UT
k+1B)

− (Xk+1U
T
k+1 + Yk+1Z

T
k+1)Yk+1(Y T

k+1D − ZT
k+1B)

+ (Xk+1X
T
k+1 + Yk+1Y

T
k+1)Uk+1(XT

k+1D − UT
k+1B)

+ (Xk+1X
T
k+1 + Yk+1Y

T
k+1)Zk+1(Y T

k+1D − ZT
k+1B

}
HT−1.

In the continuation of this computation we change the notation, no index by a matrix means now the index 
k + 1. Using (18)

Ĉk = H−1 {XUTXXTDk + XUTXUTBk − Y ZTXXTDk + Y ZTXUTBk

−XUTY Y TDk + XUTY ZTBk − Y ZTY Y TDk + Y ZTY ZTBk

+ XXTUXTDk −XXTUUTBk + Y Y TUXTDk − Y Y TUUTBk

+ XXTZY TDk −XXTZZTBk + Y Y TZY TDk − Y Y TZZTBk

}
HT−1

k

= H−1 {Y (−ZTX + Y TU)XTDk + X(−UTY + XTZ)Y TDk + Y (ZTX − Y TU)UTBk

+ X(UTY −XTZ)ZTBk + X(−UTX + XTU)XTDk + X(UTX −XTU)UTBk

+ Y (−ZTY + Y TZ)Y TDk + Y (ZTY − Y TZ)ZTBk

}
HT−1

k

= H−1 {(Y XT −XY T )Dk + (Y UT −XZT )Bk

}
HT−1

k = −H−1BkH
T−1
k = −B̂k

and again with no index meaning the index k, using (20)

D̂ = (−GT
k+1B + HT

k+1D)HT−1

= −H−1
k+1(Xk+1U

T
k+1 + Yk+1Z

T
k+1)B + HT

k+1DHT−1

= H−1
k+1

[
−(Xk+1U

T
k+1 + Yk+1Z

T
k+1)B + (Xk+1X

T
k+1 + Yk+1Y

T
k+1)D

]
HT−1

= H−1
k+1[Xk+1X

T + Yk+1Y
T ]HT−1

= H−1
k+1[(AX + BU)XT + (AY + BZ)Y T ]HT−1

= H−1
k+1[A(XXT + Y Y T ) + B(UXT + ZY T )]HT−1

= H−1
k+1[AHHT + B(UXT + ZY T )]HT−1 = H−1

k+1(AH + BG) = Â.

The proof of the fact that the matrices Hk can be chosen in such a way that the matrices Qk are nonnegative 
definite is the same as presented in [6, Remark 3.2], so we omit it here. �
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Remark 1. Similarly as in the scalar case, if we take into consideration complex-valued solutions with the 
wronskian XT Ũ − UT X̃ = i resp. XTZ − UTY = i, a closer examination of the proofs of Theorems 1, 2, 
show that the resulting systems upon the considered transformations are

s′ = Q(t)c, c′ = Q(t)s

resp.

sk+1 = Pksk + Qkck, ck+1 = Qksk + Pkck. (21)

These systems are called in [9,12] hyperbolic systems (since in the scalar case n = 1 their solutions are 
expressed via the hyperbolic sine and cosine functions/sequences). For example, concerning (21) with n =
1, a solution 

(
s
c

)
of this system is sk = sinh

∑k−1
ϕj , ck = cosh

∑k−1
ϕj , where sinhϕk = Qk, i.e., 

ϕk = log(Qk +
√

1 + Q2
k). This implies that scalar system (21) has also solutions

(
sk
ck

)
=

(
e
∑k−1 ϕj

e
∑k−1 ϕj

)
=

(∏k−1
eϕj∏k−1
eϕj

)
,

(
sk
ck

)
=

(
e−

∑k−1 ϕj

e−
∑k−1 ϕj

)
=

(∏k−1
e−ϕj∏k−1
e−ϕj

)
.

The last formulas are essentially formulas (3.6) in [16]. The new proofs of Theorems 1, 2 from the previous 
part of this section enable to obtain transformation of nonoscillatory systems (6), (7) to hyperbolic systems 
as a special case of the Bohl transformation and not as “separate” results of [9,12] (which were proved there 
via rather tedious computations).

4. Open problems

The continuous Bohl transformation provides a nice geometrical view into the oscillation theory of linear 
Hamiltonian differential systems. To show this, consider a solution 

(
S
C

)
of (8) for which (such a solution 

always exists)

STS + CTC = I = SST + CCT , STC = CTS, SCT = CST , (22)

and let

G(t) := C(t)CT (t) − S(t)ST (t) + 2iS(t)CT (t),

then using (22) it is not difficult to show that the matrix G is unitary (G∗(t)G(t) = I). Observe also that 
G(t) = cos 2 

∫ t
Q +i sin 2 

∫ t
Q in the scalar case. Etgen [14,15] showed that if the matrix Q(t) is nonnegative 

definite, then the eigenvalues of G move around the unit circle in the complex plane in the positive direction 
when t increases. Moreover, λ = 1 is an eigenvalue of G(t) if and only if the matrix S(t) is singular and 
λ = −1 is an eigenvalue of G(t) if and only if the matrix C(t) is singular.

Since by the Bohl transformation, the first entries X, X̃ of a pair of conjoined bases 
(
X
U

)
, 
(
X̃
Ũ

)
of (6)

satisfying XT Ũ −UT X̃ = I can be expressed via the matrices S, C (observe that if 
(
S
C

)
is a solution of (8)

then 
(

C
−S

)
is a solution as well, i.e., we can express X = H(t)S, X̃ = H(t)C) the above idea gives a nice 

geometrical proof of the statement that the numbers of focal points (i.e., the algebraic singularities of the 
first X-component) of conjoined bases 

(
X
)
, 
(
X̃
˜
)

in a given interval differ by at most n.
U U
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Now let us turn our attention to the discrete cases. Consider a conjoined basis 
(
X
U

)
of (7), i.e.,

rank
(
Xk

Uk

)
= n, XT

k U = UT
k X.

Following [5], an interval (k, k + 1] contains no focal point of 
(
X
U

)
if

KerXk+1 ⊆ KerXk, XkX
†
k+1Bk ≥ 0, (23)

see [5]. It took relatively a great effort to define the concept of multiplicity of a focal point when one of the 
conditions in (23) is violated. This problem was resolved in [17] in 2003 as follows. Define the matrices

Mk = (I −Xk+1X
†
k+1)Bk, Pk = TkXkX

†
k+1BkTk, (24)

where Tk = I −M†
kMk. It was shown in [17] that if one of the conditions (23) is violated then

rankMk + indPk > 0

(ind denotes the index, i.e., the number of negative eigenvalues of a matrix) and this quantity defines the 
multiplicity of a focal point of 

(
X
U

)
in (k, k + 1]. More precisely, the quantity m1(k) = rankMk is called 

the multiplicity of a focal point at k + 1, while the quantity m2(k) = indPk is the called the multiplicity 
of a focal point between k and k + 1. Since discrete trigonometric system (9) is a special case of (7), these 
definitions apply to this system as well. Now, based on the scalar case n = 1 we conjecture that a similar 
geometrical oscillation theory as for Hamiltonian trigonometric differential systems holds also in the discrete 
case.

To specify our idea in more details, consider a conjoined basis 
(
S
C

)
of (9) with Qk ≥ 0 (what we may 

assume without loss of generality) satisfying (22) and let

Gk = CkC
T
k − SkS

T
k + 2iSkC

T
k ,

this matrix is unitary and Gk = cos 2 
(∑k−1

ϕj

)
+ i sin 2 

(∑k−1
ϕj

)
in the scalar case n = 1 with ϕj given 

by (11).
Our conjecture is as follows. Suppose that the interval (k, k+1] contains a focal point of 

(
S
C

)
of multiplicity

m1(k) + m2(k) = rankMk + indPk

with

Mk = (I − Sk+1S
†
k+1)Qk, Pk = TkSkS

†
k+1QkTk,

where Tk = I −M†
kMk. We conjecture, in terms of behavior of the eigenvalues of the unitary matrix Gk, 

that m1(k) eigenvalues of Gk which are different from λ = 1 (the point [1, 0] on the unit circle) “skip” to 
λ = 1 at k + 1 (the focal point of multiplicity m1(k) at k + 1) and m2(k) eigenvalues of Gk skip over the 
point λ = 1 on the unit circle in the complex plane between k and k + 1. The formulation “skip over the 
point λ = 1” we understand in the following sense. Let eiϕ

[1]
k , . . . , eiϕ

[n]
k be the eigenvalues of Gk such that 

ϕ
[1]
k ≤ ϕ

[2]
k ≤ · · · ≤ ϕ

[n]
k and let eiϕ

[1]
k+1 , . . . , eiϕ

[n]
k+1 with ϕ[1]

k+1 ≤ ϕ
[2]
k+1 ≤ · · · ≤ ϕ

[n]
k+1 be the eigenvalues of 

Gk+1. We say that an eigenvalue eiϕ
[j] skips over the point λ = 1 on the unit circle between k and k + 1 if 

the positively oriented arc of the unit circle between eiϕ
[j]
k and eiϕ

[j]
k+1 intersects the point [1, 0] on the unit 

circle.
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A positive answer to this conjecture would open a new view on the discrete oscillation theory. Note that 
the Sturmian separation theorem holds for (7) similarly as in the continuous case. The geometrical discrete 
oscillation theory would provide a nice alternative proof of the basic statement of this theory which says 
that the numbers of focal points of two conjoined bases of (7) in a given discrete interval differ by at most 
n, see [7,13].

Another open problem associated with the Bohl transformation is related to the Sturm comparison 
theorem for Hamiltonian and symplectic systems. Consider a pair of Hamiltonian differential systems with 
the coefficient matrices H(t) and H̃(t) such that H(t) ≥ H̃(t) for large t. Sturmian comparison theorem 
states that if the minorant system with H̃ is oscillatory, then the majorant system with H is oscillatory 
as well. The Bohl transformation from Theorem 1 shows that there is no “ideal” comparison system in 
the following sense. Given an oscillatory Hamiltonian system with the coefficient matrix H, there exists its 
minorant system with

H̃(t) ≤ H(t), H̃(t) �≡ H(t) (25)

such that the minorant system is still oscillatory. The proof of this statement is based on the Bohl trans-
formation. We transform the original oscillatory Hamiltonian system to the trigonometric system with the 
matrix Q satisfying TrQ(t) dt = ∞. Then we take the trigonometric system with the matrix μQ(t) with 
μ ∈ (0, 1) and transform it “back” to general Hamiltonian system using the same transformation matrices 
as in transformation of the system with H(t) to trigonometric system. As a result we obtain a Hamiltonian 
system which is also oscillatory and whose coefficient matrix H̃ satisfies (25).

A completely open problem is what is the situation in the discrete cases. Even in the most simple case 
of the second order oscillatory difference equation (note that Sturmian comparison theorem holds for this 
equation similarly as in the continuous case)

Δ2xk + pkxk+1 = 0

it is not clear how to construct a sequence p̃k < pk for large k in such a way that the resulting difference 
equation

Δ2xk + p̃kxk+1 = 0

is still oscillatory.
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