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GENERIC UNIQUENESS OF THE BIAS VECTOR OF FINITE
ZERO-SUM STOCHASTIC GAMES WITH PERFECT

INFORMATION

MARIANNE AKIAN, STÉPHANE GAUBERT, AND ANTOINE HOCHART

Abstract. Mean-payoff zero-sum stochastic games can be studied by means
of a nonlinear spectral problem. When the state space is finite, the latter
consists in finding an eigenpair (u, λ) solution of T (u) = λe + u, where T :
Rn → Rn is the Shapley (or dynamic programming) operator, λ is a scalar, e
is the unit vector, and u ∈ Rn. The scalar λ yields the mean payoff per time
unit, and the vector u, called bias, allows one to determine optimal stationary
strategies in the mean-payoff game. The existence of the eigenpair (u, λ) is
generally related to ergodicity conditions. A basic issue is to understand for
which classes of games the bias vector is unique (up to an additive constant).
In this paper, we consider perfect-information zero-sum stochastic games with
finite state and action spaces, thinking of the transition payments as variable
parameters, transition probabilities being fixed. We show that the bias vector,
thought of as a function of the transition payments, is generically unique (up to
an additive constant). The proof uses techniques of nonlinear Perron-Frobenius
theory. As an application of our results, we obtain an explicit perturbation
scheme allowing one to solve degenerate instances of stochastic games by policy
iteration.

1. Introduction

1.1. The ergodic equation for stochastic games. Repeated zero-sum games
describe long-term interactions between two agents, called players, with opposite
interests. In this paper, we consider perfect-information zero-sum stochastic games,
in which the players choose repeatedly and alternatively an action, being informed
of all the events that have previously occurred (state of nature and chosen actions).
These choices determine at each stage of the game a payment, as well as the next
state by a stochastic process. Given a finite horizon k and an initial state i, one
player intends to minimize the sum of the payments of the k first stages, while
the other player intends to maximize it. This gives rise to the value of the k-stage
game, denoted by vk

i .
A major topic in the theory of zero-sum stochastic games is the asymptotic be-

havior of the mean values per time unit (vk
i /k) as the horizon k tends to infinity. The

limit, when it exists, is referred to as the mean payoff. This question was first ad-
dressed in the case of a finite state space by Everett [Eve57], Kohlberg [Koh74], and

Date: July 19, 2017.
2010 Mathematics Subject Classification. 47J10; 91A20,93E20.
Key words and phrases. Zero-sum games, ergodic control, nonexpansive mappings, fixed point

sets, policy iteration.
This work was performed when A. Hochart was with Inria and CMAP, Ecole polytechique,

CNRS, Université Paris-Saclay. The authors are also partially supported by the PGMO program
of EDF and FMJH and by the ANR (MALTHY Project, number ANR-13-INSE-0003).

1



2 M. AKIAN, S. GAUBERT, AND A. HOCHART

Bewley and Kohlberg [BK76]. See also Rosenberg and Sorin [RS01], Sorin [Sor04],
Renault [Ren11], Bolte, Gaubert and Vigeral [BGV15] and Ziliotto [Zil16] for more
recent developments. We refer the reader to [NS03] for more background on sto-
chastic games.

A way to study the asymptotic behavior of the values (vk
i )k consists in exploiting

the recursive structure of the game. This structure is encompassed in the dynamic
programming or Shapley operator of the game. In this paper, since the state space
is assumed to be finite, say {1, . . . , n}, the latter is a map T : Rn → Rn. Then, a
basic tool to study the asymptotic properties of the sequence (vk

i )k is the following
nonlinear spectral problem, called the ergodic equation:

(1.1) T (u) = λe + u ,

where e is the unit vector of Rn. Indeed, if there exist a vector u ∈ Rn and a
scalar λ ∈ R solution of (1.1), then, not only the sequence (vk

i /k)k converges as
the horizon k tends to infinity, but also the limit is independent of the initial state
i, and equal to λ. This scalar, which is unique, is called the ergodic constant or
the (additive) eigenvalue of T , and the vector u, called bias vector or (additive)
eigenvector, gives optimal stationary strategies in the mean-payoff game.

A first question is to understand when the ergodic equation has a solution.
In [AGH15], we considered the Shapley operator T : Rn → Rn of a game with
finite state space and bounded transition payment function, and gave necessary
and sufficient conditions under which the ergodic equation is solvable for all the
operators g +T with g ∈ Rn, or equivalently for all perturbations g of the payments
that only depend on the state. Moreover, assuming the compactness of the action
sets of players and some continuity of the transition functions, these conditions can
be characterized in terms of reachability in directed hypergraphs.

A second question concerns the structure of the set of bias vectors. For one-
player problems, i.e., for discrete optimal control, the ergodic equation (1.1), also
known as the average case optimality equation, has been much studied, either in
the deterministic or in the stochastic case (Markov decision problems). Then, the
representation of bias vectors and their relation with optimal strategies is well
understood.

Indeed, in the deterministic case, the analysis of the ergodic equation relies on
max-plus spectral theory, which goes back to the work of Romanovsky [Rom67],
Gondran and Minoux [GM77] and Cuninghame-Green [CG79]. Kontorer and Ya-
kovenko [KY92] deal specially with infinite horizon optimization and mean-payoff
problems. We refer the reader to the monographies [BCOQ92, KM97, But10] or
surveys [Bap98, ABG13] for more background on max-plus spectral theory. One of
the main result of this theory shows that the set of bias vectors has the structure of
a max-plus (tropical) cone, i.e., that it is invariant by max-plus linear combinations,
and it has a unique minimal generating family consisting of certain “extreme”
generators, which can be identified by looking at the support of the maximizing
measures in the linear programming formulation of the optimal control problem, or
at the “recurrence points” of infinite optimal trajectories. A geometric approach
to some of these results, in terms of polyhedral fans, has been recently given by
Sturmfels and Tran [ST13].

The eigenproblem (1.1) has been studied in the more general infinite-dimensional
state space case, see Kolokoltsov and Maslov [KM97], Mallet-Paret and Nuss-
baum [MPN02], and Akian, Gaubert and Walsh [AGW09] for an approach in terms
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of horoboundaries. It has also been studied in the setting of weak KAM theory,
for which we refer the reader to Fathi [Fat08]. In the weak KAM setting, the bias
vector becomes the solution of an ergodic Hamilton-Jacobi PDE; Figalli and Rifford
showed in [FR13] that this solution is unique for generic perturbations of a Hamil-
tonian by a potential function. In the stochastic case, the structure of the set of bias
vectors is still known when the state space is finite, see Akian and Gaubert [AG03].

In the two-player case, the structure of the set of bias vectors is less well known,
although the description of this set remains a fundamental issue. In particular, the
uniqueness of the bias vector up to an additive constant is an important matter
for algorithmic purposes. Indeed, the nonuniqueness of the bias typically leads to
numerical instabilities or degeneracies. In particular, the standard Hoffman and
Karp policy iteration algorithm [HK66] may fail to converge in situations in which
the bias vector is not unique. The standard approach to handle such degeneracies is
to approximate the ergodic problem by the discounted problem. This was proposed
by Puri [Pur95] in the case of deterministic games and this was further analyzed
by Paterson and Zwick [ZP96], see also the discussion by Friedmann in [Fri11].
A different approach was proposed by Cochet-Terrasson and Gaubert [CTG06],
Akian, Cochet-Terrasson, Detournay and Gaubert [ACTDG12], and by Bourque
and Raghavan [BR14], allowing one to circumvent such degeneracies at the price of
an increased complexity of the algorithm (handling the nonuniqueness of the bias).
Hence, it is of interest to understand when such technicalities can be avoided.

1.2. Main results. We address the question of the uniqueness of the bias vector
for stochastic games with perfect information and finite state and action spaces,
restricting our attention to games for which the ergodic equation (1.1) is solvable
for all state-dependent perturbations of the transition payments. Our main result,
Theorem 3.2, shows that the bias vector is generically unique up to an additive
constant. More precisely, we show that the set of perturbation vectors for which
the bias vector is not unique belongs to a polyhedral complex the cells of which
have codimension one at least. A first ingredient in the proof relies on nonlinear
Perron-Frobenius theory [AG03]. A second ingredient is a general result, showing
that the set of fixed points of a nonexpansive self-map of Rn is a retract of Rn, see
Theorem 3.10. This allows us to infer the uniqueness of the bias vector of a Shapley
operator from the uniqueness of the bias vector of the reduced Shapley operators
obtained by fixing the strategy of one player.

We then present an algorithmic application of our results. Hoffman and Karp
introduced a policy iteration algorithm to solve mean-payoff zero-sum stochastic
games with perfect information and finite state and action spaces [HK66]. They
showed that policy iteration does terminate if every pair of strategies of the two
players yields an irreducible Markov chain. If this irreducibility assumption is not
satisfied, policy iteration may cycle. However, the irreducibility assumption is not
satisfied by many classes of games – in particular, it is essentially never satisfied
for deterministic games. The cycling of the Hoffman-Karp algorithm is due to
the nonuniqueness of the bias vector. Hence, we deduce from our results that the
Hoffman-Karp policy iteration algorithm does converge if the payment is generic.
Moreover, we provide a family of effective perturbations of the payment for which
the bias vector is unique (up to an additive constant). This leads to an explicit
perturbation scheme, allowing one to solve nongeneric instances by policy iteration,
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avoiding the classical irreducibility condition or the use of vanishing discount based
perturbation schemes.

The paper is organized as follows. After some preliminaries on stochastic games
in Section 2, we establish the generic uniqueness of the bias vector in Section 3.
The application to policy iteration is presented in Section 4.

We finally point out that some of the present results have been announced in
the conference article [AGH14].

2. Preliminaries on zero-sum stochastic games

2.1. Games with perfect information. In this paper we consider finite (zero-
sum) stochastic games with perfect information, where the second player, called
player Max, always makes a move after being informed of the action chosen by the
first player, called player Min. Such a game is characterized by the following:

– a finite state space, that we denote by S = {1, . . . , n};
– finite action spaces, denoted by Ai for player Min when the current state is

i ∈ S, and by Bi,a for player Max in state i and after action a ∈ Ai has been
chosen by player Min;

– a transition payment rab
i ∈ R, paid by player Min to player Max, when the

current state is i ∈ S and the last actions selected by the players are a ∈ Ai and
b ∈ Bi,a;

– a transition probability P ab
i ∈ Δ(S) (where Δ(S) denotes the set of probability

measures over S) which gives the law according to which the next state is
determined, when the current state is i ∈ S and the last actions selected by the
players are a ∈ Ai and b ∈ Bi,a.

Denoting by KA :=
⋃

i∈S{i} × Ai the action set of player Min and by KB :=⋃
(i,a)∈KA

{(i, a)} × Bi,a the action set of player Max, a finite stochastic game with
perfect information is thus defined by a 5-tuple Γ := (S, KA, KB , r, P ) where the
three first sets are finite.

Such a game is played in stages, starting from a given initial state i0, as follows:
at step �, if the current state is i�, player Min chooses an action a� ∈ Ai�

, and
player Max subsequently chooses an action b� ∈ Bi�,a�

. Then, player Min pays
ra�b�

i�
to player Max and the next state is chosen according to the probability law

P a�b�
i�

. The information is perfect, meaning that at each step, the players have a
perfect knowledge of all the previously chosen actions, as well as the state previously
visited.

Denote by HMin

k := (KB)k × S the set of histories of length k of player Min

and by HMin :=
⋃

k∈N
HMin

k the set of all finite histories of player Min. Likewise,
define HMax

k := (KB)k × KA and HMax :=
⋃

k∈N
HMax

k to be, respectively, the
set of histories of length k and the set of all finite histories of player Max. Let
H∞ := (KB)N be the set of infinite histories. A strategy of player Min is a map

σ : HMin →
⋃
i∈S

Δ(Ai)

(where Δ(X) denote the set of probability measures over any set X) such that, for
every finite history hk = (i0, a0, b0, . . . , ik) ∈ HMin

k , we have σ(· | hk) ∈ Δ(Aik
).
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Likewise, a strategy of player Max is a map

τ : HMax →
⋃

(i,a)∈KA

Δ(Bi,a)

such that, for every finite history h′
k = (i0, a0, b0, . . . , ik, ak) ∈ HMax

k , we have
τ(· | h′

k) ∈ Δ(Bik,ak
).

A strategy σ (resp. τ) of player Min (resp. Max) is pure and Markovian if it
depends only on the current stage and state (resp. the current stage, state and action
of player Min) and is deterministic, that is its values are Dirac probabilities. Such
a strategy is stationary if it does not depend on stage. We denote by Sp the finite
set of (deterministic) policies of player Min, i.e., the set of maps σ : S →

⋃
i∈S Ai

such that σ(i) ∈ Ai for every state i ∈ S. Likewise, we denote by Tp the set of
(deterministic) policies of player Max, i.e., the set of maps τ : KA →

⋃
i∈S,a∈Ai

Bi,a

such that τ(i, a) ∈ Bi,a for every state i ∈ S and action a ∈ Ai. Then, a pure
Markovian strategy of player Min (resp. Max) can be identified to a sequence of
policies: for every history of length k of player Min, hk = (i0, a0, b0, . . . , ik) ∈ HMin

k ,
σ(· | hk) is the Dirac measure at σk(ik). Likewise, for every history of length k of
player Max, h′

k = (i0, a0, b0, . . . , ik, ak) ∈ HMax

k , τ(· | h′
k) is the Dirac measure at

τk(ik, ak). Moreover, a pure Markovian stationary strategy can be identified to a
single policy.

Given an initial state i and strategies σ and τ of the players, the triple (i, σ, τ)
defines a probability law on H∞ the expectation of which is denoted by Ei,σ,τ .
The payoff of the k-stage game is the following additive function of the transition
payments:

Jk
i (σ, τ) := Ei,σ,τ

[
k−1∑
�=0

ra�b�
i�

]
.

Player Min intends to choose a strategy minimizing the payoff Jk
i , whereas player

Max intends to maximize the same payoff. The value of the k-stage game starting
at state i is then defined by

vk
i := inf

σ
sup

τ
Jk

i (σ, τ) = sup
τ

inf
σ

Jk
i (σ, τ) ,

when the equality holds, where the infimum and the supremum are taken over the
set of all strategies of players Min and Max, respectively. Since the game has finite
state and action spaces, the value exists, with the infima and suprema realized by
pure Markovian strategies of both players [Sha53].

In this paper, we are interested in the asymptotic behavior of the sequence of
mean values per time unit (vk/k)k�1. When the latter ratio converges, the limit
will be called the mean-payoff vector. A stronger condition is the existence of a
uniform value vU, meaning that

inf
σ

lim sup
k→∞

sup
τ

1
k

Jk
i (σ, τ) � vU

i � sup
τ

lim inf
k→∞

inf
σ

1
k

Jk
i (σ, τ) ,(2.1)

where infima and suprema are taken over all strategies (see for instance [Sor02,
Ren12]). This implies that limk vk/k = vU. Note that the first (resp. second)
inequality means that player Min (resp. Max) uniformly guarantees vU

i .
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Moreover, following [LR17], optimal uniform strategies are defined as strategies
σ∗ and τ∗ for players Min and Max respectively such that

lim sup
k→∞

sup
τ

1
k

Jk
i (σ∗, τ) = vU

i = lim inf
k→∞

inf
σ

1
k

Jk
i (σ, τ∗) .(2.2)

Note that Condition (2.2) is stronger than (2.1). When vU exists, it also coincides
with the value of the zero-sum game in which one considers the following limiting
average payoffs:

(2.3)
J+

i (σ, τ) := lim sup
k→∞

1
k

Jk
i (σ, τ) ,

J -
i (σ, τ) := lim inf

k→∞

1
k

Jk
i (σ, τ) .

Moreover, optimal uniform strategies are also optimal for these games. Mertens
and Neyman [MN81] proved that for stochastic games with finite state and action
spaces and simultaneous moves of the players the uniform value exists. It follows
that the uniform value also exists for finite state and action spaces games with
perfect information – the latter can be reduced to degenerate instances of games
with simultaneous moves in which in each state, only one of the players has a
choice of action. We shall also recall in Theorem 2.1 how for this class of games,
the existence of the uniform value and of uniform optimal strategies, follows from
a result of Kohlberg.

In the computer science litterature [ZP96, AM09], mean-payoff games are defined
in a slightly different manner, following Ehrenfeucht and Mycielski [EM79], as non-
zero sum games in which player Min wishes to minimize J+

i (σ, τ) whereas player
Max wishes to maximize J -

i (σ, τ). Liggett and Lippman [LL69] showed that such
games admit optimal policies σ∗, τ∗ and a value v∗, meaning that

J+
i (σ∗, τ) � v∗ = J+

i (σ∗, τ∗) = J -
i (σ∗, τ∗) � J -

i (σ, τ∗)

for all pair of strategies σ, τ of players Min and Max. The latter property is
implied by the existence of the uniform value and the existence of pure Markovian
stationary uniform optimal strategies (also called uniform optimal policies), so that
v∗ = vU.

Therefore, in the sequel, we will use the term mean-payoff games with a general
meaning, understanding that the different approaches that we just discussed lead to
the same notion of value. In particular, the notion of value and optimal policies can
always been understood in the strongest sense (uniform value and uniform optimal
policies).

2.2. The operator approach. The study of the value vector vk = (vk
i )i∈S involves

the dynamic programming operator, or Shapley operator of the game. The latter is
a map T : Rn → Rn whose ith coordinate is given by

(2.4) Ti(x) = min
a∈Ai

max
b∈Bi,a

(
rab

i + P ab
i x

)
, x ∈ Rn .

Note that an element P ∈ Δ(S) is seen as a row vector P = (Pj)j∈S of Rn, so that
Px means

∑
j∈S Pjxj . Also note that, given a vector g ∈ Rn, the operator g + T

appears as the Shapley operator of the game (S, KA, KB , r̃, P ) where the transition
payment function satisfies r̃ab

i = gi +rab
i . The latter game is almost identical to the

initial game (S, KA, KB , r, P ), except that the transition payments are perturbed
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with quantities that only depend on the state, hence the designation of g as an
additive (state-dependent) perturbation vector.

The Shapley operator allows one to determine recursively the value vector of the
k-stage game:
(2.5) vk = T (vk−1) , v0 = 0 .

Also, T is monotone and additively homogeneous, meaning that it satisfies the
following two properties, respectively:

x � y =⇒ T (x) � T (y) , x, y ∈ Rn ,(monotonicity)
T (x + λe) = T (x) + λe , x ∈ Rn, λ ∈ R ,(additive homogeneity)

where Rn is endowed with its usual partial order and e is the unit vector of Rn.
A first consequence of the additive homogeneity of T is that, for any bias vector
u and any scalar α ∈ R, the vector u + αe is also a bias: we say that u is defined
up to an additive constant. More generally, the importance of the above axioms
in stochastic control and game theory has been known for a long time [CT80]. In
particular, they imply that T is sup-norm nonexpansive:

‖T (x) − T (y)‖∞ � ‖x − y‖∞ , x, y ∈ Rn .

According to the dynamic programming principle (2.5), the mean-payoff vector
defined above is given by

χ(T ) := lim
k→∞

T k(0)
k

,

where T k := T ◦ · · · ◦ T denotes the kth iterate of T . Observe that, since T is
sup-norm nonexpansive, 0 could be replaced by any vector x ∈ Rn in the above
limit.

Here, since the action spaces are finite, T is a piecewise affine map over Rn.
Kohlberg showed in [Koh80] that a piecewise affine self-map T of Rn that is non-
expansive in an arbitrary norm has an invariant half-line, meaning that there exist
two vectors u, ν ∈ Rn such that
(2.6) T (u + αν) = u + (α + 1)ν
for every scalar α large enough. Kohlberg’s theorem applies to the present setting,
since the Shapley operator (2.4) is nonexpansive in the sup-norm. This implies that
the limit χ(T ) does exist and coincides with ν. It follows that the vector ν arising
in the definition of invariant half-lines is unique.

The existence of uniform optimal policies follows from the existence of an in-
variant half-line. Moreover, such policies are readily computed from the invariant
half-line. Although these properties are surely known to some experts, we could
not find a reference for them, so we next state them as Theorem 2.1.

To this end, we define the reduced Shapley operator T σ : Rn → Rn associated
with the policy σ ∈ Sp of player Min. Its ith coordinate map is given by

T σ
i (x) = max

b∈Bi,σ(i)

(
r

σ(i)b
i + P

σ(i)b
i x

)
, x ∈ Rn .(2.7)

Since the action spaces are finite, we readily have, for all x ∈ Rn,
(2.8) T (x) = min

σ∈Sp
T σ(x) ,

where by min, we mean that for every x ∈ Rn, the minimum is attained. Indeed,
it suffices to take for σ(i) any action a ∈ Ai achieving the minimum in (2.4).
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Similarly, to any policy τ ∈ Tp of player Max, we associate a dual reduced
Shapley operator τ T , whose ith coordinate map is given by

τ Ti(x) = min
a∈Ai

(
r

aτ(i,a)
i + P

aτ(i,a)
i x

)
, x ∈ Rn .

For all x ∈ Rn, we have

(2.9) T (x) = max
τ∈Tp

τ T (x) .

Theorem 2.1 (Coro. of [Koh80]). Perfect information stochastic games with finite
state and action spaces have a uniform value and uniform optimal policies σ∗, τ∗

that are obtained as follows: given an invariant half-line α �→ u+αν of the Shapley
operator T , take for σ∗ any policy σ attaining the minimum in (2.8) when x is
substituted by u+αν for α large enough. Similarly, take for τ∗ any policy τ attaining
the maximum in (2.9) when x is substituted by the same quantity.

Proof. Recall that the germ of a real function R → R, α �→ f(α), at the point +∞
is the equivalence class of f modulo the relation f ∼ g if there exists α0 such that
f(α) = g(α) for α � α0. We shall use the same notation f for the function and
its equivalence class. We shall consider in particular the set A of germs of affine
functions. Observe that A is invariant by linear combinations, by translation by a
constant, and also by the operations min and max, because A is totally ordered (of
two affine functions of α, one ultimately dominates the other as α → ∞). Since
the action spaces are finite, if f ∈ An, we may identify α → T (f(α)) to an element
of An. In other words, T acts on vectors of germs of affine functions. We now
substitute x = u + αν in (2.4). Since A is totally ordered, the minima and maxima
in (2.4) are attained by actions independent of α provided that α is large enough.
I.e., there exists policies σ∗ and τ∗ of players Min and Max respectively and a
constant α0 such that for all α � α0,

u + (α + 1)ν = T (u + αν) = T σ∗
(u + αν) = τ∗

T (u + αν) .(2.10)

It will now be convenient to use the operator τ T σ from Rn to Rn, such that:
τ T σ

i (x) = r
σ(i)τ(i,σ(i))
i + P

σ(i)τ(i,σ(i))
i x .

We have
T (u + αν) = τ∗

T σ∗
(u + αν) .

The dynamic programming principle, for one-player games, implies that

inf
σ

Jk
i (σ, τ∗) = (τ∗

T )k
i (0) ,

where the infimum is taken over all strategies of player Min. By (2.10), α �→ u+αν

is an invariant half-line of τ∗
T , and so

lim
k

inf
σ

1
k

Jk
i (σ, τ∗) = lim

k

1
k

(τ∗
T )k

i (0) = χi(τ∗
T ) = νi ,

showing that the second equality in (2.2) holds, with vU = ν. Considering T σ∗

instead of τ∗
T and arguing by duality, we deduce that the first equality in (2.2) also

holds, so that σ∗, τ∗ are uniform optimal policies, which implies that the uniform
value exists. �
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Let us mention that the mean-payoff vector and the uniform value exist, more
generally, when T is semialgebraic [BK76] or even definable in an o-minimal struc-
ture [BGV15]. However, the existence of χ(T ) is not guaranteed in general: a recent
result of Vigeral [Vig13] shows that the limit may not exist even with a compact
action space and transition payments and probabilities that are continuous with
respect to the actions.

Finally, observe that the existence of an invariant half-line α �→ u + αν where
ν = λe is a constant vector is equivalent to the solvability of the ergodic equation
T (u) = u+λe. In the present setting, this implies that the solvability of the ergodic
equation is equivalent to the mean-payoff vector being independent of the initial
state, that is χi(T ) = χj(T ) for every i, j ∈ S. Moreover, in this special case,
the optimal policies σ∗, τ∗ constructed in Theorem 2.1 are obtained by selecting
minimizing and maximizing actions in the expression of T (x) in (2.4), when x is
replaced by u.

3. Generic uniqueness of the bias vector of stochastic games

3.1. Statement of the main result. Let us first recall some definitions. A poly-
hedron in Rn is an intersection of finitely many closed half-spaces, a face of a
polyhedron is an intersection of this polyhedron with a supporting half-space, and
a polyhedral complex is a finite set K of polyhedra satisfying the two following
properties:

(i) P ∈ K and F is a face of P implies that F ∈ K;
(ii) for all P, Q ∈ K, P ∩ Q is a face of P and Q.

A polyhedron in K is called a cell of the polyhedral complex. We refer to the
textbook [DLRS10] for background on polyhedral complexes.

Also, a map over Rn is said to be piecewise affine if Rn can be covered by a
finite union of polyhedra (with nonempty interior) on which its restriction is affine.
in that case, the set of such polyhedra can be refined in a polyhedral complex.
In [Ovc02, AT07], it is shown that the piecewise affine functions are exactly the
ones that are defined as in (2.4), i.e., the functions that can be written as a minimax
over finite sets of affine functions.

Finally, we introduce the following definition, that extends the notion of (finite)
ergodic Markov chain.

Definition 3.1. A stochastic game with finite state space and Shapley operator
T : Rn → Rn is ergodic if the ergodic equation (1.1) is solvable for all operators
g + T with g ∈ Rn.

The authors have given in [AGH15] necessary and sufficient conditions for a
perfect-information stochastic game with finite state space and bounded payment
function to be ergodic, conditions that we partly recall in the next subsection. Note
however that in the case of finite games, the existence of an invariant half-line for
piecewise affine maps readily implies that the latter definition is equivalent to the
fact that the mean-payoff vector is constant for all additive perturbation vectors of
the transition payments.

We now state the main result of this paper, the proof of which is postponed to
Subsection 3.3.

Theorem 3.2. Let T : Rn → Rn be the Shapley operator of a finite stochastic
game with perfect information. Assume that the game is ergodic. Then, the space



10 M. AKIAN, S. GAUBERT, AND A. HOCHART

Rn can be covered by a polyhedral complex such that, for any additive perturbation
vector g ∈ Rn in the interior of a full-dimensional cell, g + T has a unique bias
vector, up to an additive constant.
In particular, the set of perturbation vectors g for which g +T has more than one

bias vector, up to an additive constant, is included in a finite union of subspaces of
codimension at least 1.

Remark 3.3. This perturbation theorem bears some conceptual similarity with re-
sults of weak KAM theory; we refer to the monograph by Fathi [Fat08] for more
information. The latter theory deals with a class of one-player deterministic games
with continuous time and space. In this setting, the bias vector u and the eigen-
value λ are solution of an ergodic Hamilton-Jacobi PDE H(x, Dxu) = λ where
the Hamiltonian (x, p) �→ H(x, p) is convex in the adjoint variable p. One may
consider the perturbation of a Hamiltonian by a potential, which amounts to re-
placing H(x, p) by H(x, p) + V (x), for some function V . This is similar to the
replacement of the Shapley operator T by the perturbed Shapley operator g + T
in Theorem 3.2. As observed by Figalli and Rifford in [FR13, Th. 4.2], it follows
from weak KAM theory results that under some assumptions, the solution u of
V (x) + H(u, Dxu) = λ is unique up to an additive constant for a generic function
V . Theorem 3.2 shows that an analogous property is valid for finite two-player
zero-sum stochastic games. We note however that Theorem 3.2 does not extend
easily to the case of PDE, since zero-sum games correspond to Hamilton-Jacobi
PDE with a nonconvex Hamiltonian (to which current weak KAM methods do not
apply).

3.2. Nonlinear spectral theory. The purpose of this subsection is to present or
extend some known results in nonlinear spectral theory that will be useful to prove
Theorem 3.2, as well as further results in Section 4.

3.2.1. Recession operator and ergodicity conditions. To characterize the ergodicity
of a perfect-information stochastic game with finite state space, we shall use, along
the lines of [GG04, AGH15], the recession operator associated with the Shapley
operator T : Rn → Rn. This operator is a self-map of Rn defined by

(3.1) T̂ (x) := lim
α→+∞

T (αx)
α

, x ∈ Rn .

Its existence is not guaranteed in general, but it does exist when the game
is finite, i.e., when T is piecewise affine (and more generally when the payment
function is bounded). In this case, T̂ is the Shapley operator of a modified version
of the stochastic game represented by T where the transition payments are set to
0. Indeed, if T is given as in (2.4), then it is readily seen that the ith coordinate
map of T̂ is

T̂i(x) = min
a∈Ai

max
b∈Bi,a

P ab
i x , x ∈ Rn .

In this case, we also easily get that

‖T − T̂‖∞ � ‖r‖∞ ,

which implies in particular that the limit (3.1) defining T̂ is uniform in x.
Observe that if T̂ exists, then it inherits from T the additive homogeneity and

the monotonicity properties. Furthermore, it is positively homogeneous, meaning
that T̂ (αx) = αT̂ (x) for every α � 0. As a consequence, any vector proportional



GENERIC UNIQUENESS OF THE BIAS OF FINITE STOCHASTIC GAMES 11

to the unit vector of Rn is a fixed point of T̂ . We shall call such fixed points trivial
fixed points. The following result relates the ergodicity of a game to the fixed points
of the recession operator associated with its Shapley operator. Since it applies to
games with bounded payment function, it deals a fortiori with the case of finite
games.

Theorem 3.4 ([AGH15, Th. 3.1]). Let Γ be a perfect-information stochastic game
with finite state space and bounded payment function. Let T : Rn → Rn be the
Shapley operator. The following are equivalent:
(i) the recession operator has only trivial fixed points;
(ii) the mean-payoff vector exists and is constant for all additive perturbation

vectors of the transition payments;
(iii) the ergodic equation (1.1) has a solution for all Shapley operators g + T ,

g ∈ Rn.

3.2.2. Characterization of the ergodic constant. Let Γ be a finite stochastic game
with perfect information, and let T be its Shapley operator. We shall make use of
the reduced Shapley operator T σ : Rn → Rn associated with the policy σ ∈ Sp of
player Min, defined in (2.7). We also have, for all x ∈ Rn,
(3.2) T σ(x) = max

τ∈Tp

(
rστ + P στ x

)
,

where rστ is the vector in Rn whose ith entry is defined by rστ
i = r

σ(i)τ(i,σ(i))
i and

P στ is the n × n stochastic matrix whose ith row is given by P στ
i = P

σ(i)τ(i,σ(i))
i .

Observe that T σ is convex (componentwise), monotone and additively homoge-
neous.

If P is a n×n stochastic matrix, the directed graph associated with P is composed
of the nodes 1, . . . , n and of the arcs (i, j), 1 � i, j � n, such that Pij > 0. A class
of the matrix P is a maximal set of nodes such that every two nodes in the set
are connected by a directed path. A class is said to be final if every path starting
from a node of this class remains in it. Let us denote by M(P ) the set of invariant
probability measures of P , i.e., the set of stochastic (column) vectors m ∈ Rn such
that mᵀ P = mᵀ. Given a final class C of P , there is a unique invariant probability
measure m ∈ M(P ) the support of which is C, i.e., {1 � i � n | mi > 0} = C.
Moreover, the set M(P ) is the convex hull of such measures. Since the number of
final classes of P is finite, M(P ) is a convex polytope.

Let us denote by χ(T ) the upper mean payoff of T , i.e., the greatest entry of
the mean-payoff vector χ(T ). We next give a characterization of χ(T ). Obviously,
if T satisfies the ergodic equation (1.1), then χ(T ) is a constant vector and the
eigenvalue is λ(T ) = χ(T ). In the sequel, we denote by x · y the standard scalar
product in Rn of two vectors x and y.

Lemma 3.5. Let T : Rn → Rn be the Shapley operator of a finite stochastic game
with perfect information Γ. Then the upper mean payoff of T is given by
(3.3) χ(T ) = min

σ∈Sp
max{m · rστ | τ ∈ Tp, m ∈ M(P στ )} .

Proof. First, observe that for all policies σ ∈ Sp, we have T � T σ, which yields, by
monotonicity of the operators, χ(T ) � χ(T σ), and in particular χ(T ) � χ(T σ).

Considering an invariant half-line (2.6) of T , we know that there exist a vector
u ∈ Rn such that T (u) = u + χ(T ). Let σ ∈ Sp be a policy of player Min such
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that T (u) = T σ(u). Then, we have T σ(u) � u + χ(T )e. Furthermore, we know
by a Collatz-Wielandt formula (see [GG04, Prop. 1]) that, for any monotone and
additively homogeneous map F : Rn → Rn, we have

χ(F ) = inf{μ ∈ R | ∃x ∈ Rn, F (x) � μe + x} .

So, we deduce that χ(T σ) � χ(T ), and finally that

χ(T ) = min
σ∈Sp

χ(T σ) .

Now we fix a policy σ of player Min, and we let χ := χ(T σ) and

μσ := max{m · rστ | τ ∈ Tp, m ∈ M(P στ )} .

Since T σ has an invariant half-line with direction χ, there is a vector v ∈ Rn such
that T σ(v + αχ) = v + (α + 1)χ for all α � 0. In particular, for every policy τ ∈ Tp
we have

rστ + P στ v � T σ(v) = v + χ � v + χ(T σ)e .

Multiplying this inequality by any m ∈ M(P στ ), we deduce that μσ � χ(T σ).
Furthermore, since the germs of affine functions from R to R at infinity are

totally ordered, there exists a policy τ ∈ Tp such that

T σ(v + αχ) = rστ + P στ (v + αχ)

for all α large enough. In particular, since the equality

(3.4) v + (α + 1)χ = rστ + P στ (v + αχ)

holds for all α large enough, we get that P στ χ = χ. Thus, χ is an harmonic vector
for the stochastic matrix P στ , and as such it is constant on any final class of P στ ,
and its maximum is attained on one of these final class (see [AG03, Lem. 2.9]).
Let m ∈ M(P στ ) be the invariant probability measure associated with a final class
C of P στ such that χi = χ(T σ) for all i ∈ C. Then, we deduce from (3.4) that
m · rστ = χ(T σ), which yields μα � χ(T σ) and finally μα = χ(T σ). �

Let us mention that in (3.3), the set of invariant probability measures of P στ ,
M(P στ ), may be replaced by the set of its extreme points, denoted by M∗(P στ ),
since it is a convex polytope. Note that M∗(P στ ) is the set of invariant probability
measures, the support of which are the final classes of P στ .

3.2.3. Structure of the eigenspace. An ingredient of our approach is a result of
[AG03] which describes the eigenspace of one-player Shapley operators T . We next
recall this result. We assume that T arises from a game in which only player Max

has nontrivial actions, so that player Min has only one possible policy. We also
assume that T satisfies the ergodic equation (1.1) so that its eigenvalue λ(T ) is
equal to the entries of the mean-payoff vector χ(T ) which is constant. In this case,
the representation of the upper-mean payoff χ(T ), hence of the eigenvalue λ(T ), in
Lemma 3.5 simplifies as the dependency in σ can be dropped, and we arrive, with
a trivial simplification of the notation, to

λ(T ) = max{m · rτ | τ ∈ Tp, m ∈ M(P τ )} .(3.5)

It is shown in [AG03] that the dimension of the eigenspace of T is controlled
by the number of critical classes. The latter can be defined through the notion of
maximizing measures, which rely on randomized policies. For every state i, such a
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policy τ assigns to every action b ∈ Bi a probability τ(i, b) that this action is se-
lected. This leads to the stochastic matrix P τ with entries P τ

ij =
∑

b∈Bi
P b

ij τ(i, b),
and to the payment vector rτ with entries rτ

i =
∑

b∈Bi
rb

i τ(i, b). Then, the max-
imum in (3.5) is unchanged if it is taken over the set of randomized policies τ
and of invariant probability measures m of the corresponding stochastic matrix P τ

(see [AG03, Prop. 7.2]). A measure m is maximizing if λ(T ) = m · rτ for some
randomized policy τ , and if m ∈ M∗(P τ ), that is, the support of m is a final class
of P τ . A subset I ⊂ {1, . . . , n} is a critical class if there exists a maximizing mea-
sure m whose support is I, i.e., I = {1 � i � n | mi > 0}, and if I is a maximal
element with respect to inclusion among all the subsets of {1, . . . , n} which arise in
this way. Note that critical classes are disjoint.

The following lemma gives a sufficient condition for the critical class to be unique,
Note that the result does not require randomized stationary strategies.

Lemma 3.6. Let T : Rn → Rn be a convex, monotone and additively homogeneous
map. Suppose that the ergodic equation (1.1) is solvable. If there is a unique
probability measure which attains the maximum in (3.5), then T has a unique critical
class.

Proof. Let C be a critical class of T . There exists a randomized policy τ such
that C is a final class of P τ and the unique invariant probability measure m with
support C satisfies λ = λ(T ) = m · rτ .

Let u be an eigenvector. For every i ∈ {1, . . . , n}, we have λ+ui −rτ
i −P τ

i u � 0.
Furthermore, since mᵀ P τ = mᵀ, we also have∑

i∈C

mi (λ + ui − rτ
i − P τ

i u) = λ + m · u − m · rτ − m · (P τ u) = 0 .

This yields that λ + ui − rτ
i − P τ

i u = 0 for every i ∈ C.
Let τ ′ be a deterministic policy such that τ ′(i) = bi with τ(i, bi) > 0 for all indices

i. Since P τ can be written as a convex combination with positive coefficients of the
P τ ′

with such τ ′, we deduce that C contains a final class C ′ of P τ ′
, and so there

exists an invariant probability measure m′ of P τ ′
whose support C ′ is included in

C. Similarly rτ is a convex combination of the rτ ′
with same coefficients as for P τ .

Hence, we deduce by a similar argument as above that λ + ui − rτ ′
i − P τ ′

i u = 0 for
every i ∈ C. Multiplying by m′, we obtain that λ = m′ · rτ ′

, which implies that
m′ attains the maximum in (3.5). Since such a probability measure is unique, m′

and C ′ are the same for all τ ′ as above, hence C = C ′ is the support of the unique
probability measure attaining the maximum in (3.5). �

We now describe the eigenspace of T .

Theorem 3.7 ([AG03, Th. 1.1]). Let T : Rn → Rn be a convex, monotone and
additively homogeneous map. Suppose that the ergodic equation (1.1) is solvable.
and let C ⊂ {1, . . . , n} be the set of elements of critical classes. We denote by πC

the restriction map Rn → RC , x �→ (xi)i∈C . Then, the set of eigenvectors of T ,
denoted by E(T ), satisfies the following properties:
(i) Every element x of E(T ) is uniquely determined by its restriction πC(x).
(ii) The set πC(E(T )) is convex and its dimension is at most equal to the number

of critical classes of T ; moreover, the latter bound is attained when T is
piecewise affine.
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In particular, combined with Lemma 3.6, the above result yields the following.

Corollary 3.8. Let T : Rn → Rn be a convex, monotone and additively homoge-
neous map. Suppose that the ergodic equation (1.1) is solvable. If there is a unique
probability measure which attains the maximum in (3.5), then T has a unique eigen-
vector up to an additive constant.

We refer the reader to [AG03] for more background on critical classes, which
admit several characterizations and can be computed in polynomial time when the
game is finite. We only provide here a simple illustration in order to understand
the latter theorem.

Example 3.9. Let T : R2 → R2 be such that

T1(x) = max
{

x1,
x1 + x2

2

}
, T2(x) = max

{
− 3 + x2,

x1 + x2

2

}
.

We have T (0) = 0, which shows in particular that the upper mean payoff is 0. If
player Max chooses, when in state 1, the action corresponding to the first term in
the expression of T1, and when in state 2, the action corresponding to the second
term in the expression of T2, we arrive at the transition matrix

P =
(

1 0
1/2 1/2

)
which has the invariant probability measure m = (1, 0)ᵀ. This measure attains the
maximum in (3.5). However, its support I = {1} is not a critical class for it is not
maximal with respect to inclusion. Indeed, if player Max chooses instead, when
in state 1, the action corresponding to the second term in the expression of T1, we
arrive at the transition matrix

P =
(

1/2 1/2
1/2 1/2

)
which has the invariant probability measure m = (1/2, 1/2)ᵀ. This measure attains
the maximum in (3.5) and its support I = {1, 2} is maximal with respect to inclu-
sion. Hence, I = {1, 2} is the unique critical class. It follows from Theorem 3.7
that 0 is the unique eigenvector of T , up to an additive constant.

Another ingredient is a variant of a result of Bruck [Bru73], concerning the
topology of fixed-point sets of nonexpansive maps. We now consider a two-player
Shapley operator T such that the ergodic equation (1.1) is solvable, and denote by

E(T ) := {u ∈ Rn | T (u) = λe + u}
the set of eigenvectors of T (recall that the eigenvalue λ is unique).

Theorem 3.10 (Compare with [Bru73, Th. 2]). Let T : Rn → Rn be a monotone
and additively homogeneous map. Assume that the ergodic equation (1.1) is solvable.
Then, the set of eigenvectors E(T ) is a retract of Rn by a sup-norm nonexpansive
map, meaning that E(T ) = p(Rn) where p is a sup-norm nonexpansive self-map of
Rn such that p = p2. In particular, E(T ) is arcwise connected.
Proof. The result of Bruck [Bru73, Th. 2] shows that, under some compactness
conditions, the fixed-point set of a nonexpansive self-map of a Banach space is a
retract of the whole space by a nonexpansive map.

Assume now that T is monotone, additively homogeneous, and admits an eigen-
vector for the eigenvalue λ. Then, the eigenspace E(T ) coincides with the fixed-point
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set of the map x �→ −λe + T (x). The latter map is sup-norm nonexpansive and
satisfies the condition of [Bru73, Th. 2], and so, E(T ) is a nonexpansive retract of
Rn. �

Remark 3.11. The retraction p in Theorem 3.10 can be chosen to be monotone
and additively homogeneous. This can actually be shown by elementary means,
following a construction in the proof of [GG04, Lem. 3]. Indeed, we may assume
without loss of generality that λ = 0, and consider q(x) := limk→∞ inf��k T �(x),
which is finite because every orbit of a nonexpansive map that admits a fixed point
must be bounded. Since T is monotone and continuous, we get T (q(x)) � q(x), and
so, p(x) := limk→∞ T k(q(x)), which is the limit of a nonincreasing and bounded
sequence, exists and is finite. The map p is easily shown to be monotone and
additively homogeneous and to satisfy p = p2.

3.3. Proof of Theorem 3.2. Let T be the Shapley operator of a finite stochastic
game with perfect information Γ which is assumed to be ergodic. Let σ ∈ Sp be a
policy of player Min. We define the real map λσ(·) on Rn by

(3.6) λσ(g) := max{m · (g + rστ ) | τ ∈ Tp, m ∈ M∗(P στ )} ,

where M∗(P ) denotes the set of extreme points of the convex polytope M(P ), that
is, the set of invariant probability measures associated with the final classes of the
stochastic matrix P . The fact that M∗(P στ ) is a set of probability measures yields
that λσ is monotone and additively homogeneous, hence sup-norm nonexpansive
(and continuous). Furthermore, since the set of policies Tp of player Max is finite,
as well as all the sets M∗(P στ ), then the map λσ is piecewise affine.

We now define the polyhedral complex Cσ covering Rn, the full-dimensional cells
of which are precisely the maximal polyhedra on which the piecewise affine map λσ

coincides with an affine map.
Let Q be a cell of Cσ with full dimension. We claim that if a vector g is in

the interior of Q, then the set of eigenvectors of the reduced one-player Shapley
operator F := g + T σ is either empty or reduced to a line. To see this, it suffices
to observe that the measure m attaining the maximum in (3.6) is unique for all g
in the interior of Q and independent of the choice of g in this interior. Indeed, if
m is such a measure, then m ∈ M∗(P στ ) for some τ ∈ Tp and for d = m · rστ ∈ R,
we have λσ(g′) � m · g′ + d, for all g′ ∈ Rn, with equality at g. Since g′ �→ λσ(g′)
is an affine map on Q, and g is in the interior of Q, the equality λσ(g′) = m · g′ + d
holds for all g′ ∈ Q and so m must coincide with the linear part of the affine map,
which is independent of g (and unique). We deduce from Corollary 3.8 that E(F ),
if it is nonempty, is reduced to a line of direction e.

Consider now the polyhedral complex C obtained as the refinement of all the
complexes Cσ. This complex still covers Rn and has cells with nonempty interior.
Let g be a perturbation vector in the interior of a full-dimensional cell of C. Since the
game Γ is ergodic, E(g+T ) is not empty. Let u be an eigenvector of g+T . According
to (2.8), there is a policy σ ∈ Sp of player Min such that g + T (u) = g + T σ(u).
Hence u is also an eigenvector of g + T σ. So, there is a finite family Σ∗ of Sp such
that E(g + T ) =

⋃
σ∈Σ∗ E(g + T σ). Moreover, we have proved that for any policy

σ ∈ Σ∗, the eigenspace E(g + T σ) is reduced to a line. Thus, E(g + T ) is composed
of a finite union of lines which all have the same direction, e. Consider now the
hyperplane orthogonal to the unit vector, H := {x ∈ Rn | x · e = 0}, and let π
denote the orthogonal projection on H. Then, π(E(g +T )) = E(g +T )∩H is finite.
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However, by Theorem 3.10, E(g + T ) is connected. Then, the set π(E(g + T )) is
also connected, and since it is finite, it must be reduced to a point. It follows that
g + T has a unique eigenvector, up to an additive constant. �

3.4. Example. We conclude this section by an example illustrating Theorem 3.2.
Consider the following Shapley operator defined on R3 (here we use ∧ and ∨ instead
of min and max, respectively, and we recall that the addition has precedence over
them):

T (x) =

⎛⎝ 1
2 (x1 + x3) ∧ 1 + 1

2 (x1 + x2)
2 + 1

2 (x1 + x3) ∧
(
1 + 1

2 (x1 + x2) ∨ −2 + x3
)

−3 + 1
2 (x1 + x3) ∨ 1 + x3

⎞⎠ .

It can be proved, using Theorem 3.4, that the ergodic equation (1.1) is solvable for
every perturbation vector g ∈ R3. Figure 1 shows the intersection of the hyperplane
{g ∈ R3 | g3 = 0} and the polyhedral complex introduced in Theorem 3.2.

g1

10

g2

−10

g3 = 0

•
0

Figure 1. The polyhedral complex introduded in Theorem 3.2.
The bias vector of the operator g + T is unique, up to an additive
constant, if the perturbation vector g belongs to the interior of a
maximal dimensional cell of this complex.

Let us detail what happens in the neighborhood of g = 0, point in which g + T
fails to have a unique eigenvector. Note that in the neighborhood of g = 0, the
eigenvalue of g + T remains 1.
– If g1 + g2 = 0, the eigenvectors of g + T are defined by

x1 = x2 + 2g1 , −3 + g2 � x2 − x3 � −2 − g1 .

– If g1 + g2 > 0, the unique eigenvector, up to an additive constant, is

(−2 + 2g1, −2 + 2g1 + 2g2, 0) .

– If g1 + g2 < 0, the unique eigenvector, up to an additive constant, is

(−3 + 2g1 + g2, −3 + g2, 0) .

4. Application to policy iteration

We finally apply our results to show that policy iteration combined with a per-
turbation scheme can solve degenerate stochastic games.
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4.1. Hoffman-Karp policy iteration. Let us recall the notation of Sections 2
and 3. We denote by Γ a finite stochastic game with perfect information. The
(finite) set of policies of player Min is denoted by Sp, i.e., an element of Sp is a
map σ : S →

⋃
i∈S Ai such that σ(i) ∈ Ai for every state i ∈ S. The (finite)

set of policies of player Max is denoted by Tp, i.e., an element of Tp is a map
τ : KA →

⋃
i∈S,a∈Ai

Bi,a such that τ(i, a) ∈ Bi,a for every state i ∈ S and action
a ∈ Ai. Finally, recall that for σ ∈ Sp and τ ∈ Tp, P στ denotes the n×n stochastic
matrix whose ith row is given by P στ

i = P
σ(i)τ(i,σ(i))
i .

When T : Rn → Rn is the Shapley operator (2.4) of a finite stochastic game with
perfect information, Hoffman and Karp [HK66] have introduced a policy iteration
algorithm, which takes the description of the game as the input and returns the
eigenvalue λ and an eigenvector u of T , i.e., a solution (λ, u) ∈ R×Rn of the ergodic
equation T (u) = λe + u. Also, optimal stationary strategies for both players in the
mean-payoff game can be derived from the output of the algorithm.

This algorithm and more generally policy iteration procedures are a standard
general way for solving mean-payoff stochastic games. In worst-case scenario, they
require an exponential number of iterations, see [Fri11]. However, no polynomial-
time algorithm is known to solve mean-payoff games. In fact, it is an important
open question to know whether there exists one, since this problem, or any problem
involving a polynomial-time equivalent perfect-information two-player zero-sum sto-
chastic game (such as discounted stochastic games, simple stochastic games, parity
games, see [AM09]) is one of the few problems that belong to the complexity class
NP ∩ coNP, see [Con92].

It is convenient here to state an abstract, slightly more general, version of the
Hoffman-Karp algorithm, described in terms of the operators T and T σ (Algo-
rithm 1).

Algorithm 1: Policy iteration, compare with [HK66]
input : Shapley operator T of perfect-information finite stochastic game.
output: eigenvalue λ and eigenvector u of T .

1 initialization: select an arbitrary policy σ0 ∈ Sp

2 repeat
3 compute an eigenpair (λk, vk) of T σk

4 improve the policy σk in a conservative way: select a policy σk+1 ∈ Sp

such that T σk+1(vk) = T (vk) with, for every state i ∈ S such that
T σk

i (vk) = Ti(vk), σk+1(i) = σk(i)
5 until σk+1 = σk

6 return λk and vk

We assume Algorithm 1 is interpreted in exact arithmetics (the vectors vk have
rational coordinates and the λk are rational numbers). To implement Step 3, we
may call any oracle able to compute the eigenvalue and an eigenvector of a one-
player stochastic game. In the original approach of Hoffman and Karp, the oracle
consists in applying the same policy iteration algorithm for the one-player game
with fixed policy σk. The proof of Hoffman and Karp shows that Algorithm 1 is
valid under a restrictive assumption.
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Theorem 4.1 (Corollary of [HK66]). Algorithm 1 terminates and is correct if for
all choices of policies σ and τ of the two players, the corresponding transition matrix
P στ is irreducible.

Indeed, it is easy to see that the sequence (λk)k of Algorithm 1 is nonincreasing,
that is, λk+1 � λk for all iterations k. The irreducibility assumption was shown
to imply that the latter inequalities are always strict, which entails the finite time
convergence (each policy yields a unique well defined eigenvalue, these eigenvalues
constitute a decreasing sequence, and there are finitely many policies).

However, the assumption that all the stochastic matrices P στ be irreducible is
way too strong to guarantee that Algorithm 1 is properly posed. Indeed, to execute
the algorithm, it suffices that at every iteration k the operator T σk admits an
eigenvalue and an eigenvector, which is the case in particular if for all policies σ,
the graph obtained by taking the union of the edge sets of all the graphs associated
to P στ for the different choices of τ is strongly connected (the existence of the
eigenvalue and eigenvector, in this generality, goes back to Bather [Bat73], see also
[GG04, AGH15] for a more general discussion). In particular, the irreducibility
assumption of Hoffman and Karp is essentially never satisfied for deterministic
games, whereas the condition involving the union of the edge sets is satisfied by
relevant classes of deterministic games.

It should be noted that Algorithm 1 may, in general, lead to degenerate iterations,
in which λk+1 = λk. As shown by an example in [ACTDG12, Sec. 6], this may
lead the algorithm to cycle when the bias vector is not unique. This difficulty was
solved first in the deterministic framework in [CTGG99], where it was shown that
cycling can be avoided by enforcing a special choice of the bias vector, obtained by a
nonlinear projection operation. This approach was then extended to the stochastic
framework in [CTG06, ACTDG12]. As a special case of these results, we get that
policy iteration is correct and does terminate under much milder conditions than
in Theorem 4.1.

Theorem 4.2 (Corollary of [CTG06, Th. 7]). Algorithm 1 terminates and is correct
if for each choice of policy σ of player Min, the operator T σ has an eigenvalue and
a unique eigenvector, up to an additive constant.

We next show that the conditions of Theorem 4.2 are satisfied for generic pay-
ments, and conclude that nongeneric instances can still be solved by the Hoffman-
Karp algorithm, after an effective perturbation of the input.

4.2. Generic termination of policy iteration. Let T : Rn → Rn be the Shap-
ley operator of a finite stochastic game with perfect information. The following
assumption guarantees that Algorithm 1 is well posed for any additive perturba-
tion of T .

Assumption A. For any policy σ ∈ Sp of player Min, the one-player game with
Shapley operator T σ is ergodic in the sense of Definition 3.1, meaning that for
all perturbation vectors g ∈ Rn, the operator g + T σ has an eigenvalue (and an
eigenvector).

This assumption is much milder than the original assumption of Hoffman and
Karp, requiring all the transition matrices P στ to be irreducible (see Theorem 4.1).
Also, since T̂ = minσ∈Sp T̂ σ, it readily follows from Theorem 3.4 that Assumption A
implies that the original two-player game is ergodic. Moreover, we shall see in the
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next subsection that one can always transform a game (in polynomial time) by a
“big M” trick in such a way that Assumption A becomes satisfied.

By using the arguments of Section 3, we now show that under Assumption A,
Algorithm 1 terminates for a generic perturbation of the payments.

Theorem 4.3. Let T : Rn → Rn be the Shapley operator of a finite stochastic
game with perfect information satisfying Assumption A. Then, the space Rn can
be covered by a polyhedral complex such that for each additive perturbation vector
g ∈ Rn in the interior of a full-dimensional cell, Algorithm 1 terminates after a
finite number of steps and gives an eigenpair of g + T .

Proof. Consider the same complex C as in Section 3 and let g be a perturbation
vector in the interior of a full-dimensional cell of C. It follows from the proof
of Theorem 3.2 (see Subsection 3.3) that for any policy σ ∈ Sp, the eigenvector
of g + T σ, which exists according to Assumption A, is unique up to an additive
constant. Hence, at each step k of Algorithm 1, the bias vector vk of g + T σk is
unique up to an additive constant. The conclusion follows from Theorem 4.2. �

We next provide an explicit perturbation g, depending on a parameter ε, for
which the policy iteration algorithm applied to g + T is valid. We shall see in the
next subsection that ε can be instantiated with a polynomial number of bits, in
such a way that the original unperturbed problem is solved.

Before giving this explicit perturbation scheme, let us mention that the poly-
hedral complex C introduced in the proof of Theorem 3.2 (Subsection 3.3) can be
constructed for any perfect-information finite stochastic game, whether it is ergodic
or not. Recall indeed that C is obtained as a refinement of all the regions where
the maps g �→ λσ(g) with σ ∈ Sp, defined in (3.6), are affine. In particular, we do
not assume ergodicity in the next two propositions.

Proposition 4.4. Let T : Rn → Rn be the Shapley operator of a finite stochastic
game with perfect information. Then, there exists ε0 > 0 such that all perturbation
vectors gε := (ε, ε2, . . . , εn) with 0 < ε < ε0 are in the interior of the same full-
dimensional cell of the polyhedral complex C introduced in Subsection 3.3.

Proof. The cells of the polyhedral complex C introduced in Subsection 3.3 that are
not full-dimensional are included in an arrangement of a finite number of hyper-
planes. The real curve ε �→ gε = (ε, . . . , εn) cannot cross a given hyperplane in this
arrangement more than n times (otherwise, a polynomial of degree n would have
strictly more than n roots). We deduce that there is a value ε0 > 0 such that the
restriction of the curve ε �→ gε to the open interval (0, ε0) crosses no hyperplane of
the arrangement. Therefore, it must stay in the interior of a full-dimensional cell
of the complex C. �

The following result is a refinement of the previous one.

Proposition 4.5. Let T : Rn → Rn be the Shapley operator of a finite stochastic
game with perfect information. Then, there exist ε1 > 0, policies σ ∈ Sp and τ ∈ Tp,
and an invariant probability measure mστ of the stochastic matrix P στ such that for
all ε ∈ [0, ε1], the upper mean payoff of gε+T is given by χ(gε+T ) = mστ ·(gε+rστ ).
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Proof. Recall that the upper mean payoff of g + T is given by

χ(g + T ) = min
σ∈Sp

λσ(g)

with λσ(g) = max{m · (g + rστ ) | τ ∈ Tp, m ∈ M∗(P στ )} .

By construction of the polyhedral complex C in Subsection 3.3, in the interior of a
full-dimensional cell, each piecewise affine map g �→ λσ(g) coincides with a unique
affine map, but g �→ χ(g + T ) need not be affine. Hence, we can refine the complex
C into a complex C′ such that the latter piecewise affine map also coincides with a
unique affine map on each cell of full dimension. The same proof as Proposition 4.4
leads to the existence of a parameter ε1 such that all the perturbations gε with
ε ∈ (0, ε1) lie in the interior of the same full-dimensional cell of C′. Let Q be this
cell. By construction of the latter complex, there exists a policy σ ∈ Sp such that
χ(g + T ) = λσ(g) for all g ∈ Q, and for that policy σ there exists a policy τ ∈ Tp
and mστ ∈ M∗(P στ ) such that λσ(g) = mστ · (g + rστ ) for all g ∈ Q. �

It follows that solving the game with Shapley operator gε +T for ε small enough
entails a solution of the original game.

Proposition 4.6. If T satisfies Assumption A, then there exists ε1 > 0 (same as
in Proposition 4.5) such that Algorithm 1 terminates for any input gε + T with
ε ∈ (0, ε1). Furthermore, for any policy σ satisfying λ(g + T ) = λ(g + T σ), we also
have λ(T ) = λ(T σ).

Proof. First note that here, since the game is ergodic, we have χ(g + T ) = λ(g + T )
for all perturbations g ∈ Rn.

Following Proposition 4.5, the parameter ε1 is such that all perturbations gε

with 0 < ε < ε1 lie in the interior of the same full-dimensional cell of the complex
C′ (which is a refinement of C, see the proof of Proposition 4.5). Denote by Q
this cell. The termination of Algorithm 1 is then a straightforward consequence of
Theorem 4.3.

By definition of the polyhedral complex C′, the piecewise affine map g �→ λ(g+T )
is affine when restricted to Q. Furthermore, for any policy σ ∈ Sp, we have either
λ(g + T ) = λσ(g) = λ(g + T σ) for all g in Q, or λ(g + T ) < λσ(g) = λ(g + T σ) for
all g in the interior of Q. Hence the result. �

4.3. Complexity issues. In this subsection, we show that computing the up-
per mean payoff of a Shapley operator (a fortiori the eigenvalue if it exists) is
polynomial-time reducible to the computation of the eigenvalue of a Shapley op-
erator for which Algorithm 1 terminates. This fact is a direct consequence of
Theorem 4.12 below. To do so, we shall need explicit bounds on the perturbation
parameter ε.

We first explain how the general case can be reduced to the situation in which
Assumption A holds. To that purpose, let use introduce for any real number M � 0,
the map RM : Rn → Rn whose ith coordinate is given by

[RM (x)]i = max
{

xi, max
1�j�n

(−M + xj)
}

, x ∈ Rn .

It is convenient to introduce Hilbert’s seminorm on Rn, defined by

‖x‖H = max
1�i�n

xi − min
1�i�n

xi .
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Observe that RM is a projection on the set {x ∈ Rn | ‖x‖H � M}, meaning that
R2

M = RM and
RM (x) = x ⇐⇒ ‖x‖H � M .

Lemma 4.7. Let T : Rn → Rn be the Shapley operator of a perfect-information
finite stochastic game, and let M � 0. Then, T ◦ RM has an eigenvalue.

Proof. First, note that the recession operator of R̂M is given by

R̂M (x) = (max x) e , x ∈ Rn ,

where max x := max1�i�n xi. Second, it has been noted in Subsection 3.2 that the
limit (3.1) defining T̂ is uniform in x. Hence, we get that T̂ ◦ RM = T̂ ◦ R̂M . Thus,
using the properties of recession operators, we have, for any vector x ∈ Rn,

T̂ ◦ RM (x) = T̂ ◦ R̂M (x) = T̂
(
(max x) e

)
= (max x) e .

This proves that the only fixed points of T̂ ◦ RM are trivial fixed points. The
conclusion follows from Theorem 3.4. �

Given a perfect-information finite stochastic game Γ with Shapley operator T ,
the operator T ◦ RM can be interpreted as the Shapley operator of another perfect-
information finite stochastic game with state space S. In this game, at each step,
if the current state is i ∈ S, player Min start by choosing an action a ∈ Ai. Then,
player Max chooses an action b ∈ Bi,a which gives rise to a transition payment
rab

i and a state, j, is chosen by nature with probability [P ab
i ]j and announced to

the players. Finally, player Max chooses the next state to be either j with no
additional payment, or to be any other state k with an additional payment of −M .
In other words, player Max has the option of teleporting himself to any other state,
by accepting a penalty M .

Note that, since player Min has the same action space in the latter game as in
the game Γ, the sets of her stationary strategies in both games are identical. Then,
for a fixed policy σ of player Min, the one-player Shapley operator (T ◦ RM )σ is
equal to T σ ◦ RM , and we get from Lemma 4.7 the following result.

Corollary 4.8. Let T : Rn → Rn be the Shapley operator of a perfect-information
finite stochastic game. Then, T ◦ RM satisfies Assumption A.

In the modified game with Shapley operator T ◦RM , player Max makes, at each
step, the final decision about the next state, provided an additional cost of M . The
following result shows that if this cost is large enough, then player Max cannot do
better, in the long run, than in the game Γ.

Lemma 4.9. Let T : Rn → Rn be the Shapley operator of a perfect-information
finite stochastic game. Then, there exists a positive constant M0 such that for any
M > M0, the eigenvalue of T ◦ RM is equal to the upper mean payoff χ(T ).

Proof. First, note that RM (x) � x for all x ∈ Rn. Hence, by monotonicity of T ,
we deduce that T ◦ RM � T , which yields χ(T ◦ RM ) � χ(T ). Since T ◦ RM has
an eigenvalue, denoted by λ(T ◦ RM ), then we have λ(T ◦ RM ) � χ(T ).

Second, we know that T has an invariant half-line with direction χ(T ). So there
exists a vector u ∈ Rn such that T (u) = u + χ(T ). Now let M0 := ‖u‖H. For every
M > M0, we have

T ◦ RM (u) = T (u) = u + χ(T ) � u + χ(T )e .
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By application of a Collatz-Wielandt formula (see [GG04]), we know that the eigen-
value of T ◦ RM is given by

λ(T ◦ RM ) = inf{μ ∈ R | ∃u ∈ Rn, T ◦ RM (u) � u + μe} .

Hence λ(T ◦ RM ) � χ(T ). �

We shall need a technical bound on invariant probability measures of stochas-
tic matrices arising from strategies. We state it here for an arbitrary irreducible
stochastic matrix.

Lemma 4.10. Let P be a n × n irreducible stochastic matrix whose entries are ra-
tional numbers with numerators and denominators bounded by an integer D. Then,
the entries of the invariant probability measure of P are rational numbers whose
least common denominator is bounded by

nn/2Dn2

Proof. The invariant probability measure m of P is the unique solution of the linear
system

(4.1)

{
(I − P ᵀ) m = 0
eᵀ m = 1

,

where I is the identity matrix. Note that one row of the subsystem (I − P ᵀ) m = 0
is redundant since we are dealing with stochastic vectors and eᵀ m = 1. Then,
by deleting this row, and by multiplying every row of the latter subsystem by all
the denominators of the coefficients appearing in this row, we arrive at a Cramer
linear system with integer coefficients of absolute value less than Dn, and with unit
coefficients on the last row. Solving this system by Cramer’s rule, we obtain that
the entries of m are rational numbers whose denominators divide the determinant
of the system. Using Hadamard’s inequality for determinants, we deduce that these
denominators are bounded by(

(n − 1)(Dn)2 + 1
)n/2 � nn/2Dn2

. �

Let T : Rn → Rn be the Shapley operator of a perfect-information finite stochas-
tic game Γ with state space {1, . . . , n}. We just showed that the upper mean payoff
of T can be recovered from the eigenvalue of the operator T ◦RM for a suitable large
M . The latter operator satisfies Assumption A, and so, we can in principle apply
Algorithm 1 to it. However, to do so in a way which leads to a polynomial-time
transformation of the input, it is convenient to introduce the following modified
Shapley operator TM : R2n → R2n given, for all (x, y) ∈ Rn × Rn, by

TM (x, y) := (T (y), RM (x)) .

Note that we have

(TM )2(x, y) =
(

T ◦ RM (x)
RM ◦ T (y)

)
.

The following immediate lemma shows that one can recover the bias vectors and
the eigenvalue of T ◦ RM from those of TM .
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Lemma 4.11. If v is a bias vector of the operator T ◦ RM with eigenvalue λ, then
(v, RM (v) − (λ/2)e) is a bias vector of the operator TM with eigenvalue λ/2, and
all bias vectors of TM arise in this way. �

The operator TM is the dynamic programming operator of a game, denoted by
ΓM , with state space {1, . . . , 2n}. In each state i ∈ {1, . . . , n}, the actions, the
payments and the transition function are the same as in Γ, except that the next
state is labeled by an element of {n + 1, . . . , 2n} instead of {1, . . . , n}. Moreover, in
each state i ∈ {n+1, . . . , 2n}, player Min has only one possible action, while player
Max chooses the next state j among {1, . . . , n} with a cost M if i − j �= n. In
particular, the policies of player Min in the two games Γ and ΓM are in one-to-one
correspondence, and to simplify the presentation, we shall use the same notation
for these policies. Hence, we shall write (TM )σ(x, y) = (T σ(y), RM (x)) for such a
policy σ.

We saw in Lemma 4.7 that the operator T ◦ RM has an eigenvalue. The same is
true for the operator TM by Lemma 4.11. Moreover, the same conclusion applies
to the operator (TM )σ for any policy σ, so that TM satisfies Assumption A. We
know that for ε > 0 small enough, the perturbed operator gε + T ◦ RM has a
unique bias vector, up to an additive constant, where gε = (ε, . . . , εn). This leads
to considering, for ε > 0,

TM,ε := (gε, 0) + TM .

Theorem 4.12. Let Γ be a perfect-information finite stochastic game whose tran-
sition payments and probabilities are rational numbers with numerators and denom-
inators bounded by an integer D � 2. Let T : Rn → Rn be the Shapley operator of
Γ. If

M > 4nn/2Dn2+1 and 0 < ε <
1

nnD2n(n+1) ,

then the upper mean payoff of T can be recovered from TM,ε = (gε, 0) + TM , in the
sense that for any policy σ of player Min such that λ(TM,ε) = λ((TM,ε)σ), we have
χ(T ) = χ(T σ). Furthermore, such a policy can be obtained by applying Algorithm 1
with the input TM,ε.

Proof. Let g ∈ [0, 1]n, and fix a policy σ of player Min. In the game ΓM , consider
a policy of player Max such that, when in state i ∈ {1, . . . , n}, he chooses action
bi ∈ Bi,σ(i), and when in state i ∈ {n + 1, . . . , 2n}, he chooses the next state to be
j(i) ∈ {1, . . . , n}. Then, the transition matrix associated with that choice of policy
is the following 2n × 2n block matrix:

(4.2)
(

0 P στ

Q 0

)
,

where τ ∈ Tp is a policy of player Max in the game Γ such that τ(i, σ(i)) = bi

for each state i, and where Q is the n × n stochastic matrix whose coefficients are
Qij = 1 for j = j(i + n) and 0 otherwise.

Let (m, m′) ∈ Rn × Rn be an invariant probability measure of the stochastic
matrix (4.2). The vectors m and m′ satisfy in particular

(4.3) mᵀ P στ = m′ᵀ , m′ᵀQ = mᵀ , m · e + m′ · e = 1 .
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We are interested in the eigenvalue of the perturbed one-player Shapley operator
(g, 0) + (TM )σ. Hence, following formula (3.5), we consider the quantity

γ := m · (g + rστ ) − M
∑

1�i�n
Qii=0

m′
i .

If for every index i in the support of m′, we have Qii = 1, then we deduce from
the second equality in (4.3) that m′ = m. This yields that 2m is an invariant
probability measure of P στ , and that

γ = m · (g + rστ ) � 1
2

χ(g + T σ) .

Note that the equality is attained in the above inequality for some policy τ and
some invariant probability measure m.

If there is an index i in the support of m′ such that Qii = 0, then we have

γ � m · (g + rστ ) − M m′
i � 1 + max

i,a,b
rab

i − K1 M ,

where K1 is a positive constant such that K1 � m′
i. Note that K1 can be chosen

independently of M and of the particular choices of the policies. Then, taking
M > M0 := (K1)−1(1 + (3/2)‖r‖∞), we obtain that

γ <
1
2

min
i,a,b

rab
i � 1

2
χ(g + T σ) .

Thus, we have proved that, for all policies σ of player Min and for all g ∈ [0, 1]n,
we have

λ
(
(g, 0) + (TM )σ

)
=

1
2

χ(g + T σ) ,

as soon as M > M0. In particular, the choice of the parameter ε such that TM,ε is
a generic instance only relies on T (Proposition 4.5).

We now fix some M > M0. Consider, for policies σ, σ′ of player Min and
τ, τ ′ of player Max, two distinct pairs (m, d) �= (m′, d′), where m ∈ M∗(P στ ),
m′ ∈ M∗(P σ′τ ′

), d := m · rστ and d′ := m′ · rσ′τ ′
. We need to compare the affine

maps g �→ m · g + d and g �→ m′ · g + d′ along the curve ε �→ gε with ε ∈ (0, 1).
Assume first that d = d′. Then m �= m′ and we can select the smallest index i

such that mi �= m′
i. Note that since m and m′ are stochastic vectors, we necessarily

have i < n and we also have the existence of another index j such that i < j � n
and mj �= m′

j . Without loss of generality, we may assume that mi − m′
i > 0.

Let K2 ∈ R be such that 0 < K2 < mi − m′
i. Then, for any positive parameter

ε < K2 n−1, we have

(m · gε + d) − (m′ · gε + d′) = (mi − m′
i)εi +

∑
i<j�n

(mj − m′
j)εj

> K2 εi − nεi+1 = εi (K2 − nε) > 0 .

Assume now that d �= d′, say d > d′, and let K3 ∈ R be such that 0 < K3 < d − d′.
Then, for any positive parameter ε < K3, we have

(m · gε + d) − (m′ · gε + d′) > εn − ε + K3 > 0 .

Note that we can choose the positive constants K2 and K3 independently of σ,
σ′, τ , τ ′, m and m′. Hence, the above arguments show that the set of polynomial
functions ε �→ m · (gε + rστ ) with σ ∈ Sp, τ ∈ Tp, and m ∈ M∗(P στ ), is totally
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ordered if ε is restricted to the interval (0, min{K2n−1, K3}). Thus, the parameter
ε1 of Proposition 4.5 may be taken equal to min{K2n−1, K3}.

To complete the proof, we next explain how to instantiate the constants K1
to K3. Let us start with K2. It is a lower bound on the absolute values of the
differences between two distinct entries (with same index) of invariant probability
measures associated with the transition matrices of Γ. These differences are of the
form |p1/q1 − p2/q2| � 1/(q1q2), where p1, p2, q1, q2 are integers. By Lemma 4.10,
we know that q1, q2 � nn/2Dn2

, and so one can choose

K2 =
1

nnD2n2 .

Likewise, K3 is a lower bound on the absolute values of the differences between
two distinct scalar products m ·rστ . Let m ∈ M(P στ ). It follows from Lemma 4.10
that the ith entry of m can be written as mi = pi/q where pi is an integer and q �
nn/2Dn2

is an integer independent of i. Since every entry of rστ has a denominator
at most D, it follows that m · rστ is a rational number with denominator at most
nn/2Dn2

Dn. Therefore, the difference between two distinct values of m · rστ is at
least K3 = (nnD2n2

D2n)−1, and so

min{K2n−1, K3} =
1

nnD2n2 min
{

1
n

,
1

D2n

}
=

1
nnD2n(n+1) .

Finally the constant K1 is a lower bound for the positive entries of the restrictions
m′ of the invariant probability measures (m, m′) of the transition matrices (4.2)
arising in the game ΓM . A direct application of Lemma 4.10 provides the following
coarse bound:

K1 =
1

(2n)nD4n2 .

This bound can be improved by noting that the matrices (4.2) have a particular
structure. Indeed, if (m, m′) is an invariant probability measure of (4.2), then it
satisfies (4.3), and so 2m′ is an invariant probability measure of the matrix QP στ ,
the entries of which are entries of P στ (since Q has only one nonzero entry in each
row and this entry is equal to 1). Applying Lemma 4.10 to the matrix QP στ , we
obtain the following lower bound for the positive entries of m′:

K1 =
1

2nn/2Dn2 .

Hence,
M0 � (1 + (3/2)D) 2nn/2Dn2 � 4nn/2Dn2+1 . �

An important special case to which the method of Theorem 4.12 can be applied
concerns deterministic mean-payoff games [GKK88, ZP96]. The input of such games
can be described, as in [AGG12], by means of two matrices A, B ∈ (Z∪{−∞})m×n.
The corresponding Shapley operator can be written as

Ti(x) = min
1�j�m

(
− Aji + max

1�k�n
(Bjk + xk)

)
, x ∈ Rn , 1 � i � n .(4.4)

The corresponding game is played by moving a token on a graph in which n nodes,
denoted by 1, . . . , n, belong to player Min, whereas m other nodes, denoted by
1′, . . . , m′, belong to player Max. In state i ∈ {1, . . . , n}, player Min can move the
token to a state j ∈ {1′, . . . , m′} such that Aji �= −∞, receiving Aji. In state j,
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player Max can move the token to a state k ∈ {1, . . . , n} such that Bjk �= −∞,
receiving Bjk. We assume that the matrix B has no identically infinite row, and
that the matrix A has no identically infinite column, meaning that each player has
at least one available action in each state. Then, the modified operator T ◦ RM

corresponds to the matrix BM in which infinite entries of B are replaced by −M ,
and the operator g + T ◦ RM arises by subtracting the constant gi to every entry
in the ith column of A.

Theorem 4.13. Let T denote the Shapley operator (4.4) of a deterministic mean-
payoff game, with integer payoffs bounded in absolute value by D � 2. Then, for

M > 4nD and 0 < ε < 1/n3 ,

the policy iteration Algorithm 1 applied to the operator gε +T ◦RM terminates, and
we can compute the upper mean payoff of T from any policy σ of player Min such
that λ(gε + T ◦ RM ) = λ(gε + T σ ◦ RM ), in the sense that χ(T ) = χ(T σ).

Proof. We adapt the proof of Theorem 4.12 to the case of deterministic transition
matrices. In that special case, every invariant probability measure is uniform on
its support, hence its positive entries are bounded below by 1/n if the state space
has cardinality n. Since the constant K1 is a lower bound for the positive entries of
the invariant probability measures of the transition matrices in ΓM , one can choose
K1 = 1/(2n), and then

M0 � (2n)(1 + (3/2)D) � 4nD .

The constant K2, which is a lower bound on the absolute values of the differences
between two distinct entries of invariant probability measures of transition matrices
in Γ, can be chosen as K2 = 1/n2. As for K3, it is a lower bound on the absolute
values of the differences between two distinct values of m · rστ . Since the payments
are integers, every scalar product m · rστ is a rational number whose denominator
divides the denominator of the positive entries of m which are themselves bounded
by n. Hence, one can choose K3 = 1/n2, and the parameter ε must be lower than

min{K2n−1, K3} = 1/n3 . �

Remark 4.14. One step in Algorithm 1 consists in computing an eigenpair (λk, vk)
of the reduced Shapley operator T σk obtained by fixing the strategy σk of player
Min. This is a simpler problem which can be solved by several known methods. We
may apply, for instance, a similar policy iteration algorithm to T σk , iterating this
time in the space of policies τ of player Max. In this way, for each choice of τ , we
arrive at an operator of the form T σk,τ (x) = g +Px, where P is a stochastic matrix
which cannot in general be assumed to be irreducible. However, for one-player
problems, a classical version of policy iteration, the multichain policy iteration
introduced by Howard [How60] and Denardo and Fox [DF68], does allow one to
determine (λk, vk) (without genericity conditions). Moreover, in the special case of
deterministic games, the vector vk is known to be a tropical eigenvector and λk is a
tropical eigenvalue. The tropical eigenpair can be computed by direct combinatorial
algorithms, see e.g. the discussion in [CTGG99].

Remark 4.15. Theorem 4.13 should be compared with the other known perturbation
scheme, relying on vanishing discount. This method requires the computation of a
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fixed point of the operator x �→ T (αx) for 0 < α < 1 sufficiently close to one. It is
known that, for deterministic mean-payoff games, if the discount factor α is chosen
so that

α > 1 − 1
4(n + m)3D

,

where D denotes the maximal absolute value of a finite entry Aij or Bij , then,
the solution of the mean-payoff problem can be derived from the solution of the
discounted problem, see [ZP96, Sec. 5]. The latter can be obtained by policy
iteration (which terminates without any nondegeneracy conditions in the discounted
case). Applying Algorithm 1 to the map gε + T requires solving linear systems in
which the matrix is independent of ε. If this is done by calling the Denardo-Fox
algorithm to solve one-player problem (see previous remark), these systems are well
conditioned. By comparison, vanishing discount requires the inversion of a matrix
which becomes singular as α → 1. In particular, if policy iteration is interpreted
in floating-point arithmetics, vanishing discount based perturbations may lead to
numerical instabilities or to overflows, whereas the present additive perturbation
scheme is insensitive to this pathology, because it only perturbs the right-hand sides
of the linear systems to be solved.

Remark 4.16. The present approach allows one to compute the upper mean payoff,
i.e., the maximum of the mean payoff over all initial states. This leads to no loss of
expressivity since it follows from known reductions that this problem is polynomial
time equivalent to solving a mean-payoff game in which the initial state is fixed:
combine the results of Appendix C in the extended version of [AGS16] (especially
Lemma C.2 and Corollary C.3) with the reductions in [AM09]. An alternative
route to compute the mean payoff of a given initial state, avoiding the use of such
reductions, would be to extend the present perturbation scheme to the “multichain”
version of policy iteration, discussed in [CTG06, ACTDG12].
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