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1. Introduction

Let X be a compact metric space with metric dX and A a commutative Banach algebra with norm ‖ · ‖A. 
By C(X, A), we denote the Banach algebra of all A-valued continuous functions on X, with norm

‖f‖C(X,A) = sup
{
‖f(x)‖A : x ∈ X

}
.

If an A-valued function f on X satisfies

LX,A(f) = sup
x,x′∈X
x�=x′

‖f(x) − f(x′)‖A
dX(x, x′) < ∞,

then we say that f is a Lipschitz function. By Lip(X, A), we denote the set of all A-valued Lipschitz functions 
on X. Clearly, Lip(X, A) ⊂ C(X, A) and Lip(X, A) is a Banach algebra with norm

‖f‖Lip(X,A) = ‖f‖C(X,A) + LX,A(f).
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In case that A = C, we write C(X) = C(X, C) and Lip(X) = Lip(X, C). The Lipschitz algebra Lip(X) has 
been well studied. The researches on this subject may be found in the book [7]. Here a mapping between 
two Banach algebras is said to be a homomorphism if it preserving addition, scalar multiplication and 
multiplication. Moreover if it maps unit to unit, then we say that it is unital. In [6], Sherbert characterized 
unital homomorphisms between Lipschitz algebras.

Theorem A (Sherbert, [6]). Suppose that X and Y are compact metric spaces with metrics dX and dY
respectively. Then T is a unital homomorphism from Lip(X) into Lip(Y ), if and only if there exists a 
mapping ϕ : Y → X with

sup
y,y′∈Y
y �=y′

dX(ϕ(y), ϕ(y′))
dY (y, y′) < ∞,

such that

(Tf)(y) = f(ϕ(y)) (y ∈ Y )

for all f ∈ Lip(X).

This theorem has been developed in several directions. In [1], F. Botelho and J. Jamison replaced Lip(X)
by Lip(X, A), where A is the Banach algebra c of convergent sequences or the Banach algebra �∞ of 
bounded sequences. They determined the unital homomorphisms from Lip(X, c) into Lip(Y, c) and those 
from Lip(X, �∞) into Lip(Y, �∞), where X and Y are compact metric spaces.

In general, if K is a compact Hausdorff space, then C(K) denotes the Banach algebra of all complex-
valued continuous functions on K, with norm ‖f‖C(K) = supξ∈K |f(ξ)|. In [4], S. Oi took up the algebra 
Lip(X, C(K)) and proved the following theorem:

Theorem B (Oi, [4]). Suppose that X and Y are as in Theorem A, and that K and M are compact Haus-
dorff spaces. Assume that Y is connected. Then T is a unital homomorphism from Lip(X, C(K)) into 
Lip(Y, C(M)) if and only if there exist a class {ϕη}η∈M of mappings from Y to X with the properties (a) 
and (b) below and a continuous mapping ψ : M → K such that

[
(Tf)(y)

]
(η) =

[
f(ϕη(y))

]
(ψ(η)) (y ∈ Y, η ∈ M)

for all f ∈ Lip(X, C(K)).

(a) For each y ∈ Y , the mapping η �→ ϕη(y) from M to X is continuous.

(b) sup
η∈M

sup
y,y′∈Y
y �=y′

dX(ϕη(y), ϕη(y′))
dY (y, y′) < ∞.

This theorem leads to the result of Botelho and Jamison mentioned above. Here we turn our attention 
to two assumptions in Theorem B. One is that Y is connected and the other is that T is unital. These 
assumptions seem to be inessential but they simplify the statement of theorem. In order to remove these 
assumptions and to state a general result, we consider a function f in Lip(X, C(K)) as a function of two 
variables x ∈ X and ξ ∈ K. So we write f(x, ξ) instead of 

[
f(x)

]
(ξ). Let f be a function on X ×K. With 

x ∈ X we associate a function fx defined on K by fx(ξ) = f(x, ξ). Similarly, if ξ ∈ K, fξ is the function 
defined on X by fξ(x) = f(x, ξ). In general, for any mapping of two variables, we use the same expression: 
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For example, if ψ : Y ×M → K, then ψη : Y → K and ψy : M → K are defined by ψη(y) = ψ(y, η) and 
ψy(η) = ψ(y, η).

A subset A of a topological space is said to be clopen, if A is both open and closed. We do not exclude 
the possibility that a clopen set is empty. We understand that the statement about an empty set is true.

Theorem 1. Suppose that X and Y are compact metric spaces with metrics dX and dY respectively, and that 
K and M are compact Hausdorff spaces. If T is a homomorphism from Lip(X, C(K)) into Lip(Y, C(M)), 
then there exist a clopen subset D of Y ×M and two continuous mappings ϕ : D → X and ψ : D → K with
(i) and (ii) such that T has the form:

(Tf)(y, η) =
{
f
(
ϕ(y, η), ψ(y, η)

) (
(y, η) ∈ D

)
0

(
(y, η) ∈ (Y ×M) �D

) (1)

for all f ∈ Lip(X, C(K)).

(i) There exists a bound L ≥ 0 such that

(y, η), (y′, η) ∈ D and y 	= y′ imply
dX

(
ϕ(y, η), ϕ(y′, η)

)
dY (y, y′) ≤ L. (2)

(ii) For any η ∈ M , the set Dη = {y ∈ Y : (y, η) ∈ D} is a union of finitely many disjoint clopen subsets 
V η

1 , . . . , V η
nη

of Y such that

ψη is constant on V η
i for i = 1, . . . , nη,

and

dY (V η
i , V

η
j ) ≥ r (i 	= j). (3)

Here r is a positive constant independent of η.

Conversely, if D, ϕ, ψ are given as above, then T defined by (1) is a homomorphism from Lip(X, C(K))
into Lip(Y, C(M)). Moreover, T is unital if and only if D = Y ×M .

In (3), dY (A, B) denotes the usual distance between two sets A, B ⊂ Y , that is, dY (A, B) = inf{dY (y, y′) :
y ∈ A, y′ ∈ B}. (If A = ∅ or if B = ∅, then we set dY (A, B) = ∞).

Next we consider the following problem:

When is a homomorphism between Lipschitz algebras compact?

In [3], H. Kamowitz and S. Scheinberg answered to this problem as follows:

Theorem C (Kamowitz and Scheinberg, [3]). Let T be a unital homomorphism from Lip(X) into Lip(Y )
described in Theorem A. Then T is compact if and only if

lim
dY (y,y′)→0

dX(ϕ(y), ϕ(y′))
dY (y, y′) = 0.
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In this paper, we give a necessary and sufficient condition for T in Theorem 1 to be compact.

Theorem 2. Let X, Y , K, M be as in Theorem 1. Suppose that T is a homomorphism from Lip(X, C(K))
into Lip(Y, C(M)) with the form (1) in Theorem 1. Then T is compact if and only if (iii) and (iv) hold.

(iii) For any ε > 0, there exists δ > 0 such that

(y, η), (y′, η) ∈ D and 0 < dY (y, y′) < δ imply
dX

(
ϕ(y, η), ϕ(y′, η)

)
dY (y, y′) < ε. (4)

(iv) For any y ∈ Y , the set Dy = {η ∈ M : (y, η) ∈ D} is a union of finitely many disjoint clopen sets 
Ω1

y, . . . , Ω
ny
y such that

ψy is constant on Ωi
y for i = 1, . . . , ny.

2. Preliminaries

As mentioned in Introduction, we consider a function f in Lip(X, C(K)) as a function on X ×K.

Proposition 2.1. Let f be a complex-valued function on X × K. Then f ∈ Lip(X, C(K)) if and only if 
f ∈ C(X ×K) and

LX,C(K)(f) = sup
x,x′∈X
x�=x′

‖fx − fx′‖C(K)

dX(x, x′) < ∞. (5)

Moreover, ‖f‖C(X,C(K)) = ‖f‖C(X×K).

Proof. Straightforward. �
The next proposition implies that Lip(X, C(K)) separates the points of X ×K.

Proposition 2.2. For any (x0, ξ0) ∈ X × K and for any open neighborhood U of (x0, ξ0), there exist an 
f ∈ Lip(X, C(K)) and m > 0 such that 0 ≤ f ≤ 1, f(x0, ξ0) = 1 and f(x, ξ) ≤ m < 1 for all (x, ξ) ∈
(X ×K) � U .

Proof. Let (x0, ξ0) ∈ X × K and let U be an open neighborhood of (x0, ξ0). Then there exist an open 
neighborhood U of x0 in X and an open neighborhood Θ of ξ0 in K such that (x0, ξ0) ∈ U × Θ ⊂ U .

Let h be a function on X defined by

h(x) = 1 − dX(x, x0)
diam(X) (x ∈ X),

where diam(X) = sup{dX(x, x′) : x, x′ ∈ X}. We easily see that h ∈ Lip(X), 0 ≤ h ≤ 1, h(x0) = 1 and 
h(x) < 1 for all x ∈ X � {x0}. By Urysohn’s lemma, there is a u ∈ C(K) such that 0 ≤ u ≤ 1, u(ξ0) = 1
and u(ξ) = 0 for all ξ ∈ K �Θ. Now, put f(x, ξ) = h(x)u(ξ) for (x, ξ) ∈ X ×K. Then we can verify that f
has the desired properties. Here m may be taken as the maximum of f on the compact set (X×K) �U . �

Here we summarize a fundamental fact on the Banach algebra Lip(X, C(K)).
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Proposition 2.3. Lip(X, C(K)) is a semisimple unital commutative Banach algebra and its maximal ideal 
space is identified with X ×K. In fact, for any multiplicative linear functional Ψ on Lip(X, C(K)), there 
exists a unique point (x, ξ) ∈ X ×K such that Ψ(f) = f(x, ξ) for all f ∈ Lip(X, C(K)).

We can prove this proposition by the well-known argument in theory of Banach algebras. The details 
may be found in [4, Propositions 11 and 12].

3. Proof of Theorem 1

In this section we prove Theorem 1.

3.1. Proof of sufficiency

We first settle the converse statement. Suppose that D is a clopen subset of Y ×M , that ϕ : D → X and 
ψ : D → K are continuous mappings with (i) and (ii), and that T is defined by (1).

Lemma 3.1. If

ρ = inf
{
dY (y, y′) : (y, η) ∈ D and (y′, η) ∈ (Y ×M) �D for some η ∈ M

}
,

then ρ > 0.

If there is no pair (y, y′) ∈ Y × Y such that (y, η) ∈ D and (y′, η) ∈ (Y ×M) �D for some η ∈ K, then 
we understand that ρ = ∞.

Proof. Conversely, assume that ρ = 0. Then for each n = 1, 2, . . ., there exist (yn, ηn) ∈ D and (y′n, ηn) ∈
(Y ×M) �D such that dY (yn, y′n) < 1/n. Since D is compact, there exist a net {nα} and a point (y, η) ∈ D
such that ynα

→ y and ηnα
→ η. Then dY (ynα

, y′nα
) < 1/nα → 0. Hence y′nα

→ y and so (y′nα
, ηnα

) → (y, η). 
Since (Y × M) � D is closed, we get (y, η) ∈ (Y × M) � D. This contradicts the fact that (y, η) ∈ D. 
Consequently, we have ρ > 0. �
Lemma 3.2. For any f ∈ Lip(X, C(K)), Tf ∈ Lip(Y, C(M)).

Proof. Let f ∈ Lip(X, C(K)). By Proposition 2.1, we have f ∈ C(X ×K) and (5).
We first show that Tf ∈ C(Y × M). Since ϕ : D → X and ψ : D → K are continuous and since 

f ∈ C(X ×K), the first line in (1) implies that Tf is continuous on D. Of course, the second one implies 
that it is so on (Y ×M) �D. Noting that D is clopen, we see that Tf is continuous on Y ×M .

To see that Tf ∈ Lip(Y, C(M)), it suffices to show that

LY,C(M)(Tf) = sup
y,y′∈Y
y �=y′

‖(Tf)y − (Tf)y′‖C(M)

dY (y, y′) < ∞. (6)

For this end, choose y, y′ ∈ Y so that y 	= y′ and let η ∈ M . We consider three cases.
[Case 1] (y, η), (y′, η) ∈ D: By (ii), y ∈ V η

i and y′ ∈ V η
i′ for some i, i′ ∈ {1, . . . , nη}. We first consider 

the case i = i′. Then y, y′ ∈ V η
i . Since ψη is constant on V η

i , ψ(y, η) = ψη(y) = ψη(y′) = ψ(y′, η). Put 
x = ϕ(y, η), x′ = ϕ(y′, η) and ξ = ψ(y, η) = ψ(y′, η). Using (1), we compute
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∣∣(Tf)(y, η) − (Tf)(y′, η)
∣∣ =

∣∣f(ϕ(y, η), ψ(y, η)) − f(ϕ(y′, η), ψ(y′, η))
∣∣

= |f(x, ξ) − f(x′, ξ)| = |fx(ξ) − fx′(ξ)|
≤ ‖fx − fx′‖C(K)

≤ LX,C(K)(f) dX(x, x′)

= LX,C(K)(f) dX
(
ϕ(y, η), ϕ(y′, η)

)
≤ LX,C(K)(f) L dY (y, y′),

(7)

where the fourth and last lines follow from (5) and (2), respectively.
On the other hand, if i 	= i′, then (3) yields dY (y, y′) ≥ dY (V η

i , V
η
i′ ) ≥ r. Hence

∣∣(Tf)(y, η) − (Tf)(y′, η)
∣∣

dY (y, y′) ≤
∣∣(Tf)(y, η)

∣∣ +
∣∣(Tf)(y′, η)

∣∣
r

≤
2 ‖f‖C(X×K)

r
. (8)

[Case 2] (y, η) ∈ D and (y′, η) ∈ (Y ×M) �D: Then Lemma 3.1 says that dY (y, y′) ≥ ρ > 0. By (1), we 
get

∣∣(Tf)(y, η) − (Tf)(y′, η)
∣∣

dY (y, y′) ≤
∣∣f(ϕ(y, η), ψ(y, η)) − 0

∣∣
ρ

≤
‖f‖C(X×K)

ρ
. (9)

[Case 3] (y, η), (y′, η) ∈ (Y ×M) �D: By (1),

(Tf)(y, η) − (Tf)(y′, η) = 0. (10)

Combining (7)–(10), we can arrive at (6). Indeed, if we put C = max
{
L, 2/r, 1/ρ

}
, then we have

LY,C(M)(Tf) = sup
y,y′∈Y
y �=y′

sup
η∈M

∣∣(Tf)(y, η) − (Tf)(y′, η)
∣∣

dY (y, y′) ≤ C ‖f‖Lip(X,C(K)), (11)

because LX,C(K)(f) ≤ ‖f‖Lip(X,C(K)) and ‖f‖C(X×K) ≤ ‖f‖Lip(X,C(K)). �
Lemma 3.2 says that T maps Lip(X, C(K)) into Lip(Y, C(M)). While the form (1) shows that T is a 

homomorphism. Thus we obtain the converse statement of Theorem 1.

Remark. From (1), we see that ‖Tf‖C(Y×M) ≤ ‖f‖C(X×K). Using this and (11), we obtain the norm 
estimate

‖T‖ = sup
‖f‖Lip(X,C(K))≤1

‖Tf‖Lip(Y,C(M)) ≤ C + 1.

This estimate is not sharp, but it seems to be difficult to give an exact expression of ‖T‖.

3.2. Proof of necessity

We turn to the proof of the main statement of Theorem 1. Suppose that T is an arbitrary homomorphism 
from Lip(X, C(K)) into Lip(Y, C(M)). Since Lip(Y, C(M)) is semisimple, we know from [5, Theorem 11.10]
that T is continuous. Thus the norm ‖T‖ is determined as a bounded linear operator T .

If T = O, then we only take D = ∅. So, we assume that T 	= O.
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Lemma 3.3. There exist a clopen subset D of Y × M and two mapping ϕ : D → X and ψ : D → K such 
that (1) holds.

Proof. Let 1 denote the unit of Lip(X, C(K)), namely, the constant 1 function on X ×K. Since (T1)2 =
T (12) = T1, we have (T1)(y, η) ∈ {1, 0} for all (y, η) ∈ Y ×M . Put

D = {(y, η) ∈ Y ×M : (T1)(y, η) = 1}. (12)

Then

(Y ×M) �D = {(y, η) ∈ Y ×M : (T1)(y, η) = 0}.

Since T1 is continuous on Y ×M , both D and (Y ×M) �D are closed. Hence D is clopen.
To determine the mappings ϕ : D → X and ψ : D → K, fix any (y, η) ∈ D. Define a functional Ψ(y,η) on 

Lip(X, C(K)) by

Ψ(y,η)(f) = (Tf)(y, η)
(
f ∈ Lip(X,C(K))

)
.

Then Ψ(y,η) is a homomorphism from Lip(X, C(K)) into C. Moreover, (12) yields Ψ(y,η)(1) = (T1)(y, η) = 1. 
Hence Ψ(y,η) is a multiplicative linear functional on Lip(X, C(K)). Thus Proposition 2.3 gives a unique point 
(x, ξ) ∈ X ×K such that

Ψ(y,η)(f) = f(x, ξ)
(
f ∈ Lip(X,C(K))

)
.

By putting ϕ(y, η) = x and ψ(y, η) = ξ, we determine the mappings ϕ : D → X and ψ : D → K. Then, for 
any f ∈ Lip(X, C(K)),

(Tf)(y, η) = Ψ(y,η)(f) = f(x, ξ) = f
(
ϕ(y, η), ψ(y, η)

)
. (13)

Finally, if (y, η) ∈ (Y ×M) � D, then (T1)(y, η) = 0 and so for any f ∈ Lip(X, C(K)), Tf = T (f1) =
(Tf)(T1) and so

(Tf)(y, η) = (Tf)(y, η) (T1)(y, η) = 0.

Together with (13), we establish (1). �
Lemma 3.4. The mappings ϕ : D → X and ψ : D → K are continuous.

Proof. Define a mapping Φ : D → X ×K by

Φ(y, η) =
(
ϕ(y, η), ψ(y, η)

) (
(y, η) ∈ D

)
.

We prove the lemma by verifying that Φ is continuous at each point (y0, η0) ∈ D. Let U be an arbitrary 
open neighborhood of Φ(y0, η0) in X ×K. By Proposition 2.2, there exists an f ∈ Lip(X, C(K)) such that 
0 ≤ f ≤ 1, f(Φ(y0, η0)) = 1 and

0 ≤ f(x, ξ) ≤ m < 1
(
(x, ξ) ∈ (X ×K) � U

)
. (14)

Put V =
{
(y, η) ∈ D : |(Tf)(y, η)| > m

}
. Since Tf is continuous on Y ×M , V is open. Also, (y0, η0) ∈ V

because
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(Tf)(y0, η0) = f
(
ϕ(y0, η0), ψ(y0, η0)

)
= f

(
Φ(y0, η0)

)
= 1 > m.

Moreover, if (y, η) ∈ V, then
∣∣f(Φ(y, η))

∣∣ =
∣∣f(ϕ(y, η), ψ(y, η)

)∣∣ =
∣∣(Tf)(y, η)

∣∣ > m

and (14) forces that Φ(y, η) ∈ U . Hence Φ(V) ⊂ U . Thus Φ is continuous at (y0, η0), as desired. �
Lemma 3.5. ϕ satisfies (i).

Proof. Let (y, η), (y′, η) ∈ D with y 	= y′. Put x0 = ϕ(y′, η) and

f(x) = dX(x, x0) (x ∈ X).

Then f ∈ Lip(X) and ‖f‖Lip(X) ≤ diam(X) +1. Extend f to X×K by f̂(x, ξ) = f(x) for all (x, ξ) ∈ X×K. 
Clearly f̂ ∈ Lip(X, C(K)) and ‖f̂‖Lip(X,C(K)) = ‖f‖Lip(X). Moreover, we have

dX
(
ϕ(y, η), ϕ(y′, η)

)
=

∣∣dX(
ϕ(y, η), x0

)
− dX

(
ϕ(y′, η), x0

)∣∣
=

∣∣f(ϕ(y, η)) − f(ϕ(y′, η))
∣∣

=
∣∣f̂(ϕ(y, η), ψ(y, η)

)
− f̂

(
ϕ(y′, η), ψ(y′, η)

)∣∣
=

∣∣(T f̂)(y, η) − (T f̂)(y′, η)
∣∣ =

∣∣(T f̂)y(η) − (T f̂)y′(η)
∣∣

≤
∥∥(T f̂)y − (T f̂)y′

∥∥
C(M)

≤ LY,C(M)(T f̂) dY (y, y′).

Since L(Y,C(M))(T f̂) ≤ ‖T f̂‖Lip(Y,C(M)) ≤ ‖T‖ ‖f̂‖Lip(X,C(K)) ≤ ‖T‖(diam(X) + 1), we obtain

dX
(
ϕ(y, η), ϕ(y′, η)

)
dY (y, y′) ≤ ‖T‖ (diam(X) + 1),

which is (i). �
Lemma 3.6. There exists an r > 0 such that

(y, η), (y′, η) ∈ D and dY (y, y′) < r imply ψη(y) = ψη(y′).

Proof. Take r so that 0 < r < 1/‖T‖. Choose (y, η), (y′, η) ∈ D with dY (y, y′) < r and assume that 
ψη(y) 	= ψη(y′). By Urysohn’s lemma, we find a u ∈ C(K) such that 0 ≤ u ≤ 1, u(ψη(y)) = 1 and 
u(ψη(y′)) = 0. Define a function on X×K as ũ(x, ξ) = u(ξ) for all (x, ξ) ∈ X ×K. Then ũ ∈ Lip(X, C(K))
and ‖ũ‖Lip(X,C(K)) = ‖u‖C(K) = 1. Moreover we have

1 =
∣∣u(ψη(y)) − u(ψη(y′))

∣∣ =
∣∣u(ψ(y, η)) − u(ψ(y′, η))

∣∣
=

∣∣ũ(ϕ(y, η), ψ(y, η)
)
− ũ

(
ϕ(y′, η), ψ(y′, η)

)∣∣
=

∣∣(T ũ)(y, η) − (T ũ)(y′, η)
∣∣

≤
∥∥(T ũ)y − (T ũ)y′

∥∥
C(M)

≤ LY,C(M)(T ũ) dY (y, y′)

< ‖T ũ‖Lip(Y,C(M)) r ≤ ‖T‖ ‖ũ‖Lip(X,C(K)) r = ‖T‖ r < 1,

a contradiction. Hence ψη(y) = ψη(y′). �
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Lemma 3.7. ψ satisfies (ii).

Proof. Fix any η ∈ M and put Dη = {y ∈ Y : (y, η) ∈ D}. Since D is clopen, Dη is a clopen subset of Y . 
For any y ∈ Dη, put

Vy = {z ∈ Dη : ψη(z) = ψη(y)}. (15)

Clearly, ψη is constant on Vy. Also, we have

Vy ∩ Vy′ 	= ∅ =⇒ Vy = Vy′ . (16)

Since ψη is continuous by Lemma 3.4, Vy is a closed subset of Dη. To see that Vy is an open subset of 
Dη, let z ∈ Vy and consider an r-ball B(z; r) = {w ∈ Dη : dY (w, z) < r}, where r is given in Lemma 3.6. 
If w ∈ B(z; r), then (w, η), (z, η) ∈ D and dY (w, z) < r. Hence Lemma 3.6 implies that ψη(w) = ψη(z) =
ψη(y), and so w ∈ Vy. Therefore B(z; r) ⊂ Vy. Thus Vy is an open subset of Dη. Consequently, Vy is a 
clopen subset of Y .

Note that

Dη =
⋃

y∈Dη

Vy.

Since Dη is compact, we can select finitely many y1, . . . , yn ∈ Dη such that

Dη =
n⋃

i=1
Vyi

.

By (16), we may assume that Vy1 , . . . , Vyn
are disjoint.

Finally we show that dY (Vyi
, Vyj

) ≥ r (i 	= j). Assume that dY (Vyi
, Vyj

) < r. Then there exist zi ∈ Vyi

and zj ∈ Vyj
such that dY (zi, zj) < r. By Lemma 3.6, ψη(zi) = ψη(zj), and hence (15) and (16) yield 

Vyi
= Vyj

. Since Vy1 , . . . , Vyn
are disjoint, we must have dY (Vyi

, Vyj
) ≥ r (i 	= j).

Putting nη = n and writing V η
i for Vyi

(i = 1, . . . , nη), we obtain (ii). �
Thus the proof of Theorem 1 is completed.

4. Proof of Theorem 2

In this section, we prove Theorem 2. Throughout this section, T is a homomorphism from Lip(X, C(K))
into Lip(Y, C(M)) with the form (1) in Theorem 1. Of course, the set D and the mappings ϕ and ψ are 
as in Theorem 1. Since T is bounded, we use its norm ‖T‖ again. Let BLip(X,C(K)) be the unit ball of 
Lip(X, C(K)), that is,

BLip(X,C(K)) =
{
f ∈ Lip(X,C(K)) : ‖f‖Lip(X,C(K)) ≤ 1

}
.

4.1. Proof of sufficiency

We first show the “if” part in Theorem 2.
Suppose that ϕ and ψ satisfy (iii) and (iv) respectively. We prove that T is compact. Here we may assume 

that T 	= O, otherwise there is nothing to prove.
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Lemma 4.1. Let (y0, η0) ∈ D. For any ε > 0, there exists an open neighborhood Θ of η0 in M such that

η ∈ Θ implies sup
f∈BLip(X,C(K))

∣∣(Tf)(y0, η) − (Tf)(y0, η0)
∣∣ < ε. (17)

Proof. Put Dy0 = {η ∈ M : (y0, η) ∈ D}. Since η0 ∈ Dy0 , by (iv), there exists j ∈ {1, . . . , ny0} such that 
η0 ∈ Ωj

y0
. Then Ωj

y0
is a clopen subset on which ψy0 is constant. Hence if η ∈ Ωj

y0
, then ψ(y0, η) = ψy0(η) =

ψy0(η0) = ψ(y0, η0). Let ε > 0 and put

Θ =
{
η ∈ Ωj

y0
: dX

(
ϕy0(η), ϕy0(η0)

)
< ε

}
.

Since ϕy0 : Dy0 → X is continuous, Θ is an open neighborhood of η0 in Dy0 . For any η ∈ Θ, put x = ϕ(y0, η), 
x0 = ϕ(y0, η0) and ξ = ψ(y0, η) = ψ(y0, η0). Then, for any f ∈ BLip(X,C(K)), we have

∣∣(Tf)(y0, η) − (Tf)(y0, η0)
∣∣ =

∣∣f(ϕ(y0, η), ψ(y0, η)
)
− f

(
ϕ(y0, η0), ψ(y0, η0)

)∣∣
=

∣∣f(x, ξ) − f(x0, ξ)
∣∣ =

∣∣fx(ξ) − fx0(ξ)
∣∣

≤ ‖fx − fx0‖C(K)

≤ LX,C(K)(f) dX(x, x0)

= LX,C(K)(f) dX
(
ϕ(y0, η), ϕ(y0, η0)

)
= LX,C(K)(f) dX

(
ϕy0(η), ϕy0(η0)

)
≤ ‖f‖Lip(X,C(K)) ε ≤ ε.

Hence we obtain (17). �
Lemma 4.2. In C(Y ×M), the closure of T

(
BLip(X,C(K))

)
is compact.

Proof. According to Arzelá–Ascoli theorem ([2, Theorem IV.6.7]), we show that T
(
BLip(X,C(K))

)
is bounded 

and equicontinuous on Y ×M .
The boundedness follows from an easy computation:

∣∣(Tf)(y, η)
∣∣ ≤ ‖Tf‖C(Y×M) ≤ ‖Tf‖Lip(Y,C(M)) ≤ ‖T‖ ‖f‖Lip(X,C(K)) ≤ ‖T‖

for all (y, η) ∈ Y ×M and all f ∈ BLip(X,C(K)).
The equicontinuity will be shown as follows: Clearly, T

(
BLip(X,C(K))

)
is equicontinuous on the clopen 

set (Y × M) � D, because Tf = 0 on (Y × M) � D for all f ∈ Lip(X, C(K)), by (1). To show that 
T
(
BLip(X,C(M))

)
is equicontinuous at each (y0, η0) ∈ D, let ε > 0. Take an open neighborhood Θ of η0 in M

as in Lemma 4.1, and put V =
{
y ∈ Y : dY (y, y0) < ε/‖T‖

}
. Define an open neighborhood W of (y0, η0) in 

Y ×M as

W = (V × Θ) ∩ D.

Then, for any (y, η) ∈ W and f ∈ BLip(X,C(K)), we have

∣∣(Tf)(y, η) − (Tf)(y0, η)
∣∣ ≤ ∥∥(Tf)y − (Tf)y0

∥∥
C(M) ≤ LY,C(M)(Tf) dY (y, y0)

≤ ‖Tf‖Lip(Y,C(M))
(
ε/‖T‖

)
≤ ‖T‖ ‖f‖Lip(X,C(K))

(
ε/‖T‖

)
≤ ε,

because y ∈ V , while Lemma 4.1 implies
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∣∣(Tf)(y0, η) − (Tf)(y0, η0)
∣∣ < ε,

because η ∈ Θ. Hence the triangle inequality shows that

(y, η) ∈ W implies sup
f∈BLip(X,C(K))

∣∣(Tf)(y, η) − (Tf)(y0, η0)
∣∣ < 2ε.

Thus we conclude that T
(
BLip(X,C(K))

)
is equicontinuous on Y ×M . �

Lemma 4.3. For any ε > 0, there exists a constant cε > 0 such that

‖Tf‖Lip(Y,C(M)) ≤ ε + cε‖Tf‖C(Y×M) (18)

for all f ∈ BLip(X,C(K)).

Proof. Fix ε > 0. By (iii), there exists a δε > 0 such that

(y, η), (y′, η) ∈ D and 0 < dY (y, y′) < δε imply
dX

(
ϕ(y, η), ϕ(y′, η)

)
dY (y, y′) < ε. (19)

Let f ∈ BLip(X,C(K)), and choose (y, η), (y′, η) ∈ Y ×M with y 	= y′. We consider three cases.
[Case 1] (y, η), (y′, η) ∈ D: By (ii) in Theorem 1, y ∈ V η

i and y′ ∈ V η
i′ for some i, i′ ∈ {1, . . . , nη}. We first 

consider the case i = i′. If dY (y, y′) < δε, then the computation (7) using (19) instead of (2) gives
∣∣(Tf)(y, η) − (Tf)(y′, η)

∣∣ ≤ LX,C(K)(f) dX
(
ϕ(y, η), ϕ(y′, η)

)
≤ LX,C(K)(f) ε dY (y, y′)

≤ ‖f‖Lip(X,C(K)) ε dY (y, y′) ≤ ε dY (y, y′).

(20)

On the other hand, if dY (y, y′) ≥ δε, then
∣∣(Tf)(y, η) − (Tf)(y′, η)

∣∣
dY (y, y′) ≤ |(Tf)(y, η)| + |(Tf)(y′, η)|

δε
≤

2‖Tf‖C(Y×M)

δε
. (21)

In case that i 	= i′, we have dY (y, y′) ≥ r by (3), and so
∣∣(Tf)(y, η) − (Tf)(y′, η)

∣∣
dY (y, y′) ≤

2‖Tf‖C(Y×M)

r
. (22)

[Case 2] (y, η) ∈ D and (y′, η) ∈ (Y ×M) �D: Then Lemma 3.1 says that dY (y, y′) ≥ ρ and so
∣∣(Tf)(y, η) − (Tf)(y′, η)

∣∣
dY (y, y′) ≤ |(Tf)(y, η)|

ρ
≤

‖Tf‖C(Y×M)

ρ
. (23)

[Case 3] (y, η), (y′, η) ∈ (Y ×M) �D: By (1),

(Tf)(y, η) − (Tf)(y′, η) = 0. (24)

Now, put c̃ε = max
{
2/δε, 2/r, 1/ρ

}
. We combine (20)–(24) to get

LY,C(M)(Tf) = sup
y,y′∈Y

′

sup
η∈M

∣∣(Tf)(y, η) − (Tf)(y′, η)
∣∣

dY (y, y′) ≤ max
{
ε, c̃ε ‖Tf‖C(Y×M)

}
.

y �=y
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Hence

‖Tf‖Lip(Y,C(M)) ≤ ε + (c̃ε + 1)‖Tf‖C(Y×M),

which is (18). �
Lemma 4.4. In Lip(Y, C(M)), the closure of T

(
BLip(X,C(K))

)
is compact.

Proof. Let {fn} be an arbitrary sequence in BLip(X,C(K)). By Lemma 4.2, there exist a subsequence {fni
}

and a function g ∈ C(Y ×M) such that 
∥∥Tfni

− g
∥∥
C(Y×M) → 0. To see that 

{
Tfni

}
is a Cauchy sequence 

in Lip(Y, C(M)), let ε > 0. Since 
{
Tfni

}
is a Cauchy sequence in C(Y ×M), there exists an N such that 

i, j ≥ N implies 
∥∥Tfni

− Tfnj

∥∥
C(Y×M) < ε/cε. Substituting f =

(
fni

− fnj

)
/2 in (18), we see

i, j ≥ N implies
∥∥Tfni

− Tfnj

∥∥
Lip(Y,C(M)) ≤ 2ε + cε

∥∥Tfni
− Tfnj

∥∥
C(Y×M) < 3ε.

Hence 
{
Tfni

}
is a Cauchy sequence in Lip(Y, C(M)), and so it converges to some function in Lip(Y, C(M)). 

Thus we conclude that the closure of T
(
BLip(X,C(K))

)
is compact in Lip(Y, C(M)). �

Lemma 4.4 says that T is a compact operator from Lip(X, C(K)) into Lip(Y, C(M)), and the “if” part 
was proved.

4.2. Proof of necessity

In the sequels, we suppose that T is compact.

Lemma 4.5. ϕ satisfies (iii).

Proof. Assume, to reach a contradiction, that ϕ does not satisfy (iii). Then there exist an ε0 > 0 and two 
sequences {(yn, ηn)} and {(y′n, ηn)} in D such that

0 < dY (yn, y′n) < 1
n2 and

dX
(
ϕ(yn, ηn), ϕ(y′n, ηn)

)
dY (yn, y′n) ≥ ε0.

Put zn = ϕ(yn, ηn) and z′n = ϕ(y′n, ηn) for n = 1, 2, . . .. In order to arrange the distance dX , we here 
introduce a function χn:

χn(t) = 1
2n (1 − e−nt) (t ∈ [0,∞)).

Clearly, 0 ≤ χn ≤ 1/2n and χn is differentiable and χ′
n(t) = e−nt/2. Define

fn(x) = χn

(
dX(x, z′n)

)
(x ∈ X).

For any x, x′ ∈ X with x 	= x′, the mean value theorem gives a point sn between dX(x, z′n) and dX(x′, z′n)
such that

χn

(
dX(x, z′n)

)
− χn

(
dX(x′, z′n)

)
= χ′

n(sn)
(
dX(x, z′n) − dX(x′, z′n)

)
,

and so
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|fn(x) − fn(x′)| = |χ′
n(sn)|

∣∣dX(x, z′n) − dX(x′, z′n)
∣∣ ≤ e−nsn

2 dX(x, x′) ≤ 1
2dX(x, x′).

Hence fn ∈ Lip(X) and ‖fn‖Lip(X) = ‖fn‖C(X) + LX,C(fn) ≤ 1
2n + 1

2 ≤ 1.
Now put f̂n(x, ξ) = fn(x) for all (x, ξ) ∈ X ×K. Then f̂n ∈ Lip(X, C(K)) and ‖f̂n‖Lip(X,C(K)) ≤ 1, that 

is, f̂n ∈ BLip(X,C(K)).
Next we estimate the norm ‖T f̂n‖Lip(Y,C(M)). We use the mean value theorem again, we compute as 

follows:
∣∣(T f̂n)(yn, ηn) − (T f̂n)(y′n, ηn)

∣∣ =
∣∣f̂n(ϕ(yn, ηn), ψ(yn, ηn)

)
− f̂n

(
ϕ(y′n, ηn), ψ(y′n, ηn)

)∣∣
=

∣∣fn(zn) − fn(z′n)
∣∣ =

∣∣χn

(
dX(zn, z′n)

)
− χn(0)

∣∣
=

∣∣χ′
n(σn)

∣∣ ∣∣dX(zn, z′n) − 0
∣∣

= e−nσn

2 dX
(
ϕ(yn, ηn), ϕ(y′n, ηn)

)
≥ e−nσn

2 ε0 dY (yn, y′n),

where 0 ≤ σn ≤ dX(zn, z′n). Hence

∥∥T f̂n∥∥Lip(Y,C(M)) ≥ LY,C(M)(T f̂n) ≥
∥∥(T f̂n)yn

− (T f̂n)y′
n

∥∥
C(M)

dY (yn, y′n) ≥ e−nσn

2 ε0. (25)

While (2) in Theorem 1 implies

0 ≤ σn ≤ dX(zn, z′n) = dX
(
ϕ(yn, ηn), ϕ(y′n, ηn)

)
≤ L dY (yn, y′n) ≤ L

1
n2 ,

and so nσn → 0. Thus (25) implies

lim inf
n→∞

∥∥T f̂n∥∥Lip(Y,C(M)) ≥
ε0

2 (26)

Recall that T is compact. Since {f̂n} ⊂ BLip(X,C(K)), there exist a subsequence {f̂ni
} and a function 

g ∈ Lip(Y, C(M)) such that 
∥∥T f̂ni

− g
∥∥

Lip(Y,C(M)) → 0. Since 
∥∥T f̂ni

− g
∥∥
C(Y×M) ≤

∥∥T f̂ni
− g

∥∥
Lip(Y,C(M)), 

we have (T f̂ni
)(y, η) → g(y, η) for each (y, η) ∈ Y ×M . If (y, η) ∈ D, then

∣∣(T f̂ni
)(y, η)

∣∣ =
∣∣f̂ni

(
ϕ(y, η), ψ(y, η)

)∣∣ =
∣∣fni

(
ϕ(y, η)

)∣∣ ≤ 1
2ni

→ 0,

while if (y, η) ∈ (Y ×M) �D, then (T f̂ni
)(y, η) = 0. As a result, we have g(y, η) = 0 for all (y, η) ∈ Y ×M , 

and so

∥∥T f̂ni

∥∥
Lip(Y,C(M)) → 0.

This contradicts (26). �
Fix y ∈ Y and put Dy = {η ∈ M : (y, η) ∈ D}.

Lemma 4.6. For any η0 ∈ Dy, there exists an open neighborhood of η0 in Dy on which ψy is constant.
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Proof. Since Dy is a compact subset of M , we can treat the Banach algebra C(Dy) and a projection P from 
Lip(Y, C(M)) into C(Dy):

(Pg)(η) = g(y, η)
(
η ∈ Dy, g ∈ Lip(Y,C(M))

)
.

Clearly P is a bounded linear operator from Lip(Y, C(M)) into C(Dy).
Now put S = PT . Since T is compact, S is a compact operator from Lip(X, C(K)) into C(Dy). Hence 

Arzelá–Ascoli theorem says that S
(
BLip(X,C(K))

)
is equicontinuous on Dy. Hence there exists an open 

neighborhood Θ of η0 such that

η ∈ Θ implies sup
f∈BLip(X,C(K))

∣∣(Sf)(η) − (Sf)(η0)
∣∣ < 1

2 . (27)

Conversely, assume that there exists η1 ∈ Θ such that ψy(η1) 	= ψy(η0). By Urysohn’s lemma, there 
exists a u ∈ C(M) such that 0 ≤ u ≤ 1, u

(
ψy(η1)

)
= 1 and u

(
ψy(η0)

)
= 0. Put ũ(x, ξ) = u(ξ) for all 

(x, ξ) ∈ X ×K. Then ũ ∈ BLip(X,C(K)). Hence (27) implies

∣∣(Sũ)(η1) − (Sũ)(η0)
∣∣ < 1

2 .

But ∣∣(Sũ)(η1) − (Sũ)(η0)
∣∣ =

∣∣(PT ũ)(η1) − (PT ũ)(η0)
∣∣

=
∣∣(T ũ)(y, η1) − (T ũ)(y, η0)

∣∣
=

∣∣ũ(ϕ(y, η1), ψ(y, η1)
)
− ũ

(
ϕ(y, η0), ψ(y, η0)

)∣∣
=

∣∣u(ψ(y, η1)
)
− u

(
ψ(y, η0)

)∣∣ =
∣∣u(ψy(η1)

)
− u

(
ψy(η0)

)∣∣ = 1

a contradiction. Thus we conclude that ψy is constant on Θ. �
Lemma 4.7. ψ satisfies (iv).

Proof. For any η ∈ Dy, put

Ωη =
{
ζ ∈ Dy : ψy(ζ) = ψy(η)

}
.

Clearly, ψy is constant on Ωη. Also, we have

Ωη ∩ Ωη′ 	= ∅ =⇒ Ωη = Ωη′
. (28)

Since ψy is continuous, Ωη is a closed subset of Dy. Also we can easily see that Lemma 4.6 implies that 
Ωη is an open subset of Dy. Thus Ωη is a clopen subset of M .

Note that

Dy =
⋃

η∈Dy

Ωη.

Since Dy is compact, we can select finitely many η1, . . . , ηn ∈ Dy such that

Dy =
n⋃

Ωηi .

i=1
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By (28), we may assume that Ωη1 , . . . , Ωηn are disjoint. Putting ny = n and writing Ωi
y = Ωηi (i = 1, . . . , ny), 

we obtain (iv). �
5. Applications

Consider the case that K is a one-point set. Then Lip(X, C(K)) is isometrically isomorphic to Lip(X). 
On the other hand, if X is a one-point set, Lip(X, C(K)) is isometrically isomorphic to C(K).

Corollary 1. Suppose that X and Y are compact metric spaces with metrics dX and dY respectively.
(I) If T is a homomorphism from Lip(X) into Lip(Y ), then there exist a clopen subset Y0 of Y and a 

continuous mapping ϕ : Y0 → X with

sup
y,y∈Y0
y �=y′

dX(ϕ(y), ϕ(y′))
dY (y, y′) < ∞

such that T has the form:

(Tf)(y) =
{
f
(
ϕ(y)

) (
y ∈ Y0

)
0

(
y ∈ Y � Y0

) (29)

for all f ∈ Lip(X). Conversely, if Y0, ϕ are given as above, then T defined by (29) is a homomorphism from 
Lip(X) into Lip(Y ). Moreover, T is unital if and only if Y0 = Y .

(II) Suppose that T is a homomorphism from Lip(X) into Lip(Y ) with the form (29). Then T is compact 
if and only if

lim
y,y′∈Y0

dY (y,y′)→0

dX(ϕ(y), ϕ(y′))
dY (y, y′) = 0.

Now we turn to another setting.

Corollary 2. Suppose that K and M are compact Hausdorff spaces.
(I) If T is a homomorphism from C(K) into C(M), then there exist a clopen subset M0 of M and a 

continuous mapping ψ : M0 → K such that T has the form:

(Tf)(η) =
{
f
(
ψ(η)

) (
η ∈ M0

)
0

(
η ∈ M �M0

) (30)

for all f ∈ C(K). Conversely, if M0, ψ are given as above, then T defined by (30) is a homomorphism from 
C(K) into C(M). Moreover, T is unital if and only if M0 = M .

(II) Suppose that T is a homomorphism from C(K) into C(M) with the form (30). Then T is compact 
if and only if M0 is a union of finitely many clopen subsets M1, . . . , Mn such that ψ is constant on each Mi

for i = 1, . . . , n. Moreover, T is compact if and only if T has a finite rank.

Corollary 3. Suppose that X is a compact metric space with metric dX , and that M is a compact Hausdorff 
space.

(I) If T is a homomorphism from Lip(X) into C(M), then there exist a clopen subset M0 of M and a 
continuous mapping ϕ : M0 → X such that T has the form:
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(Tf)(η) =
{
f
(
ϕ(η)

) (
η ∈ M0

)
0

(
η ∈ M �M0

) (31)

for all f ∈ Lip(X). Conversely, if M0, ϕ are given as above, then T defined by (31) is a homomorphism 
from Lip(X) into C(M). Moreover, T is unital if and only if M0 = M .

(II) Every homomorphism from Lip(X) into C(M) is compact.

Corollary 4. Suppose that Y is a compact metric space with metric dY , and that K is a compact Hausdorff 
space.

(I) If T is a homomorphism from C(K) into Lip(Y ), then Y is a union of finitely many disjoint clopen 
subsets Y0, Y1, . . . , Yn and there exist constant mappings ψi : Yi → K (i = 1, . . . , n) such that T has the 
form:

(Tf)(y) =
{
f
(
ψi(y)

) (
y ∈ Yi, i = 1, . . . , n

)
0

(
y ∈ Y0

) (32)

for all f ∈ C(K). Conversely, if Y0, Y1, . . . , Yn, ψ1, . . . , ψn are given as above, then T defined by (32) is a 
homomorphism from C(K) into Lip(Y ). Moreover, T is unital if and only if Y0 = ∅.

(II) Every homomorphism from C(K) into Lip(Y ) has a finite rank.
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