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1. Introduction

Let X be a compact metric space with metric dx and A a commutative Banach algebra with norm |- || 4.
By C(X,.A), we denote the Banach algebra of all A-valued continuous functions on X, with norm

[ Fllecx,a) = sup{||f(z)]|a:z € X}.

If an A-valued function f on X satisfies

_ £ (@) — f(2")].4
B S e
z#x’

< 00,

then we say that f is a Lipschitz function. By Lip(X,.A), we denote the set of all .A-valued Lipschitz functions
on X. Clearly, Lip(X,.A4) C C(X,.A) and Lip(X,.4) is a Banach algebra with norm

I fllipx,a) = Ifllex,a) + Lx,a(f)-
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In case that A = C, we write C(X) = C(X,C) and Lip(X) = Lip(X, C). The Lipschitz algebra Lip(X) has
been well studied. The researches on this subject may be found in the book [7]. Here a mapping between
two Banach algebras is said to be a homomorphism if it preserving addition, scalar multiplication and
multiplication. Moreover if it maps unit to unit, then we say that it is unétal. In [6], Sherbert characterized
unital homomorphisms between Lipschitz algebras.

Theorem A (Sherbert, [6]). Suppose that X and Y are compact metric spaces with metrics dx and dy
respectively. Then T is a unital homomorphism from Lip(X) into Lip(Y), if and only if there exists a
mapping ¢ : Y — X with

such that

for all f € Lip(X).

This theorem has been developed in several directions. In [1], F. Botelho and J. Jamison replaced Lip(X)
by Lip(X,.A), where A is the Banach algebra c of convergent sequences or the Banach algebra £>° of
bounded sequences. They determined the unital homomorphisms from Lip(X,c) into Lip(Y,c) and those
from Lip(X, ¢°°) into Lip(Y, £°°), where X and Y are compact metric spaces.

In general, if K is a compact Hausdorff space, then C'(K) denotes the Banach algebra of all complex-
valued continuous functions on K, with norm ||flc(x) = supee [f(§)|- In [4], S. Oi took up the algebra
Lip(X, C(K)) and proved the following theorem:

Theorem B (04, [/]). Suppose that X and Y are as in Theorem A, and that K and M are compact Haus-
dorff spaces. Assume that Y is connected. Then T is a unital homomorphism from Lip(X,C(K)) into

Lip(Y,C(M)) if and only if there exist a class {¢y}nen of mappings from'Y to X with the properties (a)
and (b) below and a continuous mapping 1 : M — K such that

[(THW]M) = [flea)] @)  (yeY, neM)
for all f € Lip(X, C(K)).

(a) For each y € Y, the mapping n— @, (y) from M to X is continuous.

d ’
(b) sup sup X(@n(y)v ‘P/n(y ) < 00
nEM y.y' €Y dy (y,y')
y#y'

This theorem leads to the result of Botelho and Jamison mentioned above. Here we turn our attention
to two assumptions in Theorem B. One is that Y is connected and the other is that T is unital. These
assumptions seem to be inessential but they simplify the statement of theorem. In order to remove these
assumptions and to state a general result, we consider a function f in Lip(X,C(K)) as a function of two
variables z € X and £ € K. So we write f(z,£) instead of [f(z)](€). Let f be a function on X x K. With
r € X we associate a function f, defined on K by f,(£) = f(x,£). Similarly, if £ € K, f¢ is the function
defined on X by f&(z) = f(x,¢). In general, for any mapping of two variables, we use the same expression:
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For example, if ¢ : Y x M — K, then 9" : Y — K and ¢, : M — K are defined by " (y) = ¥(y,n) and

ey (n) =y, n).
A subset A of a topological space is said to be clopen, if A is both open and closed. We do not exclude

the possibility that a clopen set is empty. We understand that the statement about an empty set is true.

Theorem 1. Suppose that X andY are compact metric spaces with metrics dx and dy respectively, and that
K and M are compact Hausdorff spaces. If T is a homomorphism from Lip(X, C(K)) into Lip(Y,C(M)),
then there exist a clopen subset D of Y x M and two continuous mappings ¢ : D — X and ¥ : D — K with
(i) and (ii) such that T has the form:

Fletysm), v (y.m)  ((y,n) € D)
0 ((y;m) € (Y x M)\ D)

(Tf)(y:n) = {
for all f € Lip(X,C(K)).
(i) There exists a bound L > 0 such that

dx (e(y,m),(y',n))
dy (y,y') = )

(y,m), (%', n) € D and y # y' imply

(ii) For anyn € M, the set D" ={y € Y : (y,n) € D} is a union of finitely many disjoint clopen subsets
Vil Vil of Y such that

Y is constant on V! fori=1,...,n,,
and
dy (VL V) =1 (i # ). (3)
Here r is a positive constant independent of n.

Conversely, if D, ¢, ¥ are given as above, then T defined by (1) is a homomorphism from Lip(X, C(K))
into Lip(Y,C(M)). Moreover, T is unital if and only if D =Y x M.

In (3), dy (A, B) denotes the usual distance between two sets A, B C Y, that is, dy (A, B) = inf{dy (y,v’) :
ye Ay € B}. (It A=0 or if B =), then we set dy (A, B) = 00).

Next we consider the following problem:
When is a homomorphism between Lipschitz algebras compact?

In [3], H. Kamowitz and S. Scheinberg answered to this problem as follows:

Theorem C (Kamowitz and Scheinberg, [3]). Let T be a unital homomorphism from Lip(X) into Lip(Y)
described in Theorem A. Then T is compact if and only if

lim
dy (w,y)—0  dy(y,9)
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In this paper, we give a necessary and sufficient condition for 7" in Theorem 1 to be compact.

Theorem 2. Let X, Y, K, M be as in Theorem 1. Suppose that T is a homomorphism from Lip(X, C(K))
into Lip(Y, C(M)) with the form (1) in Theorem 1. Then T is compact if and only if (iii) and (iv) hold.

(i) For any e > 0, there exists 6 > 0 such that

(y,m),(y',n) € D and 0 < dy (y,y') < & imply <e. (4)

(iv) For any y € Y, the set D, = {n € M : (y,n) € D} is a union of finitely many disjoint clopen sets
QL ..., Q" such that

y’
. /L .
Yy is constant on Sy fori=1,... ,ny.
2. Preliminaries

As mentioned in Introduction, we consider a function f in Lip(X, C(K)) as a function on X x K.

Proposition 2.1. Let f be a complez-valued function on X x K. Then f € Lip(X,C(K)) if and only if
felC(X x K) and

||f:v - fm'”C(K)
L = Su —_— < Q. 5
X,C(K) (f) w7x'£X dx (l’, x/) ( )
Az

Moreover, ||fllcx,cx) = I floxxr)-

Proof. Straightforward. O
The next proposition implies that Lip(X, C(K)) separates the points of X x K.

Proposition 2.2. For any (x0,&) € X x K and for any open neighborhood U of (xo,&o), there exist an
f € Lip(X,C(K)) and m > 0 such that 0 < f < 1, f(x0,&) = 1 and f(z,§) < m < 1 for all (z,§) €
(X x K)~U.

Proof. Let (xg,&) € X x K and let U be an open neighborhood of (xg,&p). Then there exist an open
neighborhood U of zg in X and an open neighborhood © of &y in K such that (z¢,&) € U x © C U.
Let i be a function on X defined by

~dx(z, o)

h@) =1 = Gam(x)

(z € X),

where diam(X) = sup{dx(z,z') : x,2’ € X}. We easily see that h € Lip(X), 0 < h < 1, h(xg) = 1 and
h(z) < 1 for all z € X \ {x0}. By Urysohn’s lemma, there is a « € C(K) such that 0 < u <1, u(§) =1
and u(§) =0 for all £ € K\ ©. Now, put f(z,§) = h(z)u(§) for (z,£) € X x K. Then we can verify that f
has the desired properties. Here m may be taken as the maximum of f on the compact set (X x K)\U. O

Here we summarize a fundamental fact on the Banach algebra Lip(X, C(K)).
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Proposition 2.3. Lip(X, C(K)) is a semisimple unital commutative Banach algebra and its mazimal ideal
space is identified with X x K. In fact, for any multiplicative linear functional ¥ on Lip(X, C(K)), there
exists a unique point (x,€) € X x K such that U(f) = f(x,&) for all f € Lip(X, C(K)).

We can prove this proposition by the well-known argument in theory of Banach algebras. The details
may be found in [4, Propositions 11 and 12].

3. Proof of Theorem 1
In this section we prove Theorem 1.
3.1. Proof of sufficiency

We first settle the converse statement. Suppose that D is a clopen subset of Y x M, that ¢ : D — X and
¥ : D — K are continuous mappings with (i) and (ii), and that T is defined by (1).

Lemma 3.1. If
p=inf{dy(y,y") : (y,n) €D and (y',n) € (Y x M) \D for somen € M},
then p > 0.

If there is no pair (y,y") € Y x Y such that (y,n) € D and (y',n) € (Y x M) \ D for some n € K, then
we understand that p = oco.

Proof. Conversely, assume that p = 0. Then for each n = 1,2, ..., there exist (yn,n,) € D and (y,, ) €
(Y x M)\ D such that dy (yn,y,,) < 1/n. Since D is compact, there exist a net {n,} and a point (y,n) € D
such that y,,, — y and ,, — 1. Then dy (yn,, ¥, ) < 1/na — 0. Hence y;, — y and so (y,, ;M) — (4, 7).
Since (Y x M) \ D is closed, we get (y,n) € (Y x M) ~ D. This contradicts the fact that (y,n) € D.
Consequently, we have p > 0. O

Lemma 3.2. For any f € Lip(X,C(K)), Tf € Lip(Y,C(M)).

Proof. Let f € Lip(X,C(K)). By Proposition 2.1, we have f € C'(X x K) and (5).

We first show that T'f € C(Y x M). Since ¢ : D — X and ¢ : D — K are continuous and since
f € C(X x K), the first line in (1) implies that T'f is continuous on D. Of course, the second one implies
that it is so on (Y x M) \ D. Noting that D is clopen, we see that T'f is continuous on Y x M.

To see that T'f € Lip(Y, C(M)), it suffices to show that

H(Tf)y - (Tf)y’HC(M)
L Tf)= sup < o0
v,eon)(Tf) e & (0 7)
y#y’

For this end, choose y,7" € Y so that y # 3" and let n € M. We consider three cases.

[Case 1] (y,n),(y',n) € D: By (ii), y € V;” and y’ € V;] for some i, € {1,...,n,}. We first consider
the case i = i’. Then y,y" € V;. Since 9" is constant on V)", ¥(y,n) = ¢¥"(y) = ¢"(y') = ¥(y’,n). Put
= (y,n), 2’ = ¢(y',n) and § = Y(y,n) = P(y’,n). Using (1), we compute
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(T £)(y.m) = (THE )| =|Flew,n), v (.n) = fle@ 0, v n)|
= [f(z,&) = (2", &) = [f2(§) = fur ()]
< fz = ferller

, (7)
< Lx,cx)(f)dx(z,2")
= Lx. o) (f) dx (e(y,n), 0y, 1))
< Lx,cux)(f) Ldy(y.y),
where the fourth and last lines follow from (5) and (2), respectively.
On the other hand, if i # i, then (3) yields dy (y,vy") > dy (V;", V,]) > r. Hence
(TH@m = THE 0| _ [(THE[+ [(THE 0] _ 20flecxx) ®

dy (y,9) - r r

[Case 2] (y,n) € D and (y',n) € (Y x M)~ D: Then Lemma 3.1 says that dy (y,y’) > p > 0. By (1), we
get

|(Tf)(1/777)—(7:f)(y'777)} - | F(e(y,m),¥(y.n) — O - Ifllecexa o)
dy (y,v') p p

[Case 3] (y,n),(y';n) € (Y x M)\ D: By (1),
(THy,n) = (TH' ) =0. (10)
Combining (7)—(10), we can arrive at (6). Indeed, if we put C = max{L,2/r,1/p}, then we have

Lycon(Tf)= sup sup (TG~ THE )

yy'ey neM dy (y,y')
Y7y

< O\ flluipex,c o)) (11)

because Lx c(x)(f) < | flluipx.cxyy and [ flloxxx) < I fllLipx,cxy- O

Lemma 3.2 says that 7' maps Lip(X, C(K)) into Lip(Y,C(M)). While the form (1) shows that T is a
homomorphism. Thus we obtain the converse statement of Theorem 1.

Remark. From (1), we see that ||Tf|lciyxm) < ||fllc(xxk)- Using this and (11), we obtain the norm
estimate

1T = sup 1T fllLip(y,can)) < C + 1.
[ fllip(x,c(r)) <1

This estimate is not sharp, but it seems to be difficult to give an exact expression of |T||.
8.2. Proof of necessity

We turn to the proof of the main statement of Theorem 1. Suppose that T is an arbitrary homomorphism
from Lip(X, C(K)) into Lip(Y, C(M)). Since Lip(Y, C(M)) is semisimple, we know from [5, Theorem 11.10]
that T is continuous. Thus the norm ||T’|| is determined as a bounded linear operator 7.

If T = O, then we only take D = (). So, we assume that T # O.
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Lemma 3.3. There exist a clopen subset D of Y x M and two mapping ¢ : D — X and ¢ : D — K such
that (1) holds.

Proof. Let 1 denote the unit of Lip(X, C(K)), namely, the constant 1 function on X x K. Since (7T1)? =
T(12%) = T1, we have (T1)(y,n) € {1,0} for all (y,n) € Y x M. Put

D={(y,n) €Y x M :(T1)(y,n) = 1}. (12)
Then
Y xM)ND={(y,n) €Y x M:(T1)(y,n) = 0}.

Since T'1 is continuous on Y x M, both D and (Y x M) \ D are closed. Hence D is clopen.
To determine the mappings ¢ : D — X and ¢ : D — K, fix any (y,71) € D. Define a functional ¥, .y on
Lip(X, C(K)) by

Uiy () =(THy,n)  (f €Lip(X,C(K))).

Then ¥, ) is a homomorphism from Lip(X, C'(K)) into C. Moreover, (12) yields ¥(, ., (1) = (T1)(y,n) = 1.
Hence ¥, . is a multiplicative linear functional on Lip(X, C(K)). Thus Proposition 2.3 gives a unique point
(x,€) € X x K such that

Uiy (f) = f(z,6)  (f €Lip(X,C(K))).

By putting ¢(y,n) = « and ¥(y,n) = £, we determine the mappings ¢ : D — X and ¢ : D — K. Then, for

xT
any f € Lip(X, C(K)),

(Tf)ym) = V() = Flx, &) = flely,n),v(y,n). (13)

Finally, if (y,n) € (Y x M)\ D, then (T'1)(y,n) = 0 and so for any f € Lip(X,C(K)), Tf =T(f1) =
(Tf)(T1) and so

(TH)y,m) = (T, n) (T1)(y,n) = 0.
Together with (13), we establish (1). O
Lemma 3.4. The mappings p : D — X and ¥ : D — K are continuous.
Proof. Define a mapping ® : D — X x K by

O(y,n) = (¢(y.n),¥(y.m)  ((y.n) € D).

We prove the lemma by verifying that ® is continuous at each point (yg,79) € D. Let U be an arbitrary
open neighborhood of ®(yg,70) in X x K. By Proposition 2.2, there exists an f € Lip(X, C(K)) such that

0<f<1, f(®(yo,m0)) =1 and
0<f@O)<m<1 (@& e (X xK)U). (14)

Put V = {(y,n) € D: [(Tf)(y,n)| > m}. Since Tf is continuous on Y x M, V is open. Also, (yo,m0) € V
because
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(T£)(yo,m0) = f(2(yo:m0), ¥ (y0,m0)) = f(P(yo,m0)) = 1> m.

Moreover, if (y,n) € V, then
|F(@y,m)| = | (ely,m)s ¥y, m)| = [(THy,n)| >m
and (14) forces that ®(y,n) € U. Hence ®(V) C Y. Thus ® is continuous at (yo, o), as desired. O
Lemma 3.5. ¢ satisfies (i).
Proof. Let (y,n),(v',n) € D with y # 3. Put xg = ¢(y’,n) and
f(z) =dx(z,x0) (x € X).

Then f € Lip(X) and || f||Lip(x) < diam(X)+1. Extend f to X x K by f(x,6) = f(z) for all (z,¢) € X XK.
Clearly f € Lip(X,C(K)) and || f||Lip(x,c(k)) = [If|lLip(x)- Moreover, we have

dx(@(y,n),so(y',n)=|dx( (Y, m), o) — dx (¢(y',n), z0)|
= | £ (e ( (y,n))|
:|f( m) = Fle@ s n), v m)|
—|Tf )y, n ) ( H' )| = |( ) (n) = (Tf)y ()]

< (T f)y = (T

< Ly.con(Tf) dy(y,y).

Since Ley. oo (TF) < T flluipv.car) < 171 Inipce.cey < 1T (diam(X) + 1), we obtain

dx (e(y,m),0(y',n))
dY(y, y/

< ||| (diam(X) + 1),
which is (i). O
Lemma 3.6. There exists an r > 0 such that

(.m), (y'sn) € D and dy(y,y") <r imply ¥"(y) =" (y').

Proof. Take r so that 0 < r < 1/||T||. Choose (y,n),(v',n) € D with dy(y,y’) < r and assume that
" (y) # ¥"(y’). By Urysohn’s lemma, we find a u € C(K) such that 0 < u < 1, u(¢"(y)) = 1 and
u(¥(y’)) = 0. Define a function on X x K as (x, &) = u(§) for all (x,£) € X x K. Then @ € Lip(X, C(K))
and ||| Lip(x,c(k)) = |ullcx) = 1. Moreover we have

1= [u(y"(y)) - U(wn W) = | —u(y(y',n))|
= |a(e(y, ), vy, m) —a(e(y',n). vy, n))|
= |[(Ta)(y,n) - ( @) (y'sn)|
< || (Ta)y — (Ta), con
< Ly,con(Ta) dy (y,y')

< | TllLipyv,cany m < |IT| 1@l|Lipx,cmy r = 1T r < 1,

a contradiction. Hence ¢"(y) = ¢"(y'). O
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Lemma 3.7. ¢ satisfies (ii).

Proof. Fix any n € M and put D7 = {y € Y : (y,n) € D}. Since D is clopen, D" is a clopen subset of Y.
For any y € D", put

Vy={zeD":¢"(z) =4"(y)}. (15)

Clearly, 9" is constant on V. Also, we have
VyNVy #0 = V, =V,. (16)

Since " is continuous by Lemma 3.4, V}, is a closed subset of D". To see that V,, is an open subset of
D", let z € V,, and consider an r-ball B(z;7) = {w € D" : dy(w,2) < r}, where r is given in Lemma 3.6.
If w € B(z;r), then (w,n),(z,1n) € D and dy (w,2) < r. Hence Lemma 3.6 implies that ¢¥"(w) = ¢"(z) =
Y"(y), and so w € V,. Therefore B(z;r) C V,. Thus V, is an open subset of D". Consequently, V, is a
clopen subset of Y.

Note that

D= ]V,

yeDn

Since D" is compact, we can select finitely many y1, ..., y, € D" such that

By (16), we may assume that V,,,...,V,, are disjoint.

Finally we show that dy (V,,,V,,) > r (i # j). Assume that dy (V,,,V,,) < r. Then there exist z; € V,
and z; € V,, such that dy(z;,z;) < r. By Lemma 3.6, ¥"(2;) = 1"(2;), and hence (15) and (16) yield
Vy, = V,,. Since V...,V are disjoint, we must have dy (V,,,V,,) >r (i # j).

Putting n,, = n and writing V;" for V,, (i =1,...,n,), we obtain (ii). O

Thus the proof of Theorem 1 is completed.

4. Proof of Theorem 2

In this section, we prove Theorem 2. Throughout this section, T is a homomorphism from Lip(X, C(K))
into Lip(Y,C(M)) with the form (1) in Theorem 1. Of course, the set D and the mappings ¢ and 1 are
as in Theorem 1. Since 7' is bounded, we use its norm ||7'[| again. Let Br;,(x,c(x)) be the unit ball of
Lip(X, C(K)), that is,

Brip(x,c(k)) = {f € Lip(X, C(K)) : || fllLipx.cx)) < 1}~
4.1. Proof of sufficiency
We first show the “if” part in Theorem 2.

Suppose that ¢ and ¢ satisfy (iii) and (iv) respectively. We prove that T is compact. Here we may assume
that T # O, otherwise there is nothing to prove.
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Lemma 4.1. Let (yo,n0) € D. For any € > 0, there exists an open neighborhood © of ng in M such that

n €O implies sup (T ) (yo,n) — (T.f)(yo,m0)| <e. (17)
fE€BLip(x,c(K))

Proof. Put D, = {n € M : (yo,n) € D}. Since ng € Dy,, by (iv), there exists j € {1,...,n,,} such that
no € Q. Then € is a clopen subset on which 1y, is constant. Hence if € QJ , then ¢(yo,n) = by, (n) =

Yy, (770) ¢(y0,770) Let € > 0 and put

0= {77 S ng tdx ((Pyo(n)a @yo(nO)) < 5}'

Since ¢y, : Dy, — X is continuous, © is an open neighborhood of 79 in Dy,. For any n € ©, put « = ¢(yo,7),
= ©(yo0,m0) and & = (yo,n) = ¥(yo,10). Then, for any f € Briyx,c(x)), we have

(T f)(yo,m) — (Tf)(yo,m0)| = | f (e(yo,m )»w(ym??)) = f(e(yo,m0), ¥ (yosm0))|
= ’f l',g LI)o, ’ - ‘fw(f) f10<£)‘
<\fe = frollox

< Lxcwx)(f ) ( o)
= £X7C(K) ( Y\ Yo, N 7 yOa 770))
= L:X,C(K) ( @yo 770))

< ||f||Lip(x,C(K)) e<e.

Hence we obtain (17). O
Lemma 4.2. In C(Y x M), the closure of T(IB%Lip(X)C(K))) is compact.

Proof. According to Arzeld—Ascoli theorem ([2, Theorem IV.6.7]), we show that T(IEBLip( X,0( K))) is bounded
and equicontinuous on Y x M.
The boundedness follows from an easy computation:

(T y.n)| < Tl s < ITfllupe,can) < TN luiscoa) < 1T

for all (y,n) € Y x M and all f € Briy(x,c(x))-

The equicontinuity will be shown as follows: Clearly, T (Bip(x,c(x))) is equicontinuous on the clopen
set (Y x M)~ D, because Tf = 0 on (Y x M)~ D for all f € Lip(X,C(K)), by (1). To show that
T(BLip(X,C(M))) is equicontinuous at each (yg,7n0) € D, let € > 0. Take an open neighborhood © of 7 in M
as in Lemma 4.1, and put V = {y € Y : dy (y,y0) < &/ T||}. Define an open neighborhood W of (yo,70) in
Y x M as

W=(Vx0)nDnoD
Then, for any (y,n) € W and f € Brip(x,c(k)), we have

[(TH)ym) = (TH o) < [(THy = (THyollcary < Lyican(TF) dy (y,90)
<|ITflluipv.eany (/TN < NTIflluipex .oy (E/1T1) <e,

because y € V', while Lemma 4.1 implies
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|(Tf)(y0,77) - (Tf)(yoyﬂo)‘ <g,

because n € ©. Hence the triangle inequality shows that

(y,m) € W implies sup  [(TF)(y,n) — (Tf)(yo,m)| < 2e.
fEBLip(x,c(K))

Thus we conclude that T' (IBBLip( X,0( K))) is equicontinuous on Y x M. O
Lemma 4.3. For any € > 0, there exists a constant cc > 0 such that

T fllLip(y,cary) < €+ cel|Tflley < (18)
for all f € Brip(x,c(x))-

Proof. Fix ¢ > 0. By (iii), there exists a J. > 0 such that

<e. (19)

. dx (¢(y,n), (¥, n)
(y,m),(y',n) € D and 0 < dy (y,y') < 6. imply ( p )

v (y,9')

Let f € Brip(x,c(k)), and choose (y,71), (y',n) € Y x M with y # 3. We consider three cases.
[Case 1] (y,n), (y',n) € D: By (ii) in Theorem 1, y € V;” and y’ € V! for some ,i’ € {1,...,n,}. We first
consider the case i = ¢'. If dy (y,y’) < d¢, then the computation (7) using (19) instead of (2) gives

(TF)(ym) — (THE )| < Lx,cu)(f)dx (e(y.m), o' n))
< Lx.cw)(f)edy(y,y) (20)
< fllipx,c)) € dy (v, y') < edy(y,y').

On the other hand, if dy (y,y’) > d., then

(TH@m = THE W] _ (TH@l+ (THE ] _ 20T fllor <

dy (y,v') N de - e . @)
In case that i # ', we have dy (y,y’) > r by (3), and so
(TH.m) = THE 0| _ AT lewxm (22)
dy (y,y') r
[Case 2] (y,n) € D and (v',n) € (Y x M)~ D: Then Lemma 3.1 says that dy (y,y’) > p and so
(TN ~ NG| _ TN _ 1T e o
dy (y,9') - p - p '
[Case 3] (y,n), (¥',n) € (Y x M)\ D: By (1),
(Tf)y:m) = (T ) =0. (24)

Now, put & = max{2/d.,2/r,1/p}. We combine (20)—(24) to get

Ly o (Tf)= sup sup |(Tf)(y,7]) _ (Tf)(y’,r])|

y,yIGY neM dY(y7y/)
y7y

< max{e, & | Tfllcqy s }-
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Hence

IT fllip(v.cany) < €+ (G + DT fllew s,
which is (18). O
Lemma 4.4. In Lip(Y, C(M)), the closure of T(IB%Lip(XC(K))) is compact.

Proof. Let {f,} be an arbitrary sequence in By,(x,c(x))- By Lemma 4.2, there exist a subsequence { f,, }
and a function g € C'(Y x M) such that HTfn — ch(YxM) — 0. To see that {Tfn} is a Cauchy sequence

in Lip(Y,C(M)), let € > 0. Since {T'f,, } is a Cauchy sequence in C(Y x M), there exists an N such that
i,j > N implies ||T fn, — T fn, ||C(YxM) < €/ce. Substituting f = (fn, — fn,)/2 in (18), we see

i,j > N implies ||Tfn, — Tf”.iHLip(Y,C(M)) <2+ [T fu, = Tfa, HC(YxM) < 3e.

Hence {T'f,, } is a Cauchy sequence in Lip(Y, C(M)), and so it converges to some function in Lip(Y, C(M)).
Thus we conclude that the closure of T(]BLip(X,C(K))) is compact in Lip(Y,C(M)). O

Lemma 4.4 says that T is a compact operator from Lip(X,C(K)) into Lip(Y,C(M)), and the “if” part
was proved.

4.2. Proof of necessity
In the sequels, we suppose that T  is compact.
Lemma 4.5. ¢ satisfies (iii).

Proof. Assume, to reach a contradiction, that ¢ does not satisfy (iii). Then there exist an g9 > 0 and two
sequences {(yn,nn)} and {(y,,m,)} in D such that

dx (Sp(yrn nn)v (p(y;w 7771))
dY(yna y’I/’L)

1
0 <dy(yn,v,) < — and

> £€0-
n2

Put z, = ©(Yn,nn) and z,, = @(y,,nn) for n = 1,2,.... In order to arrange the distance dx, we here
introduce a function y,:

Loty e o,00)).

Xn(t) = n

Clearly, 0 < x, < 1/2n and Y, is differentiable and x/,(t) = e~"/2. Define

fo(@) = xn(dx(z,2,))  (z€X).

For any z,2' € X with x # 2/, the mean value theorem gives a point s, between dx (z, z},) and dx (2, z))
such that

X (dx (2, 2,)) = xn(dx (', 2,)) = X0 (50) (dx (2, 2,) — dx (2", 23)),

and so
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[fa(@) = fal@)] = X (sn)l |dx (2, 2,) — dx (a7, 27,)| <

Hence £, € Lip(X) and || fulluiptx) = Ifallor) + Lxclfa) € 2 + 3 < 1. A

Now put fn(z,&) = fu(z) for all (z,§) € X x K. Then f,, € Lip(X,C(K)) and || f,||Lip(x,c(k)) < 1, that
is, fn € BLipx,c(K))- R

Next we estimate the norm ||T'fy||Lip(v,c(ar))- We use the mean value theorem again, we compute as
follows:

(T F) s 1) = (TF) W) | = | Fo (0 1)y 6 Wy 1)) = Fr (0 (Ys 10) s (s ) ) |
= |fn(zn) - fn(Z;z)| = {Xn(dX(ZnaZ;z)) - Xn(0)|
|X/n(0'n)| ’dX(Zn,Ziz) - 0{

e~ "on ,

—noy,

2

€

Y

o dY(yn7 y;;)v

where 0 < o, < dx(zn, 2,). Hence

H(Tfn)yn - (TfN)yil

HTanLip(Y,C(M)) > Ly,con(Tfa) = dy (yma o) cn > e—;“fn €0- (25)
While (2) in Theorem 1 implies
0= 0 < (e, 24) = dx (P 0), 900 1)) < Ly (ymstf) < Do
and so no, — 0. Thus (25) implies
e (26)

Recall that T is compact. Since { fn} C Brip(x,c(k)), there exist a subsequence { fm} and a function
g € Lip(Y,C(M)) such that ||Tf,, — gHLip(Y,C(]VI)) — 0. Since ||T'fy, — gHC’(YxM) <||Tfa, _gHLip(Y,C(M))’
we have (T'fn.)(y,n) = g(y,n) for each (y,m) € Y x M. If (y,n) € D, then

(T fo) ()| = | o (s m), 0y, 1)) | = | f (0w m)) | <

—- 0
2’1% ’

while if (y,7) € (Y x M)~ D, then (Tf,,)(y,n) = 0. As a result, we have g(y,n) = 0 for all (y,n) € Y x M,
and so

HTfn — 0.

Lip(Y,C(M))

This contradicts (26). O
Fix y € Y and put D, = {n € M : (y,n) € D}.

Lemma 4.6. For any ny € Dy, there exists an open neighborhood of ny in D, on which v, is constant.
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Proof. Since D, is a compact subset of M, we can treat the Banach algebra C'(D,) and a projection P from
Lip(Y,C(M)) into C(Dy):

(Pg)(n) =g(y,n)  (n €Dy, geLip(Y,C(M))).

Clearly P is a bounded linear operator from Lip(Y, C(M)) into C(D,).

Now put S = PT. Since T is compact, S is a compact operator from Lip(X, C(K)) into C(D,). Hence
Arzeld—Ascoli theorem says that S (IBLip( X,0( K))) is equicontinuous on D,. Hence there exists an open
neighborhood © of 7 such that

(27)

N | =

n € © implies sup  [(Sf)(n) — (SF)(m)| <
fe€BLip(x,c(K))

Conversely, assume that there exists 71 € O such that ¢, (m) # 1¥y(n0). By Urysohn’s lemma, there
exists a u € C(M) such that 0 < u < 1, u(y(m)) = 1 and u(tyy(no)) = 0. Put @(z,§) = u(€) for all
(7,§) € X x K. Then @ € By, x,c(k))- Hence (27) implies

|(Sa@)(m) — (Sa)(no)| <

N —

But

|(PT@) (1) — (PTa@)(no)|
= |(T@)(y, m) — (Ta@)(y, mo)|
@y, m), ¥y, m)) — @(e(y,m0), ¥ (y,m0))|
= ‘UW(ZU 7]1)) - ( ( JIO))’ = ‘ (% T ) - U(¢y(770))‘ =1

a contradiction. Thus we conclude that 1), is constant on ©. O
Lemma 4.7. ¢ satisfies (iv).
Proof. For any n € D, put
Q" ={¢ €Dy 9y (Q) = ¥y(m)}-
Clearly, 1, is constant on Q7. Also, we have
QTNQT £ = QT=Q7. (28)

Since v, is continuous, 2" is a closed subset of D,. Also we can easily see that Lemma 4.6 implies that
Q7 is an open subset of D,. Thus 2" is a clopen subset of M.

Note that
= [J o
nEDy
Since D, is compact, we can select finitely many 71, ...,n, € D, such that
n
D, = Jam.
i=1
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By (28), we may assume that Q™ ... Q™ are disjoint. Putting n, = n and writing Q; =Q% (i=1,...,ny),
we obtain (iv). O

5. Applications

Consider the case that K is a one-point set. Then Lip(X, C'(K)) is isometrically isomorphic to Lip(X).
On the other hand, if X is a one-point set, Lip(X, C(K)) is isometrically isomorphic to C'(K).

Corollary 1. Suppose that X and Y are compact metric spaces with metrics dx and dy respectively.
(I) If T is a homomorphism from Lip(X) into Lip(Y'), then there exist a clopen subset Yy of Y and a
continuous mapping ¢ : Yo — X with

such that T has the form:

flew) (veYo)

0 (y ceY ~ Yo) (29)

(Th)y) :{

for all f € Lip(X). Conversely, if Yo, ¢ are given as above, then T defined by (29) is a homomorphism from
Lip(X) into Lip(Y). Moreover, T is unital if and only if Yo =Y.

(IT) Suppose that T is a homomorphism from Lip(X) into Lip(Y") with the form (29). Then T is compact
if and only if

i x(e), o(y'))

v,y €Yy dy (y,v')
dy (y,y")—0

=0.

Now we turn to another setting.

Corollary 2. Suppose that K and M are compact Hausdorff spaces.
() If T is a homomorphism from C(K) into C(M), then there exist a clopen subset My of M and a
continuous mapping ¥ : Mg — K such that T has the form:

F(m) (€ M)

0 (7] e M~ Mo) (30)

(Tf)(n) = {

for all f € C(K). Conversely, if My, ¥ are given as above, then T defined by (30) is a homomorphism from
C(K) into C(M). Moreover, T is unital if and only if My = M.

(IT) Suppose that T is a homomorphism from C(K) into C(M) with the form (30). Then T is compact
if and only if My is a union of finitely many clopen subsets My, ..., M, such that 1 is constant on each M;
fori=1,...,n. Moreover, T is compact if and only if T has a finite rank.

Corollary 3. Suppose that X is a compact metric space with metric dx, and that M is a compact Hausdorff
space.

(I) If T is a homomorphism from Lip(X) into C(M), then there exist a clopen subset My of M and a
continuous mapping @ : My — X such that T has the form:
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flem)  (ne M)

THm =1 e M M)

(31)

for all f € Lip(X). Conversely, if My, ¢ are given as above, then T defined by (31) is a homomorphism
from Lip(X) into C(M). Moreover, T is unital if and only if My = M.
(IT) Every homomorphism from Lip(X) into C(M) is compact.

Corollary 4. Suppose that Y is a compact metric space with metric dy, and that K is a compact Hausdorff
space.

() If T is a homomorphism from C(K) into Lip(Y), then Y is a union of finitely many disjoint clopen
subsets Yy, Y1,...,Y, and there exist constant mappings ¥; : Y; — K (i = 1,...,n) such that T has the
form:

fiy) (yeYii=1,...,n)

(THy) = 0 (veYi)

(32)

for all f € C(K). Conversely, if Yo,Y1,...,Yn, ¥1,...,9¥, are given as above, then T defined by (32) is a
homomorphism from C(K) into Lip(Y). Moreover, T is unital if and only if Yo = 0.
(IT) Every homomorphism from C(K) into Lip(Y) has a finite rank.
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