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The target of the present work is to consider the optimal control for a class of 
evolutionary variational–hemivariational inequalities, which modeling the dynamic 
viscoelastic unilateral contact problems with normal damped response and friction. 
After studying the weak solvability of the unilateral contact model, we consider 
its optimal control by three aspects, the optimal control via external forces and 
initial conditions, the time optimal control problem and the maximum stay control 
problem. Finally, the conditions which guarantee the existence of optimal solutions 
to the corresponding control problems are delivered.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The theory of hemivariational inequality, which is a natural generalization of traditional variational 
inequality, was firstly proposed by P.D. Panagiotopoulos in 1980s and has been of great interest recently. 
This is due to the intensive development of applications of hemivariational inequality to many engineering 
and economic fields, such as nonsmooth mechanics of solid, fluid mechanics, equilibrium problems, and so 
on. One may refer to the monographs [24] and [27] for more details.

Variational–hemivariational inequalities represent a special class of inequalities, in which both convex 
and nonconvex functionals are involved. But until now, there are still a few publications that treat these 
inequalities and study their applications in solid contact mechanics. In Han et al. [18] and Migorski et 
al. [25], the authors considered the existence and uniqueness of solution for a class of elliptic variational–
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hemivariational inequalities and applied these abstract results to study the static and quasistatic frictional 
contact problems with unilateral constraints, respectively. In Han et al. [17], the authors studied the adhe-
sive unilateral contact between a viscoelastic body and a deformable foundation. They provided a result on 
unique solvability for a system consisting of a elliptic variational–hemivariational inequality and an ordi-
nary differential equation. The existence of solutions to a class of evolutionary variational–hemivariational 
inequalities of the parabolic type have been considered by Carl et al. in [8] and Han et al. [19] who used the 
technique of lower and upper solutions and surjectivity theorem, respectively.

On the other hand, in optimal control problems we are looking for a control law in a given infinite 
dimensional system such that a certain optimality criterion is achieved. Such problems always include a 
cost functional which can be a function of state and control variables, cf. e.g. Lions [20] and Troltzsch [34]. 
In the last few decades, there have been published several monographs and papers focused on the topic of 
optimal control for hemivariational inequalities. For more details, cf. [3,10,11,15,22,23] and [29], etc.

But as far as we know, there is still no monograph or paper to study the optimal control problems 
for dynamic nonsmooth unilateral contact models, which modeling by a class of evolutionary variational–
hemivariational inequalities. Motivated by the aforementioned contributions, in this work we are going to 
study the unique weak solvability and optimal control for a dynamic viscoelastic unilateral contact problem 
with normal damped response and friction. The present work represents a new contribution of optimal con-
trol theory for a class of parabolic variational–hemivariational inequalities and with applications to contact 
mechanics. The idea of this work mainly comes from the papers [11], [23] and our recently work [19].

2. The mechanical model and its weak formulation

The purpose of this section is to provide the motivation of studying abstract evolutionary variational–
hemivariational inequalities in our paper, which modeling a class of dynamic unilateral contact problems 
between the viscoelastic body and foundation. We shall provide its classical and weak formulations. To 
this end, firstly, it is necessary to reaffirm some classical notation and function spaces in contact mechanics 
which will be useful in the sequel.

Assume the domain Ω is an open, bounded and connected set of Rd(d = 2, 3), and its boundary Γ = ∂Ω
is Lipschitz continuous. Denote by Sd the space of second order symmetric tensors on Rd, and we define the 
inner product and the corresponding norm of space Sd to

σ : τ = σijτij and ‖τ‖Sd = (τ : τ)1/2,

respectively, for all σ = (σij), τ = (τij) ∈ S
d.

We introduce the spaces are as follows

H = L2(Ω;Rd), H = L2(Ω; Sd) =
{
τ = (τij) | τij = τji ∈ L2(Ω)

}
H1 = {v ∈ H | ε(u) ∈ H}, H1 =

{
τ ∈ H | Div τ ∈ H

}
,

where notation ε and Div stand for the deformation and divergence operators, respectively, defined by

ε(u) =
(
εij(u)

)
, εij(u) = 1

2(ui,j + uj,i) (1)

and

Div σ = (σij,j), i, j = 1, . . . , d. (2)
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So now, by endowing the inner products of

〈u, v〉H =
∫
Ω

u · v dx, 〈σ, τ〉H =
∫
Ω

σ : τ dx,

〈u, v〉H1 = 〈u, v〉H + 〈ε(u), ε(v)〉H, 〈σ, τ〉H1 = 〈σ, τ〉H + 〈 Div σ,Div τ〉H ,

it is clear that H, H, H1 and H1 are Hilbert spaces.

2.1. Classical formulation

Consider a viscoelastic body occupies the open, bounded and connected domain Ω of Rd, and its Lipschitz 
continuous boundary Γ is composed of three disjoint measurable parts ΓD, ΓN and ΓC such that the measure 
of ΓD is positive. Let (0, T ), with T > 0, denote the finite time interval of interest. The body is in contact on 
ΓC with the foundation. The displacement field u : Ω × (0, T ) → R

d and the stress field σ : Ω × (0, T ) → S
d

play the roles of unknowns in our frictional contact problem.
We model the viscoelastic body by the so-called Kelvin–Voigt constitutive equation, given by

σ(t) = R
(
t, ε(u′(t))

)
+ Eε(u(t)) in Ω × (0, T ), (3)

where the viscosity operator R may depend on both the time and the location of the point, the elasticity 
operator E is allowed to depend on the location of the point, the notation ε represents the linearized (or 
small) strain tensor which is defined by (1), and σ denotes the stress tensor.

The equation of motion, which is derived from the fundamental principle of momentum conservation 
(cf. [31] and the references therein), is used to describe the evolution of the mechanical state of the viscoelastic 
body, i.e.,

u′′(t) = Div σ(t) + f0(t) in Ω × (0, T ), (4)

f0 stands for the density of applied volume forces, and Div represents the divergence operator given by (2). 
Without loss of generality, we assume in (4) that the mass density is equal to one.

Assume that the viscoelastic body is fixed on the part ΓD of the surface, which means that the displace-
ment field vanishes on ΓD, hence

u(t) = 0 on ΓD × (0, T ). (5)

We suppose that the surface tractions of density fN act on ΓN , which implies that

σ(t)ν = fN (t) on ΓN × (0, T ), (6)

where ν denotes the unit outward normal vector on the boundary Γ.
Next, we turn to the description of the normal contact condition on ΓC , i.e.,{

u′
ν(t) ≤ g, σν(t) + p(t, u′

ν(t)) ≤ 0,(
u′
ν(t) − g

)(
σν(t) + p(t, u′

ν(t))
)

= 0
on ΓC × (0, T ), (7)

where σν and u′
ν denote the normal stress and the normal velocity, respectively, g ≥ 0 represents a non-

negative constant, and the normal damping function p ≥ 0 depend on both the time and the location of 
the point, which is reasonable since the values of the contact function p can change over time if the mate-
rial temperature is changed during the contact process. We mention that this type of contact condition is 
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called unilateral contact law with normal damped response and has been studied in [14], where the normal 
damping function p was assumed to be independent of time variable. Even more specifically, letting p = 0
and g = 0 in (7), we get the Signorini-type contact condition in velocities of the form

u′
ν(t) ≤ 0, σν(t) ≤ 0, u′

ν(t)σν(t) = 0 on ΓC × (0, T ),

which has been proposed in some works, cf. e.g., [13] and [33], etc.
We employ the so-called slip rate-dependent friction law to describe the tangential friction condition on 

the part ΓC , i.e., ⎧⎪⎨⎪⎩
u′
τ (t) = 0 =⇒ ‖στ (t)‖Rd ≤ Fb(t, u′(t)),

u′
τ (t) 
= 0 =⇒ −στ (t) = Fb(t, u′(t)) u′

τ (t)
‖u′

τ (t)‖Rd

on ΓC × (0, T ), (8)

in which the friction bound Fb ≥ 0 is supposed to depend on the time variable, the location of the point, 
and the velocity on the contact boundary ΓC . For the details of physical background on friction law (8), cf. 
e.g., [6], [14], [24], [30] and [32].

Finally, we give the initial values of the displacement and velocity in our model, i.e.,

u(0) = a and u′(0) = b in Ω. (9)

So now, collecting the equations and conditions (3)–(9), and providing the classical formulation of the 
dynamic unilateral contact problem is as follows.

Problem 2.1. Find a displacement field u : Ω × (0, T ) → R
d and a stress field σ : Ω × (0, T ) → S

d such that 
for a.e. t ∈ (0, T ),

σ(t) = R
(
t, ε(u′(t))

)
+ Eε(u(t)) in Ω, (10)

u′′(t) = Div σ(t) + f0(t) in Ω, (11)

u(t) = 0 on ΓD, (12)

σ(t)ν = fN (t) on ΓN , (13){
u′
ν(t) ≤ g, σν(t) + p(t, u′

ν(t)) ≤ 0,(
u′
ν(t) − g

)(
σν(t) + p(t, u′

ν(t))
)

= 0
on ΓC , (14)⎧⎪⎨⎪⎩

u′
τ (t) = 0 =⇒ ‖στ (t)‖Rd ≤ Fb(t, u′(t)),

u′
τ (t) 
= 0 =⇒ −στ (t) = Fb(t, u′(t)) u′

τ (t)
‖u′

τ (t)‖Rd

on ΓC , (15)

u(0) = a, u′(0) = b in Ω. (16)

2.2. Variational formulation

To the end of deriving the variational formulation of Problem 2.1 in this subsection, we first define a 
closed subspace of H1 by

V =
{
v ∈ H1 | v = 0 on ΓD

}
.

Meanwhile, V ∗ denotes its dual space. Since the condition meas(ΓD) > 0 and Korn’s inequality, we observe 
that the space V is a real Hilbert space equipped with the inner product
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〈u, v〉V = 〈ε(u), ε(v)〉H for all u, v ∈ V

and the associated norm ‖ · ‖V . Furthermore, by the continuity of the trace operator, we have

‖v‖L2(ΓC ;Rd) ≤ C0‖v‖V for all v ∈ V (17)

with the constant C0 > 0 which depend on only the domain Ω, ΓD and ΓC .
Next, it is necessary to list some hypotheses on the data of Problem 2.1. Assume that

H(R) : the nonlinear viscosity operator R : Ω × (0, T ) × S
d → S

d is such that

(a) R(·, ·, ε) is measurable on Ω × (0, T ), for all ε ∈ S
d,

(b) R(x, t, ·) is continuous on Sd, for a.e. (x, t) ∈ Ω × (0, T ),
(c) ‖R(x, t, ε)‖Sd ≤ ā0(x, t) + ā1‖ε‖Sd for all ε ∈ S

d and a.e. (x, t) ∈ Ω × (0, T ) with ā0 ∈ L2(Ω × (0, T )), 
ā0 ≥ 0 and ā1 > 0,

(d)
(
R(x, t, ε1) −R(x, t, ε2)

)
:
(
ε1 − ε2

)
≥ 0 for all ε1, ε2 ∈ S

d, a.e. (x, t) ∈ Ω × (0, T ),
(e) R(x, t, ε) : ε ≥ mR‖ε‖2

Sd
for all ε ∈ S

d, a.e. (x, t) ∈ Ω × (0, T ) with mR > 0,
(f)

(
R(x, t, ε1) −R(x, t, ε2)

)
:
(
ε1 − ε2

)
≥ αR‖ε1 − ε2‖2

Sd
, for all ε1, ε2 ∈ S

d, a.e. (x, t) ∈ Ω × (0, T ) with 
αR > 0.

H(E) : the elasticity operator E : Ω × S
d → S

d is such that

(a) E(x, ε) = E(x)ε, for all ε ∈ S
d, a.e. x ∈ Ω,

(b) E(x) = (Eijkl(x)) with Eijkl = Ejikl = Elkij ∈ L∞(Ω),
(c) Eijkl(x)εijεkl ≥ 0 for all symmetric tensors ε = (εij) ∈ S

d and a.e. x ∈ Ω.

H(p) : the normal damping function p : ΓC × (0, T ) × R → R+ is such that

(a) p(·, ·, r) is measurable on ΓC × (0, T ) for all r ∈ R,
(b) for a.e. (x, t) ∈ ΓC × (0, T ), p(x, t, ·) is continuous on R, and

p(x, t, r) ≤ c0ν(x, t) + c1ν |r|

for all r ∈ R with c0ν ∈ L∞(ΓC × (0, T )), c0ν , c1ν ≥ 0,
(c) |p(x, t, r1) − p(x, t, r2)| ≤ Lp|r1 − r2| for all r1, r2 ∈ R, a.e. (x, t) ∈ ΓC × (0, T ) with Lp ≥ 0.

H(Fb) : the friction bound Fb : ΓC × (0, T ) × R
d → R+ is such that

(a) Fb(·, ·, s) is measurable on ΓC × (0, T ) for all s ∈ R
d,

(b) for a.e. (x, t) ∈ ΓC × (0, T ), Fb(x, t, ·) is continuous on Rd, and

Fb(x, t, s) ≤ c0τ (x, t) + c1τ‖s‖Rd

for all s ∈ R
d with c0τ ∈ L∞(ΓC × (0, T )), c0τ , c1τ ≥ 0,

(c) |Fb(x, t, s1) − Fb(x, t, s2)| ≤ LFb
‖s1 − s2‖Rd for all s1, s2 ∈ R

d, a.e. (x, t) ∈ ΓC × (0, T ) with LFb
≥ 0.

And moreover, the densities of volume forces and surface tractions satisfy

f0 ∈ L2(0, T ;H), fN ∈ L2(0, T ;L2(ΓN ;Rd)). (18)
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Finally, the given initial displacement and velocity satisfy

a, b ∈ V, bν(x) ∈ (−∞, g) for a.e. x ∈ ΓC . (19)

In the following, we define two new functions jν : ΓC × (0, T ) ×R → R and jτ : ΓC × (0, T ) ×R
d×R

d → R

by

jν(x, t, r) =
r∫

0

p(x, t, r̄) dr̄, (20)

jτ (x, t, s, s̄) = Fb(x, t, s)g(s̄), g(s̄) = ‖s̄‖Rd , (21)

respectively, for all r ∈ R, s, s̄ ∈ R
d and a.e. (x, t) ∈ ΓC × (0, T ).

In view of the hypotheses of H(p)(a)–(c) and H(Fb)(a)–(c), we may obtain the following two lemmas, 
respectively.

Lemma 2.2. Let the hypotheses H(p)(a), (b) hold. Then the function jν defined by (20) satisfies that
P (jν) : jν : ΓC × (0, T ) × R → R is such that

(a) jν(·, ·, r) is measurable on ΓC × (0, T ) for all r ∈ R and there exists a function eν ∈ L2(ΓC) such that 
jν(·, ·, eν(·)) ∈ L1(ΓC × (0, T )

)
,

(b) jν(x, t, ·) is locally Lipschitz on R, for a.e. (x, t) ∈ ΓC × (0, T ),
(c) |ζ| ≤ c0ν(x, t) + c1ν |r| for all r ∈ R, a.e. (x, t) ∈ ΓC × (0, T ) with ζ ∈ ∂jν(x, t, r), c0ν ∈ L∞(ΓC × (0, T ))

and c0ν , c1ν ≥ 0, ∂jν denotes the Clarke subdifferential of jν with respect to the last variable,
(d) either jν(x, t, ·) or −jν(x, t, ·) is regular on R for a.e. (x, t) ∈ ΓC × (0, T ).

Moreover, in addition, if the hypothesis H(p)(c) holds, then

(e) (ζ1 − ζ2)(r1 − r2) ≥ −Lp|r1 − r2|2 for all ζi ∈ ∂jν(x, t, ri), ri ∈ R, i = 1, 2 and a.e. (x, t) ∈ ΓC × (0, T )
with Lp ≥ 0.

Lemma 2.3. Assume that the hypotheses H(Fb)(a), (b) hold. Then the function jτ defined by (21) fulfills the 
condition
P (jτ ) : jτ : ΓC × (0, T ) × R

d × R
d → R is such that

(a) jτ (·, ·, s, ̄s) is measurable on ΓC × (0, T ) for all s, s̄ ∈ R
d and there exists a function eτ ∈ L2(ΓC ; Rd)

such that jτ
(
·, ·, w(·), eτ (·)

)
∈ L1(ΓC × (0, T )

)
for all w ∈ L2(ΓC ; Rd),

(b) for a.e. (x, t) ∈ ΓC × (0, T ), jτ (x, t, ·, ̄s) is continuous on Rd for all s̄ ∈ R
d, and jτ (x, t, s, ·) is locally 

Lipschitz on Rd for all s ∈ R
d,

(c) ‖ξ‖Rd ≤ c0τ (x, t) + c1τ (‖s‖Rd + ‖s̄‖Rd) for all s, s̄ ∈ R
d, a.e. (x, t) ∈ ΓC × (0, T ) with ξ ∈ ∂jτ (x, t, s, ̄s), 

c0τ ∈ L∞(ΓC × (0, T )) and c0τ , c1τ ≥ 0, ∂jτ denotes the Clarke subdifferential of jτ with respect to the 
last variable,

(d) either jτ (x, t, s, ·) or −jτ (x, t, s, ·) is regular on Rd for all s ∈ R
d, a.e. (x, t) ∈ ΓC × (0, T ),

(e) j0
τ (x, t, ·, ·; ρ) is upper semicontinuous on Rd × R

d for all ρ ∈ R
d, a.e. (x, t) ∈ ΓC × (0, T ).

Furthermore, in addition, if the hypothesis H(Fb)(c) holds, then

(f) (ξ1− ξ2) · (s̄1− s̄2) ≥ −LFb
(‖s1−s2‖Rd +‖s̄1− s̄2‖Rd)‖s̄1− s̄2‖Rd for all ξi ∈ ∂jτ (x, t, si, ̄si), si, s̄i ∈ R

d, 
i = 1, 2, a.e. (x, t) ∈ ΓC × (0, T ) with LFb

≥ 0.
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Remark 2.4. Like the expression in Lemma 2.2 and Lemma 2.3, we should mention that the Clarke subdif-
ferential which is appeared in the sequel that is always understood with respect to the last variable of the 
corresponding nonsmooth function.

Proof of Lemma 2.2. Note that the property P (jν)(a) can be directly obtained under the hypotheses 
H(p)(a), (b). To prove P (jν)(b), let r1, r2 ∈ B(r, ε), r ∈ R, ε > 0. By the definition (20), we have

|jν(x, t, r1) − jν(x, t, r2)| ≤
∣∣∣ r2∫
r1

p(x, t, r̄) d r̄
∣∣∣ ≤ Lν(r, ε)|r1 − r2|

with Lν(r, ε) = maxr̂∈B(r,ε) p(x, t, ̂r) for a.e. (x, t) ∈ ΓC × (0, T ). This shows that the function jν(x, t, ·) is 
locally Lipschitz on R.

Next, since the function p(x, t, ·) is continuous on R, for a.e. (x, t) ∈ ΓC × (0, T ), which together with the 
definition of Clarke subdifferential, it is clear that

∂jν(x, t, r) = p(x, t, r) for all r ∈ R and a.e. (x, t) ∈ ΓC × (0, T ). (22)

Therefore, the property P (jν)(c) holds under the hypothesis H(p)(b). Moreover, since the function jν(x, t, ·)
is strictly differentiable, hence P (jν)(d) is satisfied.

To conclude the proof, it remains to show the property P (jν)(e). In fact, under the hypothesis H(p)(c), 
this conclusion follows directly from (22). We finish the proof. �
Proof of Lemma 2.3. Similarly as the proof of Lemma 2.2, the properties P (jτ )(a), (b), (d), (e) can be 
verified under the hypotheses H(Fb)(a), (b) and the definition (21). To show P (jτ )(c), we use the definitions 
of the Clarke subdifferential and (21) again, to see that

∂jτ (x, t, s, s̄) =

⎧⎪⎨⎪⎩
Fb(x, t, s)B̄(0, 1) if s̄ = 0,

Fb(x, t, s)
s̄

‖s̄‖Rd

if s̄ 
= 0
(23)

for a.e. (x, t) ∈ ΓC × (0, T ) and all s, s̄ ∈ R
d, in which B̄(0, 1) denotes the closed unit ball in Rd. Therefore, 

taking into account H(Fb)(b), a simple computation shows that the condition P (jτ )(c) holds.
Finally, we check the property P (jτ )(f) by using the hypothesis H(Fb)(c) and (23). Indeed, from the 

relation ξi ∈ ∂jτ (x, t, si, ̄si), for all ξi, si, s̄i ∈ R
d, i = 1, 2 and a.e. (x, t) ∈ ΓC × (0, T ), we get

(ξ1 − ξ2) · (s̄1 − s̄2) ≥ −LFb
‖s1 − s2‖Rd‖s̄1 − s̄2‖Rd

≥ −LFb
(‖s1 − s2‖Rd + ‖s̄1 − s̄2‖Rd)‖s̄1 − s̄2‖Rd

with LFb
≥ 0. This completes the proof. �

Lemma 2.5. The frictional contact conditions (14)–(15) lead to the following subdifferential forms{
− σν(t) ∈ ∂jν

(
t, u′

ν(t)
)

+ ∂cI(−∞,g]
(
u′
ν(t)

)
,

− στ (t) ∈ ∂jτ
(
t, u′(t), u′

τ (t)
) on ΓC (24)

for a.e. t ∈ (0, T ), in which I(−∞, g] : R → R ∪{+∞} represents the indicator function (normal cone) of the 
interval (−∞, g] defined by



J. Han, H. Zeng / J. Math. Anal. Appl. 473 (2019) 712–748 719
I(−∞, g](r) =
{

0 if r ∈ (−∞, g],

+ ∞ otherwise,
(25)

and ∂cI(−∞,g] denotes the convex subdifferential of I(−∞,g].

Proof. Firstly, it is easy to formulate the contact condition (14) by the following way{
− σν(t) = p

(
t, u′

ν(t)
)

if u′
ν(t) < g,

− σν(t) ≥ p
(
t, u′

ν(t)
)

if u′
ν(t) = g

on ΓC , for a.e. t ∈ (0, T ),

which, associated with (22), to see that{
− σν(t) = ∂jν

(
t, u′

ν(t)
)

if u′
ν(t) < g,

− σν(t) ≥ ∂jν
(
t, u′

ν(t)
)

if u′
ν(t) = g

on ΓC , for a.e. t ∈ (0, T ).

So now, we use the fact of

∂cI(−∞, g](r) =

⎧⎪⎪⎨⎪⎪⎩
0 if r ∈ (−∞, g),

[0,+∞) if r = g,

∅ otherwise,

to obtain that the first subdifferential form of (24) holds.
In what follows, we check the second line of (24). Let ξ ∈ R

d and in accordance with the friction law 
(15), we have, for a.e. t ∈ (0, T ) and on ΓC ,

στ (t) ·
(
ξ − u′

τ (t)
)

= −Fb(t, u′(t)) u′
τ (t)

‖u′
τ (t)‖Rd

·
(
ξ − u′

τ (t)
)

≥ Fb(t, u′(t))‖u′
τ (t)‖Rd − Fb(t, u′(t))‖ξ‖Rd if u′

τ (t) 
= 0, (26)

which is due to u′
τ · ξ ≤ ‖u′

τ‖Rd‖ξ‖Rd and the non-negativity of friction coefficient Fb. And moreover, if 
u′
τ (t) = 0 for a.e. t ∈ (0, T ), it follows from (15) that

‖στ (t)‖Rd ≤ Fb(t, u′(t)) on ΓC , for a.e. t ∈ (0, T ),

which implies that, for a.e. t ∈ (0, T ) and on ΓC ,

στ (t) ·
(
ξ − u′

τ (t)
)

= στ (t) · ξ ≥ −‖στ (t)‖Rd‖ξ‖Rd ≥ −Fb(t, u′(t))‖ξ‖Rd

= Fb(t, u′(t))‖u′
τ (t)‖Rd − Fb(t, u′(t))‖ξ‖Rd if u′

τ (t) = 0. (27)

Thus now, applying (21), (26), (27) and basing on the definition of Clarke subdifferential, we finally get

−στ (t) ∈ Fb(t, u′(t))∂ ‖u′
τ (t)‖Rd = ∂jτ

(
t, u′(t), u′

τ (t)
)

on ΓC ,

for a.e. t ∈ (0, T ). This completes the proof. �
So now, let us assuming that the functions u and σ are sufficiently smooth and solve Problem 2.1. 

According to the Green formula and using the similar approach as in [19] or in [25], we may obtain the 
following variational formulation of Problem 2.1, in terms of the displacement field.



720 J. Han, H. Zeng / J. Math. Anal. Appl. 473 (2019) 712–748
Problem 2.6. Find a displacement field u : (0, T ) → V such that for all v ∈ V and a.e. t ∈ (0, T )〈
u′′(t), v − u′(t)

〉
V ∗×V

+
〈
R
(
t, ε(u′(t))

)
+ Eε(u(t)), ε(v) − ε(u′(t))

〉
H

+
∫
ΓC

(
j0
ν

(
t, u′

ν(t); vν − u′
ν(t)

)
+ j0

τ

(
t, u′(t), u′

τ (t); vτ − u′
τ (t)

))
dΓ

+
∫
ΓC

I(−∞,g]
(
vν
)
dΓ −

∫
ΓC

I(−∞,g]
(
u′
ν(t)

)
dΓ ≥ 〈f(t), v − u′(t)〉V ∗×V (28)

with u(0) = a, u′(0) = b and f : (0, T ) → V ∗

〈f(t), v〉V ∗×V = 〈f0(t), v〉H + 〈fN (t), v〉L2(ΓN ;Rd). (29)

We conclude that the inequality (28) in Problem 2.6 is called an evolutionary variational–hemivariational 
inequality. In this inequality, the functions jν and jτ are, in general, nonconvex and model the contact and 
friction phenomena on the contact surface ΓC while the unbounded index function I(−∞,g] describes the 
unilateral constraint. A couple of functions (σ, u) which satisfies (10) and (28) is called a weak solution to 
Problem 2.1. The weak solution admits the regularity of

u ∈ W 1,2(0, T ;V ), u′′ ∈ L2(0, T ;V ∗),

σ ∈ L2(0, T ;H) and Div σ ∈ L2(0, T ;V ∗).

3. Solvability of the frictional contact problem

In this section we will provide a result on the unique weak solvability of the frictional contact problem 
(10)–(16), or equivalently, on the existence and uniqueness of solutions to Problem 2.6.

We first introduce some further notation. Let Z = H1−δ(Ω; Rd) with δ ∈ (0, 1/2), Z∗ denotes its dual 
space. Thus it is clear that the spaces (V, H, V ∗) and (Z, H, Z∗) form two Gelfand triples of spaces with 
continuous embeddings V ⊂ Z ⊂ H ⊂ Z∗ ⊂ V ∗, the embedding V ⊂ Z is compact with the embedding 
constant denoted by ce > 0. As usual in the study of evolutionary problems, we need the notation of spaces

V = L2(0, T ;V ), V∗ = L2(0, T ;V ∗), W = {v ∈ V | v′ ∈ V∗},
Z = L2(0, T ;Z), Z∗ = L2(0, T ;Z∗), Ĥ = L2(0, T ;H).

The duality pairing between V∗ and V is represented by

〈u∗, u〉V∗×V =
T∫

0

〈u∗(t), u(t)〉V ∗×V dt for all (u∗, u) ∈ V∗ × V.

Main theorem on the existence of solutions to Problem 2.6 states that

Theorem 3.1. Let the hypotheses H(R)(a)–(e), H(E)(a)–(c), H(p)(a)–(b), H(Fb)(a)–(b), (18) and (19) hold. 
If

2C2
0
(√

3c1ν + 2
√

5c1τ
)
< mR, (30)

then Problem 2.6 has at least one solution u ∈ V such that u′ ∈ W.
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Furthermore, we have the following uniqueness result.

Theorem 3.2. Assume that the assumptions of Theorem 3.1 are satisfied. In addition, if the hypotheses 
H(R)(f), H(p)(c), H(Fb)(c) and the smallness condition

C2
0
(
Lp + 2LFb

)
< αR (31)

hold, then Problem 2.6 admits a unique solution.

The proofs of the above two theorems will be provided as consequences of results on the existence and 
uniqueness of solutions to an abstract evolutionary inclusion, which will be formulated and studied in the 
upcoming Subsections 3.1 and 3.2.

3.1. Evolutionary inclusion

We start with the definitions of abstract operators A : (0, T ) × V → V ∗ and B : V → V ∗ which are 
introduced by {

〈A(t, u), v〉V ∗×V = 〈R(t, ε(u)), ε(v)〉H,

〈Bu, v〉V ∗×V = 〈Eε(u), ε(v)〉H,
(32)

for all u, v ∈ V and a.e. t ∈ (0, T ).

Lemma 3.3. Let the hypotheses H(R)(a)–(e) and H(E)(a)–(c) hold. Then the operators A and B defined by 
(32) satisfy

(A1) A(·, u) is measurable on (0, T ) for all u ∈ V ,
(A2) A(t, ·) is continuous and monotone on V , for a.e. t ∈ (0, T ), and consequently, it is pseudomonotone 

on V , for a.e. t ∈ (0, T ),
(A3) for all u ∈ V and a.e. t ∈ (0, T ), we have

‖A(t, u)‖V ∗ ≤
√

2(a0(t) + a1‖u‖V )

with a0(t) ∈ L2(0, T ), a0(t) = ‖ā0(t)‖L2(Ω) and a1 = ā1,
(A4) A is coercive, i.e., for all u ∈ V and a.e. t ∈ (0, T ),

〈A(t, u), u〉V ∗×V ≥ mR‖u‖2
V with mR > 0,

(B1) B ∈ L(V, V ∗) and 〈Bu, u〉V ∗×V ≥ 0 for all u ∈ V ,
(B2) B is a symmetric operator, that is, 〈Bu, v〉V ∗×V = 〈Bv, u〉V ∗×V for all u, v ∈ V .

Furthermore, in addition, if the hypothesis H(R)(f) holds, then

(A5) for all u1, u2 ∈ V and a.e. t ∈ (0, T ), we have

〈A(t, u1) −A(t, u2), u1 − u2〉V ∗×V ≥ αR‖u1 − u2‖2
V with αR > 0.

Proof. For the proof of the properties (A1)–(A4), (B1) and B(2), we refer to Lemmas 3 and 4 in [21]. Next, 
we check the condition (A5). Indeed, using the hypothesis H(R)(f) and the definition (32), it is obvious 
that
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〈A(t, u1) −A(t, u2), u1 − u2〉V ∗×V = 〈R(t, ε(u1)) −R(t, ε(u2)), ε(u1) − ε(u2)〉H

=
∫
Ω

(
R(x, t, ε(u1)) −R(x, t, ε(u2))

)
:
(
ε(u1) − ε(u2)

)
dx

≥ αR

∫
Ω

‖ε(u1 − u2)‖2
Sd

dx = αR‖u1 − u2‖2
V

for all u1, u2 ∈ V and a.e. t ∈ (0, T ), which finishes the proof. �
Subsequently, we introduce two functionals{

J1 : (0, T ) × L2(ΓC) → R,

J2 : (0, T ) × L2(ΓC ;Rd) × L2(ΓC ;Rd) → R,

which are defined by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
J1(t, w) =

∫
ΓC

jν(x, t, w(x)) dΓ,

J2(t, u, z) =
∫
ΓC

jτ (x, t, u(x), z(x)) dΓ,
(33)

for all w ∈ L2(ΓC), u, z ∈ L2(ΓC ; Rd) and a.e. t ∈ (0, T ).
From the proof of Theorem 3.47 in [24], we may deduce that

Lemma 3.4. If the hypotheses P (jν)(a)–(d) and P (jτ )(a)–(e) hold, then the functionals J1 and J2 defined 
by (33) fulfill the following conditions

(J1) J1(·, w) and J2(·, u, z) are measurable on (0, T ) for all w ∈ L2(ΓC) and u, z ∈ L2(ΓC ; Rd),
(J2) for a.e. t ∈ (0, T ), J1(t, ·) is locally Lipschitz on L2(ΓC), and J2(t, u, ·) is locally Lipschitz on 

L2(ΓC ; Rd) for all u ∈ L2(ΓC ; Rd),
(J3) ‖w∗‖L2(ΓC) ≤

√
2 meas(ΓC) c0ν(t) + c1ν‖w‖L2(ΓC) for all w, w∗ ∈ L2(ΓC) with w∗ ∈ ∂J1(t, w), a.e. 

t ∈ (0, T ), where ∂J1 stands for the Clarke subdifferential of J1(t, ·),
(J4) for all u, z, z∗ ∈ L2(ΓC ; Rd) and a.e. t ∈ (0, T ), we have

‖z∗‖L2(ΓC ;Rd) ≤
√

3 meas(ΓC) c0τ (t) + c1τ‖u‖L2(ΓC ;Rd) + c1τ‖z‖L2(ΓC ;Rd)

with z∗ ∈ ∂J2(t, u, z), where ∂J2 denotes the Clarke subdifferential of J2(t, u, ·),
(J5) either J1(t, ·) or −J1(t, ·) is regular on L2(ΓC) for a.e. t ∈ (0, T ), and, either J2(t, u, ·) or −J2(t, u, ·)

is regular on L2(ΓC ; Rd) for all u ∈ L2(ΓC ; Rd) and a.e. t ∈ (0, T ),
(J6) the multifunction ∂J2 : L2(ΓC ; Rd) × L2(ΓC ; Rd) → 2L2(ΓC ;Rd) has a closed graph in the topology of 

L2(ΓC ; Rd) × L2(ΓC ; Rd) × (w-L2(ΓC ; Rd)), where w-means the weak convergence.

Moreover, if we add the hypotheses P (jν)(e) and P (jτ )(f), then it follows

(J7) for all w1, w2, ζ1, ζ2 ∈ L2(ΓC), u1, u2, z1, z2, ξ1, ξ2 ∈ L2(ΓC ; Rd), and a.e. t ∈ (0, T ), we have

〈ζ1 − ζ2, w1 − w2〉L2(ΓC) ≥ −Lp‖w1 − w2‖2
L2(Γ ),
C
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〈ξ1 − ξ2, z1 − z2〉L2(ΓC ;Rd) ≥ −LFb
‖u1 − u2‖L2(ΓC ;Rd)‖z1 − z2‖L2(ΓC ;Rd)

−LFb
‖z1 − z2‖2

L2(ΓC ;Rd)

with ζi ∈ ∂J1(t, wi), ξi ∈ ∂J2(t, ui, zi), i = 1, 2, and Lp, LFb
≥ 0.

Finally, we define the functional Ψ̄ : L2(ΓC) → [0, +∞] by

Ψ̄(w) =
∫
ΓC

I(−∞,g](w(x)) dΓ for all w ∈ L2(ΓC), (34)

where I(−∞,g] is the indicator function defined by (25).

Lemma 3.5. If the hypothesis (19) holds, then the functional Ψ̄ defined by (34) satisfies the following condi-
tions

(P1) Ψ̄ is proper, convex and lower semicontinuous, and bν ∈ dom(Ψ̄),
(P2) ∂cΨ̄(· + bν) is strongly quasi-bounded,
(P3) the graph of ∂cΨ̄ is closed in the topology of L2(ΓC) × (w-L2(ΓC)), where w-means the weak conver-

gence.

Proof. From the definitions (25) and (34), combined with the hypothesis (19), it is clear that the functional 
Ψ̄ is proper, convex and bν ∈ dom(Ψ̄). To prove that Ψ̄ is lower semicontinuous, let wn → w strongly in 
L2(ΓC), as n → ∞. Subsequently, passing to a subsequence, if necessary, we have

wn(x) → w(x) in R for a.e. x ∈ ΓC .

Since the indicator function I(−∞,g] is lower semicontinuous, we get

I(−∞,g](w(x)) ≤ lim inf I(−∞,g](wn(x)) for a.e. x ∈ ΓC ,

which entails that ∫
ΓC

I(−∞,g](w(x)) dx ≤
∫
ΓC

lim inf I(−∞,g](wn(x)) dx. (35)

Next, employing the result of Lemma 2.5 in [26], we see that∫
ΓC

lim inf I(−∞,g](wn(x)) dx ≥ −k1

∫
ΓC

|wn(x)| dx− k2 meas(ΓC)

≥ −k1
√

meas(ΓC)‖wn‖L2(ΓC) − k2 meas(ΓC)

with k1, k2 ≥ 0. Hence, we are in a position to apply Fatou’s lemma and obtain∫
ΓC

lim inf I(−∞,g](wn(x)) dx ≤ lim inf
∫
ΓC

I(−∞,g](wn(x)) dx. (36)

Therefore, combining (35), (36) and (34), we have Ψ̄(w) ≤ lim inf Ψ̄(wn). The proof of property (P1) is 
completed.
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Next, we pass to the proof of (P2). By the condition of

bν(x) < g for a.e. x ∈ ΓC ,

we deduce that there exists a closed ball Sε(bν(x)) with the center at bν(x) and a radius ε(x) > 0 small 
enough, for a.e. x ∈ ΓC such that Sε(bν(x)) ⊂ (−∞, g). Thus, we may suppose that there exist some 
elements w ∈ L2(ΓC) with w(x) ∈ Sε(bν(x)) for a.e. x ∈ ΓC which satisfy

|w(x) − bν(x)| ≤ ε(x) for a.e. x ∈ ΓC .

This implies that

‖w − bν‖L2(ΓC) ≤
√

meas(ΓC) ‖ε‖L∞(ΓC) for some w ∈ L2(ΓC), (37)

where meas(ΓC) denotes the measure of ΓC .
On the other hand, by the definition of the indicator function I(−∞,g] and the fact of that w(x) ∈

int(−∞, g], it is easy to derive that for all w∗(x) ∈ ∂cI(−∞,g](w(x)), we have

w∗(x) = 0 for a.e. x ∈ ΓC .

Therefore, by Lemma 7.1 in [19] and the definition (34), we know

w∗ = 0 with w∗ ∈ ∂cΨ̄(w) for some w ∈ L2(ΓC). (38)

Now, let u, u∗ ∈ L2(ΓC), u∗ ∈ ∂cΨ̄(u + bν), 〈u∗, u〉L2(ΓC) ≤ M and ‖u‖L2(ΓC) ≤ M with M > 0. We will 
show that there exists a constant K(M) > 0 such that

‖u∗‖L2(ΓC) ≤ K(M). (39)

Using the monotonicity of the multivalued operator ∂cΨ̄(· + bν) (being a consequence of the monotonicity 
of ∂cΨ̄(·)), and from the conditions

(u, u∗), (w − bν , w
∗) ∈ Gr

(
∂cΨ̄(· + bν)

)
,

we have

〈u∗ − w∗, u− w + bν〉L2(ΓC) ≥ 0.

This inequality together with (38) implies that

〈u∗, u〉L2(ΓC) ≥ 〈u∗, w − bν〉L2(ΓC) + 〈w∗, u− w + bν〉L2(ΓC) = 〈u∗, w − bν〉L2(ΓC).

Since (37), we know the above inequality holds for all (w − bν) ∈ L2(ΓC) with

‖w − bν‖L2(ΓC) ≤
√

meas(ΓC) ‖ε‖L∞(ΓC) := r,

and combining with the fact (cf. Proposition 14 of [5]) of

sup
‖w−bν‖L2(ΓC )≤r

〈
u∗, w − bν

〉
L2(ΓC) = r‖u∗‖L2(ΓC),
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we may directly get the desired estimation

‖u∗‖L2(ΓC) ≤
1
r
〈u∗, u〉L2(ΓC) = 1√

meas(ΓC) ‖ε‖L∞(ΓC)
〈u∗, u〉L2(ΓC), (40)

i.e., the condition (39) holds. This completes the proof of property (P2).
To conclude the proof of Lemma 3.5, it remains to show that the property (P3) holds. Assume that 

{un} ⊂ L2(ΓC) and ηn ∈ ∂cΨ̄(un) are such that

un → u strongly in L2(ΓC) and ηn → η weakly in L2(ΓC), as n → ∞.

According to the definition of the convex subdifferential and the property of the upper semicontinuity of 
−Ψ̄, it is clear that η ∈ ∂cΨ̄(u). This concludes the proof of the lemma. �

Considering now the embedding and the trace operators by{
i : H1/2−δ(ΓC ;Rd) → L2(ΓC ;Rd),

γ1 : Z → H1/2−δ(ΓC ;Rd).

And let γ : Z → L2(ΓC ; Rd) be the trace operator introduced by

γ(v) = i(γ1(v)) for v ∈ Z.

Using γ, we define the normal and the tangential trace operators γν : Z → L2(ΓC) and γτ : Z → L2(ΓC ; Rd)
by

γν(v) = (γ(v))ν and γτ (v) = (γ(v))τ for v ∈ Z,

respectively. By ‖γ‖, ‖γν‖ and ‖γτ‖, we denote the norms of

‖γ‖L(Z;L2(ΓC ;Rd)), ‖γν‖L(Z;L2(ΓC)) and ‖γτ‖L(Z;L2(ΓC ;Rd)),

respectively. The notation γ∗, γ∗
ν and γ∗

τ stand for their adjoint operators.
Combining the notation (32)–(34), the definitions of the Clarke and convex subdifferentials, and the 

regularity of jν and jτ , we are able to prove that Problem 2.6 can be equivalently formulated in the form 
of following evolutionary inclusion.

Problem 3.6. Find u ∈ V such that u′ ∈ W, and for a.e. t ∈ (0, T ),⎧⎪⎪⎨⎪⎪⎩
u′′(t) + A(t, u′(t)) + Bu(t) + γ∗

νζ(t) + γ∗
τ ξ(t) + γ∗

νη(t) = f(t),

ζ(t) ∈ ∂J1
(
t, γνu

′(t)
)
, ξ(t) ∈ ∂J2

(
t, γ u′(t), γτu′(t)

)
,

η(t) ∈ ∂cΨ̄
(
γνu

′(t)
)
,

(41)

with u(0) = a, u′(0) = b.

3.2. Existence and uniqueness of solutions

In a subsection, we shall consider the solvability of Problem 3.6. To this end, we firstly recall an important 
surjectivity result which is very useful in the study of existence of solutions to a class of parabolic partial 
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differential equations and evolutionary hemivariational inequalities. For a detailed exposition and its proof, 
we refer to Theorem 2.2 in [19] and Theorem 3.1 in [16].

Theorem 3.7. Let X be a reflexive Banach space which is strictly convex, and the operator L : X ⊃
D(L) → X∗ be linear and maximal monotone. If an operator A : X → 2X∗ is coercive, bounded and 
L-pseudomonotone, and B : X → 2X∗ is a maximal monotone operator which is strongly quasi-bounded 
with 0 ∈ D(B), then L + A + B is surjective, so R(L + A + B) = X∗.

Theorem 3.8. Assume that the hypotheses (A1)–(A4), (B1)–(B2), (J1)–(J6), (P1)–(P2), (18) and (19)
hold. If

2
(√

3c1ν‖γν‖2 +
√

5c1τ‖γ‖‖γτ‖ +
√

5c1τ‖γτ‖2) c2e < mR, (42)

then Problem 3.6 admits at least one solution.

Proof. The proof is mainly based on the surjectivity result of Theorem 3.7. We first introduce the operator 
K : V → C(0, T ; V ) given by

Kv(t) =
t∫

0

v(s) ds + a for all v ∈ V. (43)

Then, define the Nemitsky (superposition) operators corresponding to the translations of A(t, ·), B(K·), 
∂J1(t, γν ·), ∂J2(t, γ·, γτ ·) and ∂cΨ̄(γν ·) by

(A0v)(t) = A(t, v(t) + b), (B0v)(t) = B
(
K(v + b)(t)

)
, (44)

(N0v)(t) =
{
ζ ∈ L2(0, T ;L2(ΓC)) | ζ(t) ∈ ∂J1(t, γν(v(t) + b))

}
, (45)

(N̄0v)(t) =
{
ξ ∈ L2(0, T ;L2(ΓC ;Rd)) |

ξ(t) ∈ ∂J2(t, γ(v(t) + b), γτ (v(t) + b))
}
, (46)

(M0v)(t) =
{
η ∈ L2(0, T ;L2(ΓC)) | η(t) ∈ ∂cΨ̄(γν(v(t) + b))

}
(47)

for all v ∈ V and a.e. t ∈ (0, T ). Hence, Problem 3.6 is equivalent to the following operator inclusion⎧⎪⎪⎨⎪⎪⎩
find v ∈ W such that

v′ + A0v + B0v + γ̂∗
νN0v + γ̂∗

τ N̄0v + γ̂∗
νM0v � f,

v(0) = 0,

(48)

where γ̂∗
ν : L2(0, T ; L2(ΓC)) → Z∗ and γ̂∗

τ : L2(0, T ; L2(ΓC ; Rd)) → Z∗ introduced by

(γ̂∗
νζ)(t) = γ∗

νζ(t), (γ̂∗
τ ξ)(t) = γ∗

τ ξ(t)

for all ζ ∈ L2(0, T ; L2(ΓC)), ξ ∈ L2(0, T ; L2(ΓC ; Rd)) and a.e. t ∈ (0, T ), represent the Nemitsky operators 
corresponding to γ∗

ν and γ∗
τ , respectively.

So now, to the purpose of solve Problem 3.6, we only need to show the existence of solutions to operator 
inclusion (48). Having in mind the operator defined by (43), we note that{

v ∈ W is a solution to (48) if and only if

u = K(v + b) with u ∈ V, u′ ∈ W solves Problem 3.6.
(49)
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Define the operator L : V ⊃ D(L) → V∗ by Lv = v′ which is considered with the domain

D(L) = {u ∈ W | v(0) = 0 }.

Thus it is clear that L is a linear and maximal monotone operator. Next, referring to Lemmas 3.9 and 3.10
which are showed later in this subsection, we know that the multivalued operator T0 : V → 2V∗ given by 
T0 = A0+B0+γ̂∗

νN0+γ̂∗
τ N̄0 is coercive, bounded and L-pseudomonotone, and moreover, γ̂∗

νM0 is a maximal 
monotone operator which is strongly quasi-bounded with 0 ∈ D(γ̂∗

νM0). Hence, in view of the surjectivity 
result in Theorem 3.7, we infer that the inclusion (48) has at least one solution v ∈ W. This, together 
with (49) implies that Problem 3.6 has at least one solution u ∈ V such that u′ ∈ W. This concludes the 
proof. �

In the following we provide two lemmas we used in the proof of Theorem 3.8.

Lemma 3.9. Let T0 : V → 2V∗ be the operator defined by T0 = A0 + B0 + γ̂∗
νN0 + γ̂∗

τ N̄0, where the operators 
A0, B0, N0 and N̄0 are given by (44)–(46). If the hypotheses (A1)–(A4), (B1), (B2), (J1)–(J6) hold, and 
the smallness condition

2
(√

3c1ν‖γν‖2 +
√

5c1τ‖γ‖‖γτ‖ +
√

5c1τ‖γτ‖2) c2e < mR (50)

is satisfied, then the operator T0 is coercive, bounded and L-pseudomonotone.

Proof. The proof will carried out in several steps.

Step 1. We prove that the multivalued operator T0 is coercive in the sense of Definition A.3. To this end, 
let v ∈ V and v∗ = T0v, i.e., v∗ = A0v + B0v + γ̂∗

νζ + γ̂∗
τ ξ with ζ ∈ N0v and ξ ∈ N̄0v. According to the 

hypotheses (A3), (A4), (B1) and (B2), we have

〈A0v + B0v, v〉V∗×V =
T∫

0

〈A(t, v(t) + b) + B(K(v + b)(t)), v(t)〉V ∗×V dt

≥ mR

T∫
0

‖v(t) + b‖2
V dt−

T∫
0

〈A(t, v(t) + b), b〉V ∗×V dt

+
T∫

0

〈B(K(v + b)(t)), (K(v + b))′(t) − b〉V ∗×V dt

≥ mR
2 ‖v‖2

V − (â1 + b̂1)‖v‖V − (â2 + b̂2) (51)

for all v ∈ V with

â1 =
√

2Ta1‖b‖V , b̂1 = T
√
T‖B‖‖b‖V ,

â2 =
√

2T‖a0‖L2(0,T )‖b‖V + (mR +
√

2a1T )‖b‖2
V ,

b̂2 = 1/2‖B‖‖a‖2
V + T‖B‖‖a‖V ‖b‖V + T 2‖B‖‖b‖2

V .

Since ζ ∈ N0v and ξ ∈ N̄0v, it is clear that

ζ(t) ∈ ∂J1
(
t, γν(v(t) + b)

)
, (52)

ξ(t) ∈ ∂J2
(
t, γ(v(t) + b), γτ (v(t) + b)

)
(53)
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for all v ∈ V and a.e. t ∈ (0, T ). Hence, taking into account the hypotheses (J3) and (J4), we obtain

‖γ̂∗
νζ‖2

V∗ =
T∫

0

‖γ∗
νζ(t)‖2

V ∗ dt ≤ ‖γ∗
ν‖2 c2e

T∫
0

‖ζ(t)‖2
L2(ΓC) dt

≤ ‖γν‖2 c2e

T∫
0

(√
2 meas(ΓC) c0ν(t) + c1ν‖γν(v(t) + b)‖L2(ΓC)

)2
dt

≤ ‖γν‖2 c2e

T∫
0

3
(
2 meas(ΓC) c20ν(t) + c21ν‖γν‖2c2e‖v(t)‖2

V + c21νc
2
e‖γν‖2‖b‖2

V

)
dt

≤ 6T meas(ΓC)‖c0ν‖2
L∞(0,T )‖γν‖2 c2e

+ 3c21ν c4e‖γν‖4‖v‖2
V + 3Tc21ν c4e‖γν‖4‖b‖2

V (54)

and

‖γ̂∗
τ ξ‖2

V∗ ≤ ‖γτ‖2 c2e

T∫
0

‖ξ(t)‖2
L2(ΓC ;Rd) dt

≤ 15T meas(ΓC)‖c0τ‖2
L∞(0,T )‖γτ‖2 c2e

+ 5 c21τ c4e(‖γ‖2 + ‖γτ‖2)‖γτ‖2‖v‖2
V

+ 5T c21τ c
4
e(‖γ‖2 + ‖γτ‖2)‖γτ‖2‖b‖2

V , (55)

for all v ∈ V. Thus, we combine (54) and (55) to see that

〈γ̂∗
νζ + γ̂∗

τ ξ, v〉V∗×V ≥ −(‖γ̂∗
νζ‖V∗ + ‖γ̂∗

τ ξ‖V∗)‖v‖V
≥ −

(√
3c1ν‖γν‖2 +

√
5c1τ‖γ‖‖γτ‖ +

√
5c1τ‖γτ‖2) c2e‖v‖2

V − ĉ‖v‖V

for all v ∈ V with ĉ ≥ 0. Hence, in accordance with (51) and the smallness condition (50), we deduce that 
the multivalued operator T0 is coercive in the sense of Definition A.3.

Step 2. We prove that T0 is a bounded operator. According to (A3) and (B1), we have

‖A0v + B0v‖2
V∗ ≤

T∫
0

‖A(t, v(t) + b)‖2
V ∗ dt +

T∫
0

‖B(K(v + b)(t))‖2
V ∗ dt

≤ 2
T∫

0

(a0(t) + a1‖v(t)‖V + a1‖b‖V )2 dt + ‖B‖2
T∫

0

‖K(v + b)(t)‖2
V dt

≤ 6‖a0‖2
L2(0,T ) + (6a2

1T + 3T 3‖B‖2)‖b‖2
V

+ 3T‖B‖2‖a‖2
V + (6a2

1 + 3T 2‖B‖2)‖v‖2
V

for all v ∈ V. On the other hand, exploiting (54) and (55), we have

‖γ̂∗
νN0v + γ̂∗

τ N̄0v‖V∗ ≤ c(1 + ‖v‖V)

for all v ∈ V with c > 0. Hence, we easily obtain that the operator T0 is bounded.
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Step 3. We verify that the multivalued operator T0 satisfies the condition (a) in Definition A.4. In fact, 
by Proposition 3.23(iv) in [24], we know that the values of ∂J1 and ∂J2 are nonempty and convex subsets of 
L2(ΓC) and L2(ΓC ; Rd), respectively. These imply that the sets T0v are nonempty and convex for all v ∈ V. 
To prove that T0v is closed in V∗ for all v ∈ V, we need to check only that both N0v and N̄0v are closed in 
V∗ for all v ∈ V. For this purpose, let {ζn} ⊂ N0v, {ξn} ⊂ N̄0v, n ≥ 1 be such that

ζn → ζ strongly in L2(0, T ;L2(ΓC)), as n → ∞,

ξn → ξ strongly in L2(0, T ;L2(ΓC ;Rd)), as n → ∞.

Thus, subsequently, by passing to a subsequence, if necessary, we may assume that{
ζn(t) → ζ(t) strongly in L2(ΓC) for a.e. t ∈ (0, T ),

ξn(t) → ξ(t) strongly in L2(ΓC ;Rd) for a.e. t ∈ (0, T ),

as n → ∞. From the hypothesis (J6) and Proposition 3.23(v) in [24], we deduce that ζ ∈ N0v and ζ ∈ N̄0v

for all v ∈ V. Consequently, the sets T0v are closed in V∗ for all v ∈ V. Furthermore, by Step 2, it is clear 
that the sets T0v are also bounded in V∗ for all v ∈ V.

Step 4. We prove that the multivalued operator T0 : V → 2V∗ is upper semicontinuous in the topology of 
V × (w-V∗). By Proposition 3.8 in [24], it is enough to check that the set

T −
0 (K) = { v ∈ V | T0v ∩ K 
= ∅ }

is closed in V for every weakly closed set K ⊂ V∗. For this purpose, let

vn → v strongly in V, as n → ∞,

where vn ∈ T −
0 (K), so there exists v∗n ∈ V∗ such that v∗n ∈ T0(vn) ∩K. By the boundedness of the operator 

T0 (cf. Step 2), we may assume that there exists a subsequence, for simplicity, the subscript is still denoted 
by n such that

v∗n → v∗ weakly in V∗, as n → ∞.

It follows from the weak closedness of the set K that

v∗ ∈ K. (56)

In what follows, it is enough to verify that v∗ ∈ T0v. To this end, we prove that the single-valued operators A0
and B0 are demicontinuous, and the multivalued operators N0 and N̄0 have closed graphs in the topologies 
V ×

(
w-L2(0, T ; L2(ΓC))

)
and V × V ×

(
w-L2(0, T ; L2(ΓC ; Rd))

)
, respectively.

Since both operators A and B are pseudomonotone and bounded, so in view of Proposition 27.7 in [35], we 
know that the operators A and B are demicontinuous. According to (44) and the definition of demicontinuity, 
we still have the demicontinuity of the Nemitsky operators A0 and B0.

On the other hand, using the hypothesis (J6) and Proposition 3.23(v) in [24] again, similarly as the 
above proofs of closedness of operators N0 and N̄0, we may derive that the multivalued operators N0 and 
N̄0 have closed graphs in the topologies of V ×

(
w-L2(0, T ; L2(ΓC))

)
and V ×V ×

(
w-L2(0, T ; L2(ΓC ; Rd))

)
, 

respectively. Hence,

v∗ ∈ T0v. (57)
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By (56), we obtain v∗ ∈ T0v ∩ K, i.e., T −
0 (K) is a closed set in V for every weakly closed set K ⊂ V∗. 

Therefore, the multivalued operator T0 : V → 2V∗ is upper semicontinuous from V to V∗ endowed with the 
weak topology.

Step 5. It remains to check the condition (d) in Definition A.4. Let {vn} ⊂ D(L), v∗n ∈ T0vn, vn → v

weakly in W, v∗n → v∗ weakly in V∗ and

lim sup〈v∗n, vn − v〉V∗×V ≤ 0. (58)

We prove that v∗ ∈ T0v and 〈v∗n, vn〉V∗×V → 〈v∗, v〉V∗×V .
Since the embedding W ⊂ Z is compact, so we get

vn → v strongly in Z. (59)

Next, using the boundedness of the operators N0 and N̄0, we may assume that{
ζn → ζ weakly in L2(0, T ;L2(ΓC)) and

ξn → ξ weakly in L2(0, T ;L2(ΓC ;Rd)),
(60)

as n → ∞, where ζn ∈ N0vn and ξn ∈ N̄0vn. Thus, combining (59), (60) and the fact that both N0 and N̄0
have closed graphs in the topologies of Z ×

(
w-L2(0, T ; L2(ΓC))

)
and Z × Z ×

(
w-L2(0, T ; L2(ΓC ; Rd))

)
, 

respectively, we deduce

ζ ∈ N0v and ξ ∈ N̄0v. (61)

On the other hand, by (58) and (60), we have

lim sup〈A0vn + B0vn, vn − v〉V∗×V ≤ lim sup〈v∗n, vn − v〉V∗×V

+ lim〈γ̂∗
νζn + γ̂∗

τ ξn, v − vn〉Z∗×Z ≤ 0.

Therefore, from the L-pseudomonotonicity of the operators A0 and B0 (obtained in Theorem 2(b) in [4]), 
we have

A0vn + B0vn → A0v + B0v weakly in V∗ (62)

and

〈A0vn + B0vn, vn − v〉V∗×V → 0. (63)

Finally, collecting (59)–(63) and passing to the limit in the equation

v∗n = A0vn + B0vn + γ̂∗
νζn + γ̂∗

τ ξn,

we infer that v∗ = A0v + B0v + γ̂∗
νζ + γ̂∗

τ ξ ∈ A0v + B0v + γ̂∗
νN0v + γ̂∗

τ N̄0v = T0v and

lim〈v∗n, vn〉V∗×V = lim〈A0vn + B0vn, vn − v〉V∗×V

+ lim〈A0vn + B0vn, v〉V∗×V + lim〈γ̂∗
νζn + γ̂∗

τ ξn, vn〉Z∗×Z

= lim〈A0v + B0v, v〉V∗×V + lim〈γ̂∗
νζ + γ̂∗

τ ξ, v〉Z∗×Z = 〈v∗, v〉V∗×V .

Now, we are in a position to combine Steps 3–5 to see that the operator T0 is pseudomonotone with 
respect to D(L). This finishes the proof of the lemma. �
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Lemma 3.10. Let the hypotheses (P1) and (P2) hold. Then the multivalued operator γ̂∗
νM0 : V → 2V∗ with 

M0 defined by (47), is maximal monotone and strongly quasi-bounded with 0 ∈ D(γ̂∗
νM0).

Proof. From Proposition A.7 and the definition (47), we can observe that for all v ∈ V, η ∈ M0v if and 
only if

η ∈ ∂cΨ̂
(
γ̂ν(v + b)

)
for all v ∈ V (64)

where

Ψ̂(z) =
T∫

0

Ψ̄(z(t)) dt for all z ∈ L2(0, T ;L2(ΓC)). (65)

Moreover, using a technique similar to that used to obtain the condition (P1) in Lemma 3.5, we know the 
functional Ψ̂ is proper, convex and lower semicontinuous, thus its convex subdifferential ∂cΨ̂ is maximal 
monotone.

We show the operator γ̂∗
νM0 is monotone. To this end, let (u, ̂γ∗

νu
∗), (v, ̂γ∗

νv
∗) ∈ Gr(γ̂∗

νM0). It is clear 
that

〈γ̂∗
ν(u∗ − v∗), u− v〉V∗×V = 〈u∗ − v∗, γ̂ν(u + b− v − b)〉L2(0,T ;L2(ΓC))

with u∗ ∈ ∂cΨ̂
(
γ̂ν(u + b)

)
and v∗ ∈ ∂cΨ̂

(
γ̂ν(v + b)

)
. Using the monotonicity of ∂cΨ̂, it is obvious that the 

operator γ̂∗
νM0 is monotone.

Next, assume that for all (v, ̂γ∗
νv

∗) ∈ Gr
(
γ̂∗
νM0

)
, it holds

〈γ̂∗
νv

∗ − γ̂∗
νη, v − z〉V∗×V ≥ 0 for all z ∈ V.

Hence, we have

〈γ̂∗
νv

∗ − γ̂∗
νη, v − z〉V∗×V = 〈v∗ − η, γ̂ν(v + b− z − b)〉L2(0,T ;L2(ΓC)) ≥ 0.

Due to the maximal monotonicity of the convex subdifferential ∂cΨ̂, we obtain η ∈ ∂cΨ̂(γ̂ν(z + b)), which 
implies the maximal monotonicity of the operator γ̂∗

νM0.
In what follows, we check that the operator γ̂∗

νM0 is strongly quasi-bounded. In fact, by (64), this is 
equivalent to verify the strong quasi-boundedness of the operator γ̂∗

ν∂cΨ̂
(
γ̂ν(· + b)

)
. To this end, we suppose 

that for all (v, ̂γ∗
νη) ∈ Gr

(
γ̂∗
ν∂cΨ̂(γ̂ν(· + b))

)
, there exists a constant k̂ > 0 such that

‖v‖V ≤ k̂ and 〈γ̂∗
νη, v〉V∗×V ≤ k̂.

Then, by the definition (65) and Proposition A.7, using a technique analogous to that we used in the proof 
of (40) (cf. the proof of Lemma 3.5), we have

‖γ̂∗
νη‖V∗ ≤ ‖γ∗

ν‖ce‖η‖L2(0,T ;L2(ΓC))

≤ ‖γ∗
ν‖ce√

T meas(ΓC)‖ε‖L∞(ΓC)
〈γ̂∗

νη, v〉V∗×V (66)

with η ∈ ∂cΨ̂(γ̂ν(v+b)). Therefore, we deduce that γ̂∗
ν∂cΨ̂

(
γ̂ν(· +b)

)
is strongly quasi-bounded, and so is the 

operator γ̂∗
νM0. Furthermore, the property 0 ∈ D(γ̂∗

νM0) follows directly from the facts dom(Ψ̄) ⊂ D(∂cΨ̄)
and (P1), and the definition (47).
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Finally, to conclude the proof of Lemma 3.10, it remains to show the operator M0 is well defined. 
Multiplying (48) in duality by v ∈ V, and using the proof of coercivity of the operator T0 in Lemma 3.9, we 
obtain

k1‖v‖2
V ≤ k2‖v‖V + k3 (67)

for all v ∈ V with k1, k2, k3 > 0, where the coefficients k2 and k3 depend on the data ‖a‖V , ‖b‖V and ‖f‖V∗ . 
Hence, we immediately get

‖v‖V ≤ c1 with c1 > 0. (68)

Moreover, taking into account the boundedness of the operator T0, one has

〈γ̂∗
νη, v〉V∗×V = 〈f − v′ − T0v, v〉V∗×V ≤

(
‖f‖V∗ + ‖T0v‖V∗

)
‖v‖V ≤ c2 (69)

for η ∈ M0v, for all v ∈ V with c2 > 0. So, combining (68) and (69) with the fact of that the operator 
γ̂∗
νM0 is strongly quasi-bounded, we know that

‖γ̂∗
νη‖V∗ ≤ c3 for η ∈ M0v, v ∈ V (70)

with c3 > 0, which means that the operator M0 is well defined. The proof of the lemma is completed. �
Theorem 3.11. Assume the hypotheses of Theorem 3.8. If the hypotheses (A5), (J7) hold, and the smallness 
condition

(
Lp‖γν‖2 + LFb

‖γ‖‖γτ‖ + LFb
‖γτ‖2)c2e < αR (71)

is satisfied, then the solution of Problem 3.6 is unique.

Proof. Let u1, u2 ∈ V be two solutions to Problem 3.6 such that u′
1, u′

2 ∈ W, i.e., they meet the following 
system ⎧⎪⎪⎨⎪⎪⎩

u′′
i (t) + A(t, u′

i(t)) + Bui(t) + γ∗
νζi(t) + γ∗

τ ξi(t) + γ∗
νηi(t) = f(t),

ζi(t) ∈ ∂J1
(
t, γνu

′
i(t)

)
, ξi(t) ∈ ∂J2

(
t, γ u′

i(t), γτu′
i(t)

)
,

ηi(t) ∈ ∂cΨ̄
(
γνu

′
i(t)

)
, ui(0) = a, u′

i(0) = b

(72)

for a.e. t ∈ (0, T ) and i = 1, 2. According to the hypotheses (A5), (B1), (B2), by a simple calculation, we 
have

T∫
0

〈
u′′

1(t) − u′′
2(t), u′

1(t) − u′
2(t)

〉
V ∗×V

dt

= 1
2

T∫
0

d

dt
‖u′

1(t) − u′
2(t)‖2

H dt = 1
2‖u

′
1(T ) − u′

2(T )‖2
H , (73)

T∫ 〈
A(t, u′

1(t)) −A(t, u′
2(t)), u′

1(t) − u′
2(t)

〉
V ∗×V

dt ≥ αR‖u′
1 − u′

2‖2
V , (74)
0
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T∫
0

〈
Bu1(t) −Bu2(t), u′

1(t) − u′
2(t)

〉
V ∗×V

dt

= 1
2

T∫
0

d

dt

〈
Bu1(t) −Bu2(t), u1(t) − u2(t)

〉
V ∗×V

dt

= 1
2
〈
Bu1(T ) −Bu2(T ), u1(T ) − u2(T )

〉
V ∗×V

≥ 0. (75)

Next, because of the hypotheses (J7) and (P1), we know that

T∫
0

〈
ζ1(t) − ζ2(t), γνu′

1(t) − γνu
′
2(t)

〉
V ∗×V

dt

+
T∫

0

〈
ξ1(t) − ξ2(t), γτu′

1(t) − γτu
′
2(t)

〉
V ∗×V

dt

+
T∫

0

〈
η1(t) − η2(t), γνu′

1(t) − γνu
′
2(t)

〉
V ∗×V

dt

≥ −
(
Lp‖γν‖2 + LFb

‖γτ‖2)c2e‖u′
1 − u′

2‖2
V − LFb

‖γ‖‖γτ‖c2e‖u′
1 − u′

2‖2
V , (76)

with ζi(t) ∈ ∂ J1
(
t, γνu′

i(t)
)
, ξi(t) ∈ ∂ J2

(
t, γ u′

i(t), γτu′
i(t)

)
and ηi(t) ∈ ∂cΨ̄

(
γνu

′
i(t)

)
for a.e. t ∈ (0, T ), 

i = 1, 2. Hence, we combine (72)–(76) to see that

αR‖u′
1 − u′

2‖2
V −

(
Lp‖γν‖2 + LFb

‖γ‖‖γτ‖ + LFb
‖γτ‖2)c2e‖u′

1 − u′
2‖2

V ≤ 0,

which, in view of the smallness condition (71) and the equality

u(t) =
t∫

0

u′(s) ds + a for t ∈ (0, T )

implies that Problem 3.6 has a unique solution u ∈ V such that u′ ∈ W. We finish the proof. �
Lemma 3.12. Let the hypotheses of Theorem 3.8 hold and u be a solution to Problem 3.6. Then there exists 
a positive constant c > 0 such that

‖u‖V + ‖u′‖V + ‖u′′‖V∗ ≤ c, (77)

where the constant c > 0 depends only on ‖a‖V , ‖b‖V and ‖f‖V∗ .

Proof. According to (49) and (68), we see that

‖u′ − b‖V = ‖v‖V ≤ c̄1 with c̄1 > 0, (78)

where v ∈ W represents solutions to inclusion (48). This implies that

‖u′‖V ≤ c̄2 with c̄2 > 0. (79)
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Note that for all u ∈ W 1,2(0, T ; V ), the following relation holds

u(t) = a +
t∫

0

u′(s) ds for all t ∈ [0, T ].

Hence, by (79) and the Hölder inequality, we have

‖u‖V ≤ c̄3 with c̄3 > 0. (80)

Next, we show the bound for ‖u′′‖V∗ . From the boundedness of the operator T0, (78), (70), (48) and (49), 
we obtain

‖u′′‖V∗ = ‖v′‖V∗ ≤ ‖A0v‖V∗ + ‖B0v‖V∗ + ‖γ̂∗
νζ‖2

V∗

+ ‖γ̂∗
τ ξ‖V∗ + ‖γ̂∗

νη‖V∗ + ‖f‖V∗ ≤ c̄4, (81)

where ζ ∈ N0v, ξ ∈ N̄0v and η ∈ M0v for all v ∈ V with c̄4 > 0. The estimate (77) is now a consequence of 
the inequalities (79), (80) and (81). The proof is completed. �

We conclude Section 3 with the proofs of Theorems 3.1 and 3.2 which are based on our abstract results.

Proof of Theorem 3.1. From Lemmas 2.2–2.3 and Lemmas 3.3–3.5, we know that under the hypotheses 
H(R)(a)–(e), H(E)(a)–(c), H(p)(a)–(b), H(Fb)(a)–(b), (18) and (19), the conditions (A1)–(A4), (B1)–(B2), 
(J1)–(J6), (P1)–(P2), (18) and (19) of Theorem 3.8 are satisfied by the definitions (20), (21), (32), (33) and 
(34). The smallness condition (42) directly follows from (30), (17) and the fact that ‖γ‖ = C0, ‖γν‖ ≤ C0
and ‖γτ‖ ≤ C0. Therefore, by Theorem 3.8, we immediately obtain that Problem 2.6 has at least one 
solution u ∈ V such that u′ ∈ W. The proof is completed. �
Proof of Theorem 3.2. It follows from Lemmas 2.2–2.3 and Lemmas 3.3–3.5 that the conditions (A5) and 
(J7) hold under the hypotheses H(R)(f), H(p)(c) and H(Fb)(c). Analogously as in the proof of existence, 
the condition (71) is derived from (31), (17) and the fact that ‖γ‖ = C0, ‖γν‖ ≤ C0 and ‖γτ‖ ≤ C0. Then, 
by Theorem 3.11, we obtain that the solution of Problem 2.6 is unique, which completes the proof. �
4. Optimal control problems

The main goal of this section is to study the optimal control problem of the unilateral contact problem 
with friction. We are concerned with the optimal control via the external forces and initial conditions, 
the time optimal control problem, and the maximum stay control problem. Consequently, we are lead to 
study optimal control problems for the evolutionary inclusion in Problem 3.6. We deliver conditions which 
guarantee the existence of optimal solutions to the corresponding control problems.

4.1. Optimal control via external forces and initial conditions

We start with a problem in which the control variable is given by q = (f, a, b) ∈ Q, f represents the density 
of external forces (such as boundary traction and gravity, etc.), a and b denote the initial displacement and 
velocity, respectively, and Q = V∗ × V × V stands for the space of controls. For every q ∈ Q, we denote the 
solution set of Problem 3.6 by

S(q) =
{
y ∈ S | y = y(q) = (u(q), u′(q)) is a solution of Problem 3.6

}
,
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where S = V × W. Note that if the hypotheses of Theorem 3.8 hold, then the solution set S(q) ⊂ S can 
contain more than one element for every q ∈ Q. In this case, we can consider the multivalued mapping 
S : Q → 2V×W which to a control q ∈ Q assigns the solution set S(q).

Next, given a nonempty admissible set of controls Qad ⊂ Q, and an objective functional F : Q ×S → R, 
we formulate the optimal control problem as follows

find a control q∗ ∈ Qad and a state y∗ = y(q∗) ∈ S such that

F (q∗, y∗) = inf
{
F (q, y) | (q, y) ∈ Qad × S(q)

}
. (82)

In what follows, to study the above optimal control problem, we need to introduce assumptions on the 
admissible set of controls and the objective functional. Assume that

(Qad) the admissible set of controls Qad is a weakly compact subset of Q,
(F ) the objective functional F is lower semicontinuous with respect to the topology of w-(Q × S).

We begin with the following crucial result on the dependence of the solution set of Problem 3.6 on the 
control.

Lemma 4.1. Assume that the hypotheses of Theorem 3.8, (Qad) and (F ) hold. Then the solution map 
S : Q � q �→ S(q) ⊂ S has a closed graph in (w-Q) × (w-S) topology.

Proof. We observe that according to Theorem 3.8, for every q ∈ Q, the set S(q) is nonempty. Let {qn} ⊂ Q, 
qn → q weakly in Q, yn ∈ S(qn), yn → y weakly in V × W. Hence, there is a sequence {(fn, an, bn)} ⊂
V∗ × V × V such that

fn → f weakly in V∗, (83)

an → a weakly in V, (84)

bn → b weakly in V, (85)

as n → ∞, and for each n ∈ N, (un, u′
n) ∈ V ×W solves the following inclusion⎧⎪⎪⎨⎪⎪⎩

u′′
n(t) + A(t, u′

n(t)) + Bun(t) + γ∗
νζn(t) + γ∗

τ ξn(t) + γ∗
νηn(t) = fn(t),

ζn(t) ∈ ∂J1
(
t, γνu

′
n(t)

)
, ξn(t) ∈ ∂J2

(
t, γ u′

n(t), γτu′
n(t)

)
,

ηn(t) ∈ ∂cΨ̄
(
γνu

′
n(t)

)
, un(0) = an, u′

n(0) = bn

(86)

for a.e. t ∈ (0, T ). By the estimates obtained in Lemma 3.12, we directly get

un → u weakly in V, (87)

u′
n → u′ weakly in V, (88)

u′′
n → u′′ weakly in V∗, (89)

as n → ∞. So now, it is enough to check that (u, u′) ∈ S is a solution to the limit problem, i.e., (u, u′)
satisfies (41).

Firstly, since the embeddings W 1,2(0, T ; V ) ⊂ C(0, T, V ), W ⊂ C(0, T, H) and V ⊂ H are continuous, 
hence by (84), (85), (87)–(89), and Lemma 2.55 in [24], we have

u(0) = a and u′(0) = b.



736 J. Han, H. Zeng / J. Math. Anal. Appl. 473 (2019) 712–748
Secondly, because of the compact embedding W ⊂ Z, we immediately get

u′
n(t) → u′(t) strongly in Z, for a.e. t ∈ (0, T ), (90)

as n → ∞. By (J3), (J4) and the estimate (77), we know that

‖ζn‖L2(0,T ;L2(ΓC)) ≤ �̃1 and ‖ξn‖L2(0,T ;L2(ΓC ;Rd)) ≤ �̃2, (91)

where ζn(t) ∈ ∂J1(t, γνu′
n(t)) and ξn(t) ∈ ∂J2(t, γ u′

n(t), γτu′
n(t)) for a.e. t ∈ (0, T ) with �̃i > 0, i = 1, 2. 

This, together with (77) and the first equality in (86) imply that

‖ηn‖L2(0,T ;L2(ΓC)) ≤ �̃3 (92)

with ηn(t) ∈ ∂cΨ̄(γνu′
n(t)) for a.e. t ∈ (0, T ) with �̃3 > 0. Hence, we may suppose that there exist subse-

quences, all subscripts are still denoted by n, {ζn}, {ξn} and {ηn} such that

ζn → ζ weakly in L2(0, T ;L2(ΓC)), (93)

ξn → ξ weakly in L2(0, T ;L2(ΓC ;Rd)), (94)

ηn → η weakly in L2(0, T ;L2(ΓC)), (95)

as n → ∞ with

ζn(t) ∈ ∂J1(t, γνu′
n(t)), (96)

ξn(t) ∈ ∂J2(t, γ u′
n(t), γτu′

n(t)), (97)

ηn(t) ∈ ∂cΨ̄(γνu′
n(t)), (98)

for a.e. t ∈ (0, T ). So, combining (J6), (P3), Proposition 3.23 in [24], (90) and (93)–(98), we see that

ζ(t) ∈ ∂J1(t, γνu′(t)), ξ(t) ∈ ∂J2(t, γ u′(t), γτu′(t)) and η(t) ∈ ∂cΨ̄(γνu′(t))

for a.e. t ∈ (0, T ).
Subsequently, by a reasoning similar to the Step 5 in the proof of Lemma 3.9, we will prove that

Au′
n + Bun → Au′ + Bun weakly in V∗, (99)

where A and B are the Nemyckii operators corresponding to A and B, respectively. Indeed, based on the 
weak continuity of B, it is clear that

Bun → Bun weakly in V∗. (100)

Next, since

lim sup〈Bun, u
′ − u′

n〉V∗×V

= lim sup
(
− 〈Bu− Bun, u

′ − u′
n〉V∗×V + 〈Bu, u′ − u′

n〉V∗×V
)

≤ lim sup〈Bu, u′ − u′
n〉V∗×V ≤ 0,

which, together with the facts of 〈f, u′
n−u′〉V∗×V → 0, 〈γ̂∗

νζn + γ̂∗
τ ξn + γ̂∗

νηn, u
′
n−u′〉Z∗×Z → 0 and the first 

equality in (86), we may obtain
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lim sup〈Au′
n, u

′
n − u′〉V∗×V ≤ lim sup〈u′′

n + Bun, u
′ − u′

n〉V∗×V

≤ −1
2‖u

′
n(T ) − u′(T )‖2

H + lim〈u′′, u′ − u′
n〉V∗×V ≤ 0.

Hence, from Lemma 5.5 (e) in [24] and (100), we deduce (99).
Finally, passing to the limit in the first equality of (86), we directly get that (u, u′) ∈ S satisfies (41). 

This completes the proof of the lemma. �
Theorem 4.2. Under the hypotheses of Theorem 3.8 and the assumptions (Qad) and (F ), the problem (82)
has an optimal solution.

Proof. Let 
{
(qn, yn)

}
⊂ Qad × S(qn) be a minimizing sequence for the functional F in the problem (82), 

i.e.,

lim
n→∞

F (qn, yn) = inf
{
F (q, y) | (q, y) ∈ Qad × S(q)

}
. (101)

By the assumption (Qad), we may choose a subsequence {qn} ⊂ Qad such that

qn → q∗ weakly in Q with q∗ ∈ Qad. (102)

Combining with Lemma 4.1, we have

yn → y∗ weakly in S with yn ∈ S(qn) and y∗ ∈ S(q∗). (103)

Hence, (102), (103) and (F ) imply that

F (q∗, y∗) ≤ lim inf
n→∞

F (qn, yn).

So, in view of (101), we get F (q∗, y∗) = inf
{
F (q, y) | (q, y) ∈ Qad × S(q)

}
. The proof is completed. �

We conclude this subsection with a simple example of the objective functional F : Q × S → R which 
satisfies the assumption (F ).

Example 4.3. Let the element yd = (ud, u′
d, u

′′
d) ∈ V × V × V∗ denote a fixed target. Consider the objective 

functional F : Q × S → R of the following form

F (q, y) = ‖q‖Q + ‖y − yd‖S = ‖f‖V∗ + ‖a‖V + ‖b‖V
+ ‖u− ud‖V + ‖u′ − u′

d‖V + ‖u′ − u′
d‖V∗ ,

where q = (f, a, b) ∈ Q = V∗×V ×V and y = (u, u′) ∈ S = V ×W. It is clear that this functional is convex 
and strongly continuous, and thus it is lower semicontinuous with respect to the topology of w-(Q × S).

For other examples of cost functionals, refer to Lions [20] and Troltzsch [34].

4.2. Time optimal control problem

In this subsection, we turn to the study of a time optimal control problem. We recall the definition of 
convergence of sets in the sense of Kuratowski.
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Definition 4.4. Let (X, τ) be a Hausdorff topological space and let {An}, n ≥ 1, be a sequence of nonempty 
subsets to X. We define

τ - lim inf An =
{
x ∈ X | x = τ - lim xn, xn ∈ An

}
and

τ - lim supAn =
{
x ∈ X | x = τ - lim xnk

, xnk
∈ Ank

, n1 < n2 < . . . < nk < . . .
}
.

The sets τ - lim inf An and τ - lim supAn are called τ -Kuratowski lower and upper limits, respectively, of the 
sets An. Furthermore, if

A = τ - lim inf An = τ - lim supAn,

then we say that A is τ -Kuratowski limit of the sets An.

The proof of next auxiliary statement can be found in Proposition 4.7.44 of [12].

Lemma 4.5. Let (O, Σ, μ) be a σ-finite measure space and E be a Banach space. Assume that for fn, f ∈
Lp(O; E) with p ∈ [1, +∞),

fn → f weakly in Lp(O;E),

and fn(u) ∈ G(u) ∈ Pwk(E) for μ-a.e. u ∈ O and n ∈ N, where the notation Pwk(E) represents the sets of 
all nonempty, weakly compact subsets of E. Then

f(u) ∈ conv
(
w- lim sup{fn(u)}n∈N

)
for μ-a.e. on O,

where the symbol conv(B) denotes the closed convex hull of set B.

We consider the control system associated to Problem 3.6 and described by the following inclusion⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′′(t) + A(t, u′(t)) + Bu(t) + γ∗
νζ(t)

+ γ∗
τ ξ(t) + γ∗

νη(t) = f(t) + G(t)φ(t),

ζ(t) ∈ ∂ J1
(
t, γνu

′(t)
)
, ξ(t) ∈ ∂ J2

(
t, γ u′(t), γτu′(t)

)
,

η(t) ∈ ∂cΨ̄
(
γνu

′(t)
)
, u(0) = a, u′(0) = b

(104)

for a.e. t ∈ (0, T ), in which the data A, B, J1, J2, Ψ̄, f , a and b have been given in Section 3, φ represents 
the control parameter which provide “source-like” densities of external forces by the controller operator G.

We suppose that the control parameter φ belongs to the space L2(0, T ; Y ), Y is a separable and reflexive 
Banach space which stands for the space of control variables, and we assume that the controller G satisfies

G ∈ L∞(0, T ;L(Y, V ∗)). (105)

Referring to Theorem 3.8, we know that under the hypotheses of this theorem and the assumption (105), 
the problem (104) has at least one solution y = (u(φ), u′(φ)) ∈ V ×W for each φ ∈ L2(0, T ; Y ). Hence, we 
may define the solution map by

S̄ : L2(0, T ;Y ) � φ → S̄(φ) ⊂ V ×W,

where S̄(φ) represents the solution set of the problem (104) corresponding to φ.
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Our main interest in this section is to look for the minimal time to reach a moving target set, i.e., changing 
in time, a set of desirable states for (u, u′). So in what follows, we shall give two assumptions on the target 
set T and the control constraint set C. Assume that

H(T) the multivalued function T : [0, T ] → 2V×H is measurable and its graph is closed in the topology of 
[0, T ] × V ×H,

H(C) C : [0, T ] → 2Y \{∅} is a multivalued function such that C(t) is closed and convex for all t ∈ [0, T ], and 
‖C(t)‖Y = sup{‖φ‖Y | φ ∈ C(t)} ∈ L∞(0, T ).

Before we formulate the time optimal control problem under consideration, we give two more assumptions 
of the controllability-type and on the elasticity operator E .

A(C) there exists φ ∈ L2(0, T ; Y ) with φ(t) ∈ C(t) such that y(τ) ∈ T(τ) for some τ ∈ (0, T ), where 
y ∈ S̄(φ).

The elasticity operator E(x, ε) = E(x)ε satisfies the coercivity condition

Eijkl(x)εijεkl ≥ β εijεkl for all symmetric tensors ε = (εij) ∈ S
d (106)

and a.e. x ∈ Ω with constant β > 0.

Remark 4.6. If the assumption (106) holds, then the operator B : V → V ∗ defined by (32) is such that

〈Bu, u〉V ∗×V ≥ β‖u‖2
V for all u ∈ V with β > 0. (107)

The time optimal control problem under consideration is described as follows{
find the control and state (φ, y) ∈ L2(0, T ;Y ) × S̄(φ) such that

y(t0) ∈ T(t0), t0 = inf
{
τ ∈ (0, T ) | τ satisfies A(C)

}
.

(108)

Remark 4.7. As far as we know, the time optimal control problem is very important in solid contact mechan-
ics. The above problem can be simply understood by looking for the shortest time so that the deformation 
of the material reaches the desired value. Furthermore, H(T), H(C) and A(C), respectively, represent the 
assumptions of target set (solution set (u, u′)), control constraint set (requirements of φ) and controllability 
condition of our time optimal control problem (108).

Lemma 4.8. Assume the hypotheses of Theorem 3.8, (105) and (107). If

φn → φ weakly in L2(0, T ;Y ), as n → ∞, (109)

and yn ∈ S̄(φn), then there exists a subsequence of {yn}, still denoted in the same way, such that

yn → y strongly in C(0, T ;V ×H) with y ∈ S̄(φ).

Proof. Let {φn} ⊂ L2(0, T ; Y ) be a sequence such that (109) holds. According to Theorem 3.8, Lemma 3.12
and the hypothesis (105), it is clear that for every φn, there exists at least one solution yn = (un, u′

n) ∈ S̄(φn)
of (104) which satisfies the estimate

‖un‖V + ‖u′
n‖W ≤ c

(
1 + ‖a‖V + ‖b‖V + ‖f‖V∗ + ‖G‖L∞(0,T ;L(Y,V ∗))‖φn‖L2(0,T ;Y )

)
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with c > 0. Hence, by passing to a subsequence, if necessary, we get

yn → y weakly in V ×W, as n → ∞.

Next, similarly as in the proof of Lemma 4.1, we can verify that y ∈ S̄(φ). To conclude the proof, we 
are going to check that yn → y strongly in C(0, T ; V × H). From the facts yn = (un, u′

n) ∈ S̄(φn) and 
y = (u, u′) ∈ S̄(φ), we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′′
n(t) + A(t, u′

n(t)) + Bun(t) + γ∗
νζn(t)

+ γ∗
τ ξn(t) + γ∗

νηn(t) = f(t) + G(t)φn(t),

ζn(t) ∈ ∂J1
(
t, γνu

′
n(t)

)
, ξn(t) ∈ ∂J2

(
t, γ u′

n(t), γτu′
n(t)

)
,

ηn(t) ∈ ∂cΨ̄
(
γνu

′
n(t)

)
, un(0) = a, u′

n(0) = b

(110)

for a.e. t ∈ (0, T ) and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u′′(t) + A(t, u′(t)) + Bu(t) + γ∗
νζ(t)

+ γ∗
τ ξ(t) + γ∗

νη(t) = f(t) + G(t)φ(t),

ζ(t) ∈ ∂J1
(
t, γνu

′(t)
)
, ξ(t) ∈ ∂J2

(
t, γ u′(t), γτu′(t)

)
,

η(t) ∈ ∂cΨ̄
(
γνu

′(t)
)
, u(0) = a, u′(0) = b

(111)

for a.e. t ∈ (0, T ). By the hypotheses (A2), (B1)–(B2) and (107), we obtain

t∫
0

〈
A(s, u′

n(s)) −A(s, u′(s)) + Bun(s) −Bu(s), u′
n(s) − u′(s)

〉
V ∗×V

ds

≥ 1
2

t∫
0

d

ds

〈
Bun(s) −Bu(s), un(s) − u(s)

〉
V ∗×V

ds

≥ β‖un(t) − u(t)‖2
V (112)

for all t ∈ [0, T ]. Exploiting (J3) and (J4), we get

t∫
0

〈
γ∗
νζn(s) − γ∗

νζ(s) + γ∗
τ ξn(s) − γ∗

τ ξ(s), u′
n(s) − u′(s)

〉
V ∗×V

ds

=
t∫

0

〈
ζn(s) − ζ(s), γνu′

n(s) − γνu
′(s)

〉
L2(ΓC) ds

+
t∫

0

〈
ξn(s) − ξ(s), γτu′

n(s) − γτu
′(s)

〉
L2(ΓC ;Rd) ds

≤ Ĉ1(1 + ‖u′
n‖Z + ‖u′‖Z)‖u′

n − u′‖Z (113)

for all t ∈ [0, T ] with Ĉ1 > 0, where ζn(t) ∈ ∂J1(t, γνu′
n(t)), ζ(t) ∈ ∂J1(t, γνu′(t)), ξn(t) ∈

∂J2(t, γ u′
n(t), γτu′

n(t)) and ξ(t) ∈ ∂J2(t, γ u′(t), γτu′(t)) for a.e. t ∈ (0, T ). Now, we use (110)–(113), the 
monotonicity of the operator ∂cΨ̄ and the equality
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t∫
0

〈
u′′
n(s) − u′′(s), u′

n(s) − u′(s)
〉
V ∗×V

ds = 1
2‖u

′
n(t) − u′(t)‖2

H

for all t ∈ [0, T ], to derive the estimate

‖u′
n(t) − u′(t)‖2

H + β‖un(t) − u(t)‖2
V ≤ Ĉ1(1 + ‖u′

n‖Z + ‖u′‖Z)‖u′
n − u′‖Z

+ ce‖G‖L∞(0,T ;L(Y ;V ∗))‖φn − φ‖L2(0,T ;Y )‖u′
n − u′‖Z (114)

for all t ∈ [0, T ] with Ĉ1 > 0. Since the embedding W ⊂ Z is compact, we deduce that u′
n → u strongly 

in Z. This convergence, together with the inequality (114) implies

yn = (un, u
′
n) → (u, u′) = y strongly in C(0, T ;V ×H).

This concludes the proof of the lemma. �
The following result provides sufficient conditions for existence of time optimal solution to optimal control 

problem (108).

Theorem 4.9. Assume the hypotheses of Theorem 3.8 and the assumptions (105) and (107). Then the time 
optimal control problem (108) admits an optimal solution (φ, y) ∈ L2(0, T ; Y ) × S̄(φ).

Proof. First, from the definition of t0, we may assume that there exists a sequence {tn} ⊂ (0, T ) which 
satisfies A(C) and such that

tn → t0, as n → ∞.

By the controllability-type assumption A(C) and Theorem 3.8, we know that for each tn, there is a control 
φn ∈ L2(0, T ; Y ) and a state yn ∈ S̄(φn) such that φn(t) ∈ C(t) for a.e. t ∈ (0, T ) and yn(tn) ∈ T(tn). Next, 
since the sequence {φn} is bounded in L2(0, T ; Y ) (this follows from the assumption H(C)), thus we may 
suppose that

φn → φ weakly in L2(0, T ;Y ), as n → ∞. (115)

Because C(t) is a weak compact set of Y for a.e. t ∈ (0, T ), by using (115) and Lemma 4.5, we obtain

φ(t) ∈ conv
(
w- lim sup{φn(t)}n∈N

)
⊂ conv(C(t)) for a.e. t ∈ (0, T ).

Hence, according to H(C), we get φ(t) ∈ C(t) for a.e. t ∈ (0, T ).
Next, in view of Lemma 4.8 and (115), we have

yn → y strongly in C(0, T ;V ×H) with y ∈ S̄(φ),

which implies that

‖yn(tn) − y(t0)‖V×H ≤ ‖yn(tn) − y(tn)‖V×H + ‖y(tn) − y(t0)‖V×H

≤ sup
t∈[0,T ]

‖yn(t) − y(t)‖V×H + ‖y(tn) − y(t0)‖V×H → 0, as n → ∞.

Therefore, yn(tn) → y(t0) in V × H, as n → ∞. So now, we use the hypothesis H(T) and the fact 
yn(tn) ∈ T(tn), to obtain that y(t0) ∈ T(t0). The proof is completed. �
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4.3. Maximum stay control problem

The goal of this subsection is to regulate the control system (104) in such a way that its state y =
(u, u′) ∈ V × W stays in a preferred region T(·) in maximum time. The maximum stay control problem 
under consideration reads as follows{

find the control and state (φ, y) which solves

sup
{
λ(y) | y ∈ S̄(φ), φ ∈ L2(0, T ;Y ), φ(t) ∈ C(t)

}
,

(116)

where the function λ : C(0, T ; V ×H) → R+ is defined by

λ(y) = meas
(
{t ∈ [0, T ] | y(t) ∈ T(t)}

)
.

Remark 4.10. In contrast to (108), we call (116) by the maximum stay control problem which is due to that 
we would like to control the material deformation as slow as possible by controller, which is also a major 
control issue in solid contact mechanics.

The following result concerns existence of solutions to problem (116).

Theorem 4.11. Assume that the hypotheses of Theorem 4.9 hold. Then the problem (116) admits a solution.

Proof. To start the proof, firstly, it is necessary to introduce a new function

λ̂ : L2(0, T ;Y ) � φ → sup
{
λ(y) | y ∈ S̄(φ)

}
,

thus the maximum stay control problem (116) can be written as

sup
{
λ̂(φ) | φ ∈ L2(0, T ;Y ) with φ(t) ∈ C(t)

}
.

The proof is based on the Weierstrass-type theorem which states that an upper semicontinuous function 
on a compact set attains a maximum value, and the nonempty set of maximizers is compact (cf. e.g. 
Theorem 2.43 of [1]). To this end, we shall prove that the function λ̂ is upper semicontinuous on L2(0, T ; Y )
endowed with the weak topology, and the set of selections{

φ ∈ L2(0, T ;Y ) | φ(t) ∈ C(t) for a.e. t ∈ (0, T )
}

is a weakly compact subset of L2(0, T ; Y ).
By observation, we know that λ̂ is a marginal function, thus, to prove the weakly upper semicontinuity 

of λ̂, we only need to show

(i) the solution set

S̄ : L2(0, T ;Y ) → 2C(0,T ;V×H) is upper semicontinuous

in topology of (w − L2(0, T ; Y ) × C(0, T ; V ×H)),
(ii) the function λ : C(0, T ; V ×H) → R+ is upper semicontinuous.

In fact, the proof of condition (i) can be directly from Lemma 4.8.
Next, we are going to show the condition (ii). Let {yn} ⊂ C(0, T ; V ×H) be a sequence such that yn → y

in C(0, T ; V ×H). Define
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Dn = {t ∈ [0, T ] | yn(t) ∈ T(t)} = {t ∈ [0, T ] | d(yn(t),T(t)) = 0}.

Due to the assumption H(T), we know that the multifunction T(·) is measurable, so is t → d(yn(t), T(t)). 
This implies that Dn is a measurable subset of [0, T ]. Then, let t ∈ lim supn→∞ Dn. By the definition 
of the Kuratowski upper limit of sets, there exists tnk

∈ Dnk
such that tnk

→ t, as k → ∞. Therefore 
ynk

(tnk
) ∈ T(tnk

). Using the assumption H(T) again and the convergence yn → y in C(0, T ; V × H), we 
immediately get y(t) ∈ T(t). So t ∈ D, where D = {t ∈ [0, T ] | y(t) ∈ T(t)}. Hence, we have showed that

lim sup
n→∞

Dn ⊂ D.

Furthermore, we have

lim sup
n→∞

meas(Dn) ≤ lim sup
n→∞

meas
( ⋃
k≥n

Dk

)
= lim

n→∞
meas

( ⋃
k≥n

Dk

)
= meas

( ⋂
n≥1

⋃
k≥n

Dk

)
≤ meas

(
lim sup
n→∞

Dn

)
≤ meas(D).

This implies that the function λ is upper semicontinuous.
Finally, since the hypothesis H(C), we know the set C(t) is weakly compact in Y for all t ∈ [0, T ], which 

together with Theorem 4.5.25 in [12], we see the set of selections

{
φ ∈ L2(0, T ;Y ) | φ(t) ∈ C(t) for a.e. t ∈ (0, T )

}
is a weakly compact subset of L2(0, T ; Y ). So now, applying the aforementioned Weierstrass-type theorem, 
we obtain that the problem (116) has a solution. This concludes the proof of the theorem. �
Appendix A

In the finally part we recall some basic mathematical background material that is employed in our main 
paper. For the detailed exposition, we refer, e.g. to the monographs [7], [9], [12], [24], [27], [28] and [35].

We start with the preparatory material on the theory of monotone type operators. Let X be a Banach 
space, X∗ denotes its dual space. We employ the classical notation

D(A) =
{
u ∈ X |Au 
= ∅

}
and R(A) =

⋃
u∈X

Au

to denote the domain and range of multivalued operator A : X → 2X∗ , respectively. The graph of A is 
defined by

Gr(A) =
{
(u, u∗) ∈ X ×X∗ |u∗ ∈ Au

}
.

Recall that a multivalued operator A : X → 2X∗ is said to be

(i) strongly quasi-bounded, if from the conditions

〈u∗, u〉X∗×X ≤ M, ‖u‖X ≤ M, (u, u∗) ∈ Gr(A), M > 0,

we can derive that ‖u∗‖X∗ ≤ K(M) with K(M) > 0,
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(ii) strongly monotone, if for all (u, u∗), (v, v∗) ∈ Gr(A), there exist two constants α > 0 and q > 1 such 
that

〈u∗ − v∗, u− v〉X∗×X ≥ α‖u− v‖qX ,

(iii) maximal monotone, if A is monotone, and the condition

〈u∗ − v∗, u− v〉X∗×X ≥ 0 for all (v, v∗) ∈ Gr(A) and (u, u∗) ∈ X ×X∗

implies that (u, u∗) ∈ Gr(A),
(iv) hemicontinuous, if the mapping r → 〈A(u + rv), w〉X∗×X is continuous on [0, 1] for all u, v, w ∈ X,
(v) demicontinuous, if for all un, u ∈ X, un → u strongly in X implies that Aun → Au weakly in X∗.

The space of linear and bounded operators between Banach spaces E and F is denoted by L(E; F ). Next, 
we recall the definitions of the pseudomonotonicity and the generalized pseudomonotonicity for multivalued 
operator A : X → 2X∗ .

Definition A.1. Let X be a reflexive Banach space. A multivalued operator A : X → 2X∗ is called

(i) pseudomonotone, if it satisfies the following three conditions
(a) the sets Au are nonempty, bounded, convex and closed for all u ∈ X,
(b) A is upper semicontinuous from each finite dimensional subspace of X to X∗ endowed with the 

weak topology,
(c) from the convergence un → u weakly in X, where {un} ⊂ X, {u∗

n} ⊂ X∗, u∗
n ∈ Aun for all n ≥ 1, 

and

lim sup〈u∗
n, un − u〉X∗×X ≤ 0,

we have that for each v ∈ X, there exists u∗(v) ∈ Au such that

〈u∗(v), u− v〉X∗×X ≤ lim inf 〈u∗
n, un − v〉X∗×X .

(ii) generalized pseudomonotone, if for any sequences {un} ⊂ X, {u∗
n} ⊂ X∗ with u∗

n ∈ Aun such that 
un → u weakly in X, u∗

n → u∗ weakly in X∗ and

lim sup〈u∗
n, un − u〉X∗×X ≤ 0,

we have u∗ ∈ Au and 〈u∗
n, un〉X∗×X → 〈u∗, u〉X∗×X .

By the definitions of the pseudomonotonicity and the generalized pseudomonotonicity for multivalued 
operator A : X → 2X∗ , it clear that if A is pseudomonotone, then it is generalized pseudomonotone. The 
converse holds under the additional condition that the sets Au are nonempty, bounded, closed, and convex 
for all u ∈ X.

The proof of the following result can be found in Proposition 2.4 in [27].

Proposition A.2. Let X be a reflexive Banach space. If the multivalued operators A1, A2 : X → 2X∗ are 
pseudomonotone, then so is A1 + A2.

In what follows, we introduce the definitions of coercivity and L-pseudomonotonicity for multivalued 
operators.
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Definition A.3. Let X be a Banach space. If there exists a function c : R → R with limt→+∞ c(t) = +∞
such that

〈ζ, u〉X∗×X ≥ c(‖u‖X)‖u‖X with ζ ∈ Au for all u ∈ X,

then we say that the multivalued operator A : X → 2X∗ is coercive.

Definition A.4. Assume that X is a reflexive Banach space, and an operator L : X ⊃ D(L) → X∗ is linear 
and maximal monotone. We say that the multivalued operator A : X → 2X∗ is L-pseudomonotone or 
pseudomonotone with respect to D(L), if the conditions (a) and (b) of Definition A.1 are satisfied and the 
following condition holds

(d) for any sequences {un} ⊂ D(L) and u∗
n ∈ Aun such that Lun → Lu weakly in X∗, u∗

n → u∗ weakly in 
X∗ for all n ≥ 1, and

lim sup〈u∗
n, un − u〉X∗×X ≤ 0,

we deduce that u∗ ∈ Au and 〈u∗
n, un〉X∗×X → 〈u∗, u〉X∗×X .

Remark A.5. From Definitions A.1(i)–(ii) and A.4, it is clear that if a multivalued operator is pseudomono-
tone, then it is generalized pseudomonotone, and hence it is also L-pseudomonotone.

Below we list some notation, definitions and necessary properties on the convex subdifferential and its 
generalization.

Definition A.6 (Convex subdifferential). Assume that a function ϕ : X → R ∪ {∞} is convex and defined on 
a Banach space X, and u ∈ X. Then the set of all u∗ ∈ X∗ such that

ϕ(u + v) − ϕ(u) ≥ 〈u∗, v〉X∗×X for all v ∈ X

is called the convex subdifferential of ϕ at point u, and it is denoted by ∂cϕ(u).

Given any convex function ϕ : X → R ∪ {∞}, we denote its effective domain by dom(ϕ) = {x ∈ X |
ϕ(x) < ∞}.

Let O be a bounded, open, and connected subset of Rn, n ≥ 1. Define the functional Ψ: L2(O; X) →
R ∪ {∞} by

Ψ(u) =
∫
O

ϕ(u(x)) dx for all u ∈ L2(O;X). (117)

We may derive the following interesting property of the subdifferential of the convex integral functional. 
Its proof is presented here for completeness.

Proposition A.7. Assume that the functional Ψ is given by (117) and the function ϕ : X → R ∪{∞} is convex. 
Then for all (u, u∗) ∈ L2(O; X) × L2(O; X∗), we have that u∗ ∈ ∂cΨ(u) if and only if u∗(x) ∈ ∂cϕ(u(x))
for a.e. x ∈ O.

Proof. Firstly, by the definition (117), since the function ϕ is convex, it follows that the functional 
Ψ: L2(O; X) → R ∪ {∞} is convex. Hence according to Definition A.6, the subdifferential ∂cΨ(·) is well 
defined.
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Next, assume that (u, u∗) ∈ L2(O; X) × L2(O; X∗) and u∗(x) ∈ ∂cϕ(u(x)) for a.e. x ∈ O. In view of 
Definition A.6 again, we have

ϕ(v(x)) − ϕ(u(x)) ≥
〈
u∗(x), v(x) − u(x)

〉
X∗×X

for all v ∈ L2(O, X) and a.e. x ∈ O. From (117), we obtain

Ψ(v) − Ψ(u) =
∫
O

(
ϕ(v(x)) − ϕ(u(x))

)
dx ≥

∫
O

〈
u∗(x), v(x) − u(x)

〉
X∗×X

dx

=
〈
u∗, v − u

〉
L2(O;X∗)×L2(O;X) for all v ∈ L2(O, X).

This implies that u∗ ∈ ∂cΨ(u).
Conversely, let (u, u∗) ∈ L2(O; X) ×L2(O; X∗) and u∗ ∈ ∂cΨ(u). By Definition A.6 once more, we deduce 

that for all w ∈ L2(O, X), we have∫
O

(
ϕ(w(x)) − ϕ(u(x))

)
dx ≥

∫
O

〈u∗(x), w(x) − u(x)〉X∗×X dx. (118)

Let S be any measurable subset of O and

w(x) =
{
ξ if x ∈ S,

u(x) if x /∈ S,

where ξ ∈ X is arbitrary. From (118), we directly get∫
S

(
ϕ(ξ) − ϕ(u(x))

)
dx ≥

∫
S

〈
u∗(x), ξ − u(x)

〉
X∗×X

dx.

Since S is arbitrary, we may conclude that ϕ(ξ) − ϕ(u(x)) ≥
〈
u∗(x), ξ − u(x)

〉
X∗×X

for a.e. x ∈ O. Hence 
u∗(x) ∈ ∂cϕ(u(x)) for a.e. x ∈ O. This completes the proof. �

In what follows, let X be a Banach space. Recall that a function ϕ : X → R is said to be locally Lipschitz, 
if there exists a neighborhood N (u) of u ∈ X such that

|ϕ(y) − ϕ(z)| ≤ Ku‖y − z‖X for all y, z ∈ N (u) with Ku > 0.

The generalized directional derivative in the sense of Clarke for ϕ at point u ∈ X in the direction v ∈ X is 
defined by

ϕ0(u; v) = lim sup
y→u,λ↓0

ϕ(y + λv) − ϕ(y)
λ

.

Definition A.8 (Clarke subdifferential). Let ϕ : X → R be a locally Lipschitz function defined on a Banach 
space X. The Clarke subdifferential (or the generalized gradient) of ϕ at point u ∈ X is the subset of the 
dual space X∗ given by

∂ϕ(u) = { ζ ∈ X∗ | ϕ0(u; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X }.
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To state the definition of a regular function in the sense of Clarke, we need to recall the definition of the 
classical directional derivative for function ϕ : X → R at point u ∈ X in the direction v ∈ X, which is given 
by

ϕ′(u; v) = lim
λ↓0

ϕ(u + λv) − ϕ(u)
λ

.

Definition A.9 (Clarke regular function). If the function ϕ : X → R is locally Lipschitz on a Banach space X, 
then we say that ϕ is regular in the sense of Clarke at point u ∈ X, if

(a) the classical directional derivative ϕ′(u; v) exists for all v ∈ X,
(b) ϕ0(u; v) = ϕ′(u; v) for all v ∈ X.

We conclude the paper with the definition of marginal function, for the details, refer e.g. to page 51 of 
the monograph [2].

Definition A.10 (Marginal function). Let X and Y be two sets, G be a set-valued map from Y to X and W
be a real-valued function defined on X × Y . Consider the family of maximization problems

p(y) = sup
x∈G(y)

W (x, y),

which defined upon the parameter y. Thus, the function p is called the marginal function.
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