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We derive a new form of maximum principle, applicable to a vector field with 
nonnegative divergence in a connected, oriented, complete noncompact Riemannian 
manifold. We then use it to obtain some applications to Killing vector fields. 
More precisely, we first show that, under a reasonable condition at infinity, 
an orientable, connected, complete noncompact hypersurface of a Riemannian 
manifold, transversal to a Killing vector field of constant norm and with nonnegative 
second fundamental form, is totally geodesic. We also deal with the case of 
a hypersurface of constant mean curvature – instead of nonnegative second 
fundamental form, and show that it has to be totally geodesic too.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In Differential Geometry, several important geometric situations are analytically modeled and studied 
with the aid of linear or quasilinear elliptic partial differential operators. Therefore, it is not surprising that 
several versions of the maximum principle play a major role in the theory, as a quick glance through [3]
corroborates.

In this paper, we derive, in Theorem 2.2, a form of maximum principle which is appropriate for controlling 
the behavior of a smooth vector field, satisfying a suitable set of hypotheses, on a connected, complete non-
compact Riemannian manifold. It is the analogue of the simple fact that, on such a manifold, a nonnegative 
subharmonic function that vanishes at infinity actually vanishes identically.

Then, in Section 3 we present some relevant geometric applications of our maximum principle to Killing 
vector fields. Further applications, to Lorentzian and Kählerian Geometry, will appear in [1] and [2].
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2. A maximum principle for vector fields

Our version of maximum principle for vector fields is the object of the coming result. In order to properly 
state it, if M is a connected, complete noncompact Riemannian manifold, we let d(·, o) : M → [0, +∞)
stand for the Riemannian distance of M , measured from a fixed point o ∈ M . Thus, if f ∈ C0(M) satisfies

lim
d(x,o)→+∞

f(x) = 0,

we shall simply say that f converges to zero at infinity.
For later use, we recall Proposition 2.1 of [4].

Proposition 2.1 ([4]). Let M be oriented and L1(M) denote the space of Lebesgue integrable functions on M . 
If Y ∈ X(M) is such that |Y | ∈ L1(M) and divM (Y ) does not change sign on M , then divM (Y ) ≡ 0 on M .

Theorem 2.2. Let M be a connected, oriented, complete noncompact Riemannian manifold, and let X ∈
X(M) be a vector field on M . Assume that there exists a nonnegative, non-identically vanishing function 
f ∈ C∞(M), converging to zero at infinity and such that 〈∇f,X〉 ≥ 0. If divMX ≥ 0 on M , then:

(a) 〈∇f,X〉 ≡ 0 on M .
(b) divMX ≡ 0 on M \ f−1(0).
(c) divMX ≡ 0 on M if f−1(0) has zero Lebesgue measure.

Proof. Let m denote the Lebesgue measure on M , and L1(M) the space of Lebesgue integrable functions 
on M . The hypotheses on f assure that it is bounded above on M . Assume, with no loss of generality, that 
supM f = a > 1.

We shall first show that there exist C1 functions φ, ψ : [0, a] → R+, with strictly positive derivatives and 
satisfying the following conditions:

(i) φ ◦ f = φ(f) ∈ L1(M);
(ii) (ψ ◦ f)|X| = ψ(f)|X| is bounded on M .

To this end, for each integer k ≥ 1, let

Ak =
{
x ∈ M ; f(x) > 1

k

}
.

Note that Ak ⊂ Ak+1 and 0 < m(Ak) < ∞ for every k ≥ 1. This second relation follows from the fact that 
f ≥ 0 is smooth, non identically zero and converges to 0 at infinity. Moreover, the nonnegativity of f also 
gives

M = f−1(0) ∪
⋃
k≥1

Ak.

In order to get (i), set φ(a) = 1
m(A1) , φ

( 1
k

)
= 1

2km(Ak+1) and note that φ
(

1
k+1

)
< φ

(
1
k

)
< φ(a) for k ≥ 1. 

Now, extend φ to a C1 strictly increasing function on (0, a] satisfying

0 < φ′(t) < 2
(
φ( 1

k ) − φ( 1
k+1 )

1 − 1

)
(1)
k k+1
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Fig. 1. Extending φ to (0, a].

for every t ∈
[

1
k+1 ,

1
k

]
(Fig. 1 shows that, in order to accomplish this, one has to ensure that φ does not 

oscillate too fast).
Letting φ(0) = 0, we claim that φ is C1 in [0, a]. Firstly, for 0 < t < 1

j , there exists k ≥ j such that 
1

k+1 ≤ t < 1
k . Therefore,

0 <
φ(t)
t

<
φ( 1

k )
1

k+1
= k + 1

2km(Ak+1)
k−−→ 0,

whence φ′(0) = 0. On the other hand,

φ( 1
k ) − φ( 1

k+1 )
1
k − 1

k+1
= k(k + 1)(2m(Ak+2) −m(Ak+1))

2k+1m(Ak+2)m(Ak+1)
<

k(k + 1)
2km(Ak+1)

k−−→ 0,

so that (1) gives limt→0 φ
′(t) = 0 = φ′(0), as wished.

Finally, since φ(f) = 0 in f−1(0), we have

∫
M

φ(f)dM =
∫
A1

φ(f)dM +
∞∑
k=1

∫
Ak+1\Ak

φ(f)dM

≤
(

sup
A1

φ(f)
)
m(A1) +

∞∑
k=1

(
sup

Ak+1\Ak

φ(f)
)
m(Ak+1 \Ak)

< φ(a)m(A1) +
∞∑
k=1

φ

(
1
k

)
m(Ak+1)

= 1 +
∞∑
k=1

1
2k = 2,

and this establishes (i).
In order to get (ii), let sk = supAk

|X| +1, ψ(a) = 1
s1

and ψ
( 1
k

)
= 1

2ksk+1
for k ≥ 1. Here again, note that 

ψ
(

1
k+1

)
< ψ

( 1
k

)
< ψ(a) for k ≥ 1. Setting ψ(0) = 0 and arguing as for φ, we can extend ψ to a strictly 

increasing C1 function on [0, a], with positive derivative. It now suffices to note that, since ψ(f)|X| = 0 in 
f−1(0), ψ(f)|X| < 1 in A1 and ψ(f)|X| < 1

2k in Ak+1 \Ak and for every k ≥ 1, we have ψ(f)|X| bounded 
on M .

Having constructed φ and ψ as above, let Y = φ(f)ψ(f)X, so that Y ∈ C1(M) and |Y | ∈ L1(M). 
Moreover, the properties of φ and ψ, together with our hypotheses on f and X, give
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divM (Y ) = φ(f)ψ(f)divM (X) + (φ′(f)ψ(f) + φ(f)ψ′(f))〈∇f,X〉 ≥ 0 (2)

on M . Hence, Proposition 2.1 guarantees that divMY ≡ 0 on M .
Now, since φ′(f)ψ(f) + φ(f)ψ′(f) > 0 outside f−1(0), (2) gives 〈∇f, X〉 = 0 outside f−1(0). On the 

other hand, for x ∈ f−1(0) we must have ∇f(x) = 0, since x is a point of minimum of f . Thus, 〈∇f, X〉 = 0
on M . Relation (2) now reduces to φ(f)ψ(f)divM (X) = 0, so that divM (X) = 0 outside f−1(0) (for φ(f)
and ψ(f) are positive there). Then, the open set {p ∈ M ; divM (X)(p) > 0} is contained in f−1(0), so that 
it is empty if m

(
f−1(0)

)
= 0. �

3. Applications to Killing vector fields

In this section, we consider a Riemannian manifold (Mn+1
, 〈·, ·〉) endowed with a non-vanishing Killing 

vector field Z of constant norm. Replacing Z by Z
|Z| , if necessary, we can assume that |Z| = 1, and we do 

so hereafter.
If Mn ⊂ M

n+1 is an orientable hypersurface of M transversal to Z, then M can be oriented by the choice 
of a unit normal vector field N such that 〈N, Z〉 > 0.

We let θ : M → [0, π2 ) denote the acute angle between N and Z at each point, given by the equality

〈N,Z〉 = cos θ.

If θ vanishes identically, then N is identical to Z. In such a case, for p ∈ M , u, v ∈ TpM and letting ∇
denote the Levi-Civita connection of M , the Killing condition of X allows us to compute

〈Apu, v〉 = −〈∇uN, v〉 = −〈∇uZ, v〉 = 〈∇vZ, u〉 = −〈Apv, u〉,

where A stands for the Weingarten operator (or second fundamental form) of M with respect to N . Since A
is symmetric, this implies Ap = 0, and the immateriality of the choice of p shows that M is totally geodesic.

If θ does not vanish identically, we want suitable conditions on A that still force M to be totally geodesic. 
To this end, if M is complete and noncompact, we say that N converges to Z at infinity provided θ converges 
to 0 at infinity.

We can now state and prove a first Bernstein-type result, which reads as follows.

Theorem 3.1. Let Mn+1 be a Riemannian manifold and Mn ⊂ M
n+1 be a connected, orientable, complete 

noncompact hypersurface of M , transversal to a unit Killing vector field Z of M and oriented by the choice 
of a unit normal vector field N such that 〈N, Z〉 > 0. If the second fundamental form A of M with respect 
to N is nonnegative and N converges to Z at infinity, then M is totally geodesic.

Proof. Setting f = 1 −〈N, Z〉 on M , we get f ≥ 0. If f vanishes identically, then N is identical to Z and we 
have already seen that M is totally geodesic. Therefore, we may assume that f does not vanish identically.

Let Z� stand for the orthogonal projection of Z on M . The Killing condition on Z gives the classical 
formulas

〈∇f, Z�〉 = 〈AZ�, Z�〉 and divM (Z�) = 〈N,Z〉tr(A),

where tr(A) stands for the trace of the second fundamental form.
In turn, the expressions above, together with the nonnegativity of A and the choice of N , give

〈∇f, Z�〉 ≥ 0 and divM (Z�) ≥ 0.
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Moreover, since N converges to Z at infinity, we get that f converges to 0 at infinity. Hence, Theorem 2.2
allows us to conclude that 〈∇f, Z�〉 ≡ 0 on M and divM (Z�) ≡ 0 on M \ F , where F = f−1(0). However, 
since 〈N, Z〉 > 0 on M , we conclude that tr(A) ≡ 0 on M \ F , and hence A ≡ 0 on M \ F .

Now, note that F = {x ∈ M ; N(x) = Z(x)}. If x is in the interior of F , then N = Z in a neighborhood 
of x, whence A ≡ 0 in such a neighborhood. In particular, A ≡ 0 in the interior of F and, since it already 
vanishes in M \ F , we conclude that A ≡ 0 on all of M . Therefore, M is totally geodesic. �

Essentially the same argument as the one presented in the proof of the previous result allows us to 
approach the case of a connected, complete noncompact spacelike hypersurface of a Lorentzian ambient 
space (in such a case, orientability comes for free). This gives a second Bernstein-type result, quoted below.

Theorem 3.2. Let Mn+1 be a Lorentzian manifold and Mn ⊂ M
n+1 be a connected, complete noncompact 

spacelike hypersurface of M , transversal to a unit timelike Killing vector field Z of M and oriented by the 
choice of a unit timelike normal vector field N such that 〈N, Z〉 < 0. If the second fundamental form A of 
M with respect to N is nonnegative and N converges to Z at infinity, then M is totally geodesic.

Interesting particular cases of Theorems 3.1 and 3.2 are those of a Riemannian or Lorentzian group, 
namely, a Lie group equipped with a biinvariant Riemannian or Lorentzian metric, respectively. Indeed, in 
either such case, every element of the Lie algebra of the group is a Killing vector field of constant norm. 
Hence, we get the following corollaries, which encompass Rn+1 and Ln+1 with their standard metrics.

Corollary 3.3. Let Gn+1 be a Riemannian group with Lie algebra g, and Mn ⊂ Gn+1 be a connected, 
orientable, complete noncompact hypersurface of G, transversal to Z ∈ g and oriented by the choice of a 
unit normal vector field N such that 〈N, Z〉 > 0. If the second fundamental form A of M with respect to N
is nonnegative and N converges to Z at infinity, then M is totally geodesic.

Corollary 3.4. Let Gn+1 be a Lorentzian group with Lie algebra g, and Mn ⊂ Gn+1 be a connected, complete 
noncompact spacelike hypersurface of G, transversal to a timelike Z ∈ g and oriented by the choice of a unit 
normal vector field N such that 〈N, Z〉 < 0. If the second fundamental form A of M with respect to N is 
nonnegative and N converges to Z at infinity, then M is totally geodesic.

We end this section by stating a relevant particular case of Corollary 3.3.

Corollary 3.5. Let Mn ⊂ R
n+1 be an entire graph over Rn. If the second fundamental form of M with respect 

to the upward-pointing unit normal vector field N is nonnegative and N converges to a fixed vector V at 
infinity, then M is a hyperplane orthogonal to V .

If we drop the requirement that the second fundamental form is nonnegative definite and add the hy-
pothesis that the hypersurface is of constant mean curvature, then we get a second Bernstein-type result.

Theorem 3.6. Let Mn+1 be an Einstein Riemannian manifold and Mn ⊂ M
n+1 be a connected, orientable, 

complete noncompact hypersurface of M with constant mean curvature, transversal to a unit Killing vector 
field Z of M and oriented by the choice of a unit normal vector field N such that 〈N, Z〉 > 0. If N converges 
to Z at infinity, then M is totally geodesic.

Proof. We denote by ∇ and ∇ the Levi-Civita connections of M and M , respectively, and by R the curvature 
tensor of M .

Let A be the second fundamental form of M with respect to N , let H be the constant value of the mean 
curvature and Z� be the orthogonal projection of Z on M . We shall compute divM (AZ�) and in order 
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to do this, we fix p ∈ M and let (e1, . . . , en) be a local orthonormal frame field on M , geodesic at p and 
diagonalizing A at p. Then, at p, we get

divM (AZ�) =
n∑

i=1
〈∇eiAZ�, ei〉 =

n∑
i=1

〈−∇ei∇Z�N, ei〉

=
n∑

i=1
〈R(Z�, ei)N −∇Z�∇eiN −∇[ei,Z�]N, ei〉

= −RicM (Z�, N) + Z�(nH) +
n∑

i=1
〈Aei,∇eiZ

�〉

= 〈N,Z〉|A|2.

As in the proof of Theorem 3.1, we take f = 1 − 〈N, Z〉 on M and assume that f does not vanish 
identically. Since f converges to 0 at infinity and the vector field AZ� satisfies

〈∇f,AZ�〉 = |AZ�|2 ≥ 0 and divM (AZ�) ≥ 0,

Theorem 2.2 gives 〈∇f, AZ�〉 ≡ 0 on M and divM (AZ�) ≡ 0 on M \F , where F = f−1(0). Arguing again 
as in the proof of Theorem 3.1, we conclude that M is totally geodesic. �
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