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The authors present sharp Landen transformation inequalities for the hypergeo-
metric functions 2F1(a, b; a + b; x) and 2F1(a, b; (a + b + 1)/2; x), by showing the 
monotonicity properties of certain combinations defined in terms of one of these 
two hypergeometric functions and linear (or rational) functions, thus giving com-
plete solutions of the problem on extending the well-known Landen transformation 
identities for the complete elliptic integrals of the first kind to these two hyper-
geometric functions, and substantially improving the related known results. As 
applications of these results, sharp Landen transformation inequalities are obtained 
for the generalized Grötzsch ring functions and the modular functions, which ap-
pear in Ramanujan’s modular equations. Some other properties of hypergeometric 
functions and several properties of the Ramanujan constant are obtained, too.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let N = {n| n is a positive integer} as usual, and N0 = N ∪ {0}. For real numbers a, b and c with 
c �= 0, −1, −2, · · · , the Gaussian hypergeometric function is defined by

F (a, b; c;x) = 2F1(a, b; c;x) =
∞∑

n=0

(a, n)(b, n)
(c, n)n! xn, |x| < 1, (1.1)

where (a, 0) = 1 for a �= 0, and (a, n) = a(a + 1)(a + 2) · · · (a + n − 1) for n ∈ N is the shifted factorial 
function. The function F (a, b; c; x) is said to be zero-balanced if c = a + b. It is well known that F (a, b; c; x), 
as a very important special function, has wide applications in mathematics, physics, as well as in some 
fields of engineering, and many other special functions in mathematical physics and even some elementary 
functions are particular or limiting cases of F (a, b; c; x) (cf. [6,2,1,8,7,5,12–16,19,20,22,28,39,40]).
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Throughout this paper, by the symmetry of the parameters a and b in the function F (a, b; a + b; x), we 
assume that a ≤ b, without loss of generality. For each r ∈ [0, 1], we let r ′ =

√
1 − r2, and for a, b ∈ (0, ∞)

with c = a + b and C = (c + 1)/2, let
⎧⎪⎪⎨
⎪⎪⎩
F (r) = F (a, b; c; r), F+(r) = F (a + 1, b + 1; c + 2; r), F0(r) = F

(1
2 ,

1
2 ; 1; r

)
,

F3/2(r) = F
(3

2 ,
3
2 ; 3; r

)
, G0(r) = F

(1
2 ,

1
2 ; 2; r

)
, G0(r) = F

(3
2 ,

3
2 ; 2; r

)
,

F (r) = F (a, b;C; r), G(r) = F (a, b; c + 1; r), G(r) = F (a + 1, b + 1;C + 1; r).
(1.2)

Observe that the conditions a ≤ b and c = a + b imply that

a ≤ c/2 ≤ b and ab = a(c− a) ≤ c2/4. (1.3)

By (1.3), for a, b ∈ (0, ∞) with c = a + b, we have the following simple relations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c ≤ 1 ⇒ ab ≤ c2/4 ≤ c/4 ≤ 1/4, 1/a + 1/b ≤ 4 ⇔ ab ≥ c/4,
ab ≥ (11 − 7c)/16 ⇒

(
c2/4

)
− (11 − 7c)/16 = (c− 1)(4c + 11)/16 ≥ 0 ⇔ c ≥ 1,

ab ≥ (c + 1)/8 ⇒
(
c2/4

)
− (c + 1)/8 = (c− 1)(2c + 1)/8 ≥ 0 ⇔ c ≥ 1,

ab ≥ c/4 ⇒
(
c2/4

)
− c/4 ≥ 0 ⇔ c ≥ 1, (5/4) − c < ab < (c + 1)/8 ⇒ c > 1,

(1.4)

which will be frequently used in our results and their proofs.
One of the most important special cases of F (a, b; c; x) is the complete elliptic integral K (r) of the first 

kind associated with the modulus r ∈ (0, 1), which is defined by

K (r) = π

2F
(

1
2 ,

1
2 ; 1; r2

)
=

π/2∫
0

dt√
1 − r2 sin2 t

. (1.5)

The complete elliptic integral of the first kind associated with the complementary modulus r ′ is denoted by 
K ′(r) = K (r ′). Clearly, K (0) = π/2 and K (1−) = ∞. It is well known that K (r) and K ′(r) satisfies 
the following Landen transformation identities

K

(
2
√
r

1 + r

)
= (1 + r)K (r), K

(
1 − r

1 + r

)
= 1 + r

2 K ′(r) (1.6)

(cf. [6,1,7,5,19]), or equivalently,

F0

(
4r

(1 + r)2

)
= (1 + r)F0

(
r2) , F0

((
1 − r

1 + r

)2
)

= 1 + r

2 F0
(
r ′ 2) . (1.7)

More general forms of (1.7) were given in [13, Entries 3 & 5, p.50]. Some other transformations and identities 
were given in [1, pp.560-561] and in [13–17]. The following question is natural:

Question 1.1. To what extent, can the identities in (1.7) be extended to the zero-balanced hypergeometric 
function F (a, b; a + b; x) or even some other hypergeometric functions for a, b ∈ (0, ∞) and r ∈ (0, 1)?

In [26], the authors tried to extend (1.7) to F (a, b; a + b; r) by studying the monotonicity properties 
of the function ϕ(r) ≡ (1 +

√
r)F (r) − F (x) for a, b ∈ (0, ∞) and (0, 1), where x = 4

√
r/(1 +

√
r)2. It 

was stated in [26, Theorem 1.2(1)] that for a, b ∈ (0, 1) with c = a + b ≤ 1, ϕ is increasing from (0, 1)
onto (0, δ) so that F (4r/(1 + r)2) ≤ (1 + r)F (r2) ≤ δ + F (4r/(1 + r)2), where δ = (R − log 16)/B. 
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Here and hereafter, B = B(a, b) and R = R(a, b) are defined by (2.1) and (2.4) in Section 2, respectively. 
Unfortunately, in [26, Proof of Theorem 1.2(1)], the derivative dx/dr = x(1 −√

r)/[2r(1 +
√
r)] was misprinted 

as dx/dr = x(1 − √
r)/[2

√
r(1 +

√
r)], thus resulting in a gap as pointed out by A. Baricz in his email to 

the second author of [26] in June 2005. A correct proof of [26, Theorem 1.2(1)] was given in [29]. Moreover, 
it was proved in [29, Lemma 3.2] that if a + b ≤ 1 (1/a + 1/b ≤ 4), then ϕ is increasing (decreasing) from 
(0, 1) onto (0, δ) ((δ, 0), respectively). The following results were also proved in [29].

Theorem 1.2. (1) [29, Theorem 2.2 and Corollary 2.3] For a, b ∈ (0, ∞) with ab ≤ 1/4, and for r ∈ (0, 1),

1 ≤ (1 + r)F
(
r2) /F (4r/(1 + r)2

)
≤ B/π, (1.8)

πF
(
r2) /B < F

(
4r/(1 + r)2

)
< 2F

(
r2) . (1.9)

If 1/a + 1/b ≤ 4, then for r ∈ (0, 1), each inequality in (1.8) is reversed, and

F
(
r2) < F

(
4r/(1 + r)2

)
< 2πF

(
r2) /B. (1.10)

(2) ([29, Theorem 2.4]) For r ∈ (0, 1) and a, b ∈ (0, ∞) with a + b ≤ 1,

0 ≤ (1 + r)F
(
r2)− F

(
4r/(1 + r)2

)
≤ (R− log 16)/B. (1.11)

If 1/a + 1/b ≤ 4, then each inequality in (1.11) is reversed.
(3) ([29, Theorem 2.5]) For r ∈ (0, 1) and a, b ∈ (0, ∞) with ab ≤ 1/4,

1/2 ≤ F
(
((1 − r)/(1 + r))2

)/ [
(1 + r)F

(
r ′2)] ≤ B/(2π). (1.12)

If a, b ∈ (0, ∞) with a + b ≤ 1, then

(1 + r)F
(
r ′2) ≤ 2F

(
((1 − r)/(1 + r))2

)
≤ (1 + r)

[
F
(
r ′2)+ (R− log 16)/B

]
. (1.13)

If a, b ∈ (0, ∞) with 1/a + 1/b ≤ 4, then each inequality in (1.12)–(1.13) is reversed.

In [38], Z.H. Yang, Y.M. Chu and M.K. Wang improved Theorem 1.2 and [29, Lemmas 3.1 & 3.2] (see also 
[30]). Recently, M.K. Wang and Y.M. Chu studied another kind of generalizations of (1.7). They revealed 
some monotonicity properties of the function r �→ (1 +

√
r)F (r) − F (4

√
r/(1 +

√
r)2) for r ∈ (0, 1), and 

proved that the following Landen inequality

F
(
4r/(1 + r)2

)
≤ (1 + r)F

(
r2) (1.14)

holds if and only if a +b ≤ 1, while (1.14) is reversed if and only if ab ≥ (a +b +1)/8 (see [31, Theorem 2.1]). 
They also obtained in [31, Theorem 2.2] some other Landen transformation inequalities similar to (1.11). 
In [9–11,30,32,33,35], some other transformation inequalities and Landen-type inequalities were obtained.

The main purpose of this paper is to give complete answers to Question 1.1 for F (a, b; a + b; r) and 
F (a, b; (a +b +1)/2; r), and present sharp double Landen transformation inequalities for them, by showing the 
monotonicity properties of certain combinations defined in terms of F (a, b; a +b; r) or F (a, b; (a +b +1)/2; r)
and linear or rational functions with innovative ways, thus deepening the studies of the extensions of 
(1.7) above-mentioned, and substantially improving and perfecting all the related known results. (See the 
theorems and their corollaries proved in Sections 4–5.) In Section 6, we shall apply these results to obtain 
several sharp Landen transformation inequalities for the generalized Grötzsch ring functions and the modular 
functions, which appear in Ramanujan’s modular equations. To meet the needs of the proofs of our main 
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results, we shall show several important properties of the Ramanujan constant R(a, b) and some other 
properties of hypergeometric functions in Section 2 and Section 3, respectively.

2. Preliminaries

In this section, we introduce some more notations for later use, show several properties of the Ramanujan 
constant R(a, b) defined by (2.4) below, and establish a technical lemma.

For x, y ∈ (0, ∞), the classical gamma, psi (digamma) and beta functions are defined as

Γ(x) =
∞∫
0

tx−1e−tdt, ψ(x) = d

dx
log Γ(x), B(x, y) = Γ(x)Γ(y)

Γ(x + y) , (2.1)

respectively (cf. [6,1,5,28]). Let γ = limn→∞ [
∑n

k=1(1/k) − log n] = 0.577215664 · · · be the Euler–
Mascheroni constant, and ζ(x) =

∑∞
n=1 n

−x the Riemann zeta function. The following formulas are 
well-known (cf. [1, 6.1.15, 6.3.5, 6.3.16 & 6.4.10])

xΓ(x) = Γ(x + 1), ψ(n)(x + 1) = ψ(n)(x) + (−1)nn!x−n−1, n ∈ N0, (2.2)

ψ(x) = −γ − 1
x

+
∞∑
k=1

x

k(k + x) , ψ(n)(x) =
∞∑
k=1

(−1)n+1n!
(k + x)n+1 , n ∈ N. (2.3)

Define the function R on (0, ∞) × (0, ∞) by

R(a, b) = −2γ − ψ(a) − ψ(b), (2.4)

which is called the Ramanujan constant in literature although it is in fact a function of a and b (cf. [23]). 
Let

Rc(a) = R(a, c− a) ≡ −2γ − ψ(a) − ψ(c− a), a + b = c, (2.5)

R(a) = R(a, 1 − a) = −2γ − ψ(a) − ψ(1 − a), a + b = 1, (2.6)

B(a) = B(a, 1 − a) = Γ(a)Γ(1 − a) = π/ sin(πa), a + b = 1. (2.7)

R(a) is also said to be the Ramanujan constant in literature (cf. [23]). By (2.6)–(2.7) and [1, 6.3.3],

B(1/2) = π, R(1/2) = −2[γ + ψ(1/2)] = log 16. (2.8)

By the symmetry, we always assume that a ∈ (0, c/2] in (2.5), and a ∈ (0, 1/2] in (2.6)–(2.7), without loss 
of generality. In the sequel, we let α = ab/(a + b), B = B(a, b), R = R(a, b), and by (2.2) and (2.4),

B+ = B(a + 1, b + 1) = αB

a + b + 1 , R+ = R(a + 1, b + 1) = R− 1
α
. (2.9)

Next we recall the following well-known formulas

F (a, b; c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , c > a + b, (2.10)

d

dx
F (a, b; c;x) = ab

c
F (a + 1, b + 1; c + 1;x), (2.11)

F (a, b; c;x) = (1 − x)c−a−bF (c− a, c− b; c;x), (2.12)

BF (a, b; a + b; r) = R− log(1 − r) + O((1 − r) log(1 − r)) (2.13)
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as r → 1 (see [1, 15.1.20, 15.2.1,15.3.3, & 15.3.10] and [6,8]). It follows from (2.10)–(2.12) that

F ′(r) = αG(r)
1 − r

, F ′
0(r) = G0(r)

4(1 − r) , G(1) = 1
αB

, G0(1) = 4
π
. (2.14)

Now we present some properties of R(a, b) in Lemmas 2.1 and 2.2.

Lemma 2.1. (1) For each c ∈ (0, ∞), as functions of a, g1(a) ≡ Rc(a) = −2γ − ψ(a) − ψ(c − a) and 
g2(a) ≡ B(a, c − a) are both strictly decreasing and convex on (0, c/2].

(2) For a, b ∈ (0, ∞), a + b = c, set x = ab. Then R can be expressed by the following function of x and c

R(a, b) = g3(x, c) ≡
c

x
−

∞∑
k=1

ck + 2x
k(k2 + ck + x) , (2.15)

and g3 is strictly decreasing and convex in x ∈ (0, c2/4], and in c ∈ (0, ∞), with g3(0+, c) = ∞, while 
g4(c) ≡ g3(c2/4, c) is strictly decreasing and convex from (0, ∞) onto (−∞, ∞) with g4(1) = R(1/2) = log 16
and g4(2) = R(1, 1) = 0.

(3) For each c ∈ (0, ∞), the function g5(x) ≡ xg3(x, c) is strictly decreasing from (0, ∞) onto (−∞, c).

Proof. (1) By the monotonicity property of ψ′, g′1(a) = ψ′(c − a) − ψ′(a) is strictly increasing from (0, c/2]
onto (−∞, 0]. This yields the result for g1.

By the monotonicity property of ψ, g′2(a)/g2(a) = ψ(a) −ψ(c − a) is strictly increasing in a from (0, c/2]
onto (−∞, 0], so that g2 is strictly decreasing and convex on (0, c/2] with g2(c/2) = Γ(c/2)2/Γ(c), since 
−g′2(a) = g2(a)[ψ(c − a) − ψ(a)] is a product of two positive decreasing functions.

(2) The monotonicity and convexity properties of g3 in c ∈ (0, ∞) follow from the monotonicity and 
concavity of ψ and (2.5). It follows from (2.3) and (2.4) that

R(a, b) = 1
a

+ 1
b
−

∞∑
k=1

a

k(k + a) −
∞∑
k=1

b

k(k + b)

= c

ab
−

∞∑
k=1

ck + 2ab
k(k2 + ck + ab) , (2.16)

and hence R(a, b) has the expression (2.15). Differentiation gives

∂g3

∂x
= −

[
c

x2 +
∞∑
k=1

2k + c

(k2 + ck + x)2

]
,

yielding the monotonicity and convexity of g3 in x ∈ (0, c2/4]. Clearly, g3(0+, c) = ∞. By (2.15) and (2.3),

g4(c) = g3
(
c2/4, c

)
= 4

c
−

∞∑
k=1

c

k(k + c/2) = −2
[
γ + ψ

( c
2

)]
. (2.17)

Hence g4 is strictly decreasing and convex from (0, ∞) onto (−∞, ∞) by the monotonicity and concavity 
of ψ, with g4(1) = g3(1/4, 1) = −2[γ + ψ(1/2)] = log 16 = R(1/2) and g4(2) = 0 by [1, 6.3.2 & 6.3.3].

(3) Part (3) follows from (2.15). �
Lemma 2.2. Let c = a + b for a, b ∈ (0, ∞).
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(1) If ab ≤ 1/4, then

R(a, b) ≥ log 16, (2.18)

with the equality if and only if a = b = 1/2.
(2) If ab ≥ c/4, then the inequality (2.18) is reversed.
(3) If 1/4 < ab < c/4, then R(a, b) and log 16 are not directly comparable, that is, neither (2.18) nor its 

inverse inequality holds.
(4) If ab = 1/4 and c ∈ [1, ∞), then

abR(a, b) − c = 1
4R(a, b) − c ≤ log 2 − 1, (2.19)

and the second equality holds if and only if c = 1.

Proof. (1) Let g4 be as in Lemma 2.1. First, if c = a + b ≤ 1, then ab ≤ c2/4 ≤ 1/4 by (1.3), and by 
Lemma 2.1(2),

R(a, b) ≥ g4(c) ≥ g4(1) = log 16. (2.20)

The first and second equalities in (2.20) simultaneously hold if and only if a = b = 1/2.
Second, let ab ≤ 1/4 and c = a + b > 1. Then by Lemma 2.1(2),

R(a, b) ≥ g6(c) ≡ g3(1/4, c) = 4c−
∞∑
k=1

ck + 1/2
k(k2 + ck + 1/4) , (2.21)

g′6(c) = 4 −
∞∑
k=1

k2 − 1/4
(k2 + ck + 1/4)2 . (2.22)

The first equality in (2.21) holds if and only if ab = 1/4. Clearly, g′6 is strictly increasing on (0, ∞). It follows 
from (2.3) and [1, 6.4.4 & Table 23.3] that for c > 1,

g′6(c) > g′6(1) = 4 −
∞∑
k=1

k − 1/2
(k + 1/2)3 = 4 −

∞∑
k=1

1
(k + 1/2)2 +

∞∑
k=1

1
(k + 1/2)3

= 4 − ψ′
(

1
2

)
− 1

2ψ
′′
(

1
2

)
= 4 − π2

2 + 7ζ(3) = 7.479596 · · · ,

so that g6 is strictly increasing and convex on (1, ∞) and

R(a, b) ≥ g6(c) > g6(1) = g4(1) = log 16 (2.23)

by (2.21). Hence (2.18) and its equality case follow from (2.20) and (2.23).
(2) If ab ≥ c/4, then c ≥ 1 by (1.3), and it follows from Lemma 2.1(2) that

R(a, b) ≤ g7(c) ≡ g3(c/4, c) = 4 −
∞∑
k=1

c(k + 1/2)
k(k2 + ck + c/4) . (2.24)

It is easy to verify that g7 is strictly decreasing and convex on (0, ∞), and hence by (2.24),

R(a, b) ≤ g7(c) ≤ g7(1) = g3(1/4, 1) = g4(1) = log 16

for c ≥ 1, showing that (2.18) is reversed.
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(3) If 1/4 < ab < c/4, then by Lemma 2.1(2), (2.21) and (2.24), we obtain

g7(c) = g3(c/4, c) = lim
ab→c/4

R(a, b) ≤ R(a, b) ≤ lim
ab→1/4

R(a, b) = g3(1/4, c) = g6(c), (2.25)

lim
c→∞

lim
ab→(1/4)+

R(a, b) = g6(∞) = ∞, lim
c→∞

lim
ab→(c/4)−

R(a, b) = g7(∞) = −∞. (2.26)

This shows that R(a, b) < log 16 when ab is close to c/4 and c is sufficiently large, and R(a, b) > log 16 when 
ab is close to 1/4 and c is sufficiently large.

(4) It is easy to verify that for each k ∈ N, the function c �→ (ck+1/2)/(k2+ck+1/4) is strictly increasing 
on [1, ∞). If ab = 1/4 and c ∈ [1, ∞), then it follows from (2.3) and (2.15) that

abR− c =1
4R− c = −1

4

∞∑
k=1

ck + 1/2
k (k2 + ck + 1/4)

≤− 1
4

∞∑
k=1

k + 1/2
k (k2 + k + 1/4) = −1

4

∞∑
k=1

1
k(k + 1/2)

= − 1
2 [ψ(1/2) + γ + 2] = log 2 − 1,

and the third equality holds if and only if c = 1. �
Remark 2.3. (1) A more specifical and direct proof of Lemma 2.2(3) is as follows:

Taking ab = (c + 1)/8, then 1/4 < ab < c/4, and by Lemma 2.1(2),

R(a, b) = g8(c) ≡ g3

(
c + 1

8 , c

)
= 8c

c + 1 −
∞∑
k=1

ck + (c + 1)/4
k [k2 + ck + (c + 1)/8] , (2.27)

with g8(1) = g4(1) = log 16 and g8(∞) = −∞. It is easy to show that the function

g9(c) ≡ (c + 1)2g′8(c) = 8 − (c + 1)2
∞∑
k=1

k2 + (k/4) − 1/8
[k2 + ck + (c + 1)/8]2

(2.28)

is strictly decreasing on (1, ∞), with g9(∞) = −∞ and

g9(1) = 4
[
2 −

∞∑
k=1

k2 + (k/4) − 1/8
(k + 1/2)4

]
= 4

[
2 −

∞∑
k=1

1
(k + 1/2)2 + 3

4

∞∑
k=1

1
(k + 1/2)3

]

= 4
[
2 − ψ′

(
1
2

)
− 3

8ψ
′′
(

1
2

)]
= 4

[
2 − π2

2 + 21
4 ζ(3)

]
= 3.375996 · · · .

Hence by (2.28), g9 has a unique zero c1 ∈ (1, ∞) such that g8 is strictly increasing on (1, c1], and decreasing 
on [c1, ∞). This shows that there exists a number c2 ∈ (c1, ∞) such that g8(c) > log 16 for c ∈ (1, c2), 
g8(c2) = g8(1) = log 16, and g8(c) < log 16 for c ∈ (c2, ∞). Hence R(a, b) − log 16 changes sign, and neither 
(2.18) nor its inverse inequality holds for a, b ∈ (0, ∞) with 1/4 < ab < c/4.

(2) The conditions for several main results in [30,38] contain the comparisons between R(a, b) and log 16, 
and between R(a, b) and R(a1, b1) for distinct (a, b) and (a1, b1), which are not easy for checking computa-
tions. Lemmas 2.1 and 2.2 provide us a method to verify whether these conditions are satisfied.

In [38, Theorem 2.1] (see also [30, Lemma 1.1]), Z.H. Yang, Y.M. Chu and M.K. Wang proved a good 
criterion for the monotonicity of the quotient ϕ(x) ≡ A(x)/B(x), where A(x) =

∑∞
anx

n and B(x) =
n=0
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∑∞
n=0 bnx

n are of a common radius r of convergence. They use the sign of the limiting values HA, B(r−) of 
the function HA, B = (A′B/B ′) −A to determine the monotonicity of ϕ in certain cases. Since HA, B(x) =
B(x)2ϕ′(x)/B ′(x), it is easy to see that [38, Theorem 2.1] can be changed to the following more natural 
one.

Lemma 2.4. Suppose that r ∈ (0, ∞) is the common radius of convergence of the real power series A(x) =∑∞
n=0 anx

n and B(x) =
∑∞

n=0 bnx
n with bn > 0, and {an/bn} is a non-constant sequence. Let ϕ(x) =

A(x)/B(x).
(1) If there is an n0 ∈ N such that the sequence {an/bn} is increasing (decreasing) for 0 ≤ n ≤ n0, and 

decreasing (increasing) for n ≥ n0, then ϕ is increasing (decreasing) on (0, r) if and only if ϕ′(r−) ≥ 0
(ϕ′(r−) ≤ 0, respectively).

(2) If there is an n0 ∈ N such that the sequence {an/bn} is increasing (decreasing) for 0 ≤ n ≤ n0, and 
decreasing (increasing) for n ≥ n0, and if ϕ′(r−) < 0 (ϕ′(r−) > 0), then there exists a number x0 ∈ (0, r)
such that ϕ is strictly increasing (decreasing) on (0, x0] and decreasing (increasing, respectively) on [x0, r).

3. Some properties of hypergeometric functions

In this section, we shall show some relations between the functions F (r) and F0(r), G(r) and G0(r), F (r)
and F0(r), G(r) and G0(r).

Lemma 3.1. For a, b ∈ (0, ∞) with a + b = c, and for r ∈ (0, 1), let f1(r) ≡ F (r)/F0(r).
(1) If ab ≤ 1/4, or if 1/4 < ab < c/4 with R(a, b) ≥ log 16, then f1 is decreasing from (0, 1) onto (π/B, 1).
(2) If ab ≥ c/4, then f1 is increasing from (0, 1) onto (1, π/B).
(3) In other cases not stated in parts (1)–(2), that is, 1/4 < ab < c/4 with R(a, b) < log 16, there exists 

a number r1 = r1(a, b) ∈ (0, 1) such that f1 is decreasing on (0, r1] and increasing on [r1, 1), with f1(0) = 1
and f1(1−) = π/B.

(4) If the conditions in parts (1)–(2) are satisfied, then for r ∈ (0, 1),

min
{

1, π
B

}
≤ F (a, b; c; r)

F (1/2, 1/2; 1; r) ≤ max
{

1, π
B

}
, (3.1)

with equality in each instance if and only if a = b = 1/2. If the conditions in part (3) are satisfied, then the 
second inequality in (3.1) is still valid.

Proof. Clearly, f1(0) = 1, and f1(1−) = π/B by (2.13). For n ∈ N0, put

a1, n = (a, n)(b, n)
(c, n)n! , b1, n =

[
(1/2, n)

n!

]2
, c1, n = a1, n

b1, n
,Δ1(n, ab, c) =

(
ab− 1

4

)
n + ab− c

4 .

Then by (1.1), and by differentiation,

f1(r) =
∑∞

n=0 a1, nr
n∑∞

n=0 b1, nr
n
,
c1, n+1

c1, n
= 1 + Δ1(n, ab, c)

(n + c)(n + 1/2)2 , (3.2)

f ′
1 (r) = 4αF0(r)G(r) − F (r)G0(r)

4(1 − r)F0(r)2
. (3.3)

Clearly, f ′
1 (0) = α− 1/4. By (2.8) and (2.13)–(2.14), it is easy to obtain
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lim
r→1

4αBG(r) − πG0(r)
(1 − r)F0(r)

= π(1 − 4ab), lim
r→1

log(1/(1 − r))
F0(r)

= π, (3.4)

lim
r→1

[4αBG(r) log 16 − πRG0(r)] = 4(log 16 −R), (3.5)

and by l’Hôpital’s rule,

lim
r→1

4αBG(r) log 16 − πRG0(r)
(1 − r)F0(r)2

= 0 if R = log 16. (3.6)

It follows from (2.13) and (3.3)–(3.6) that

f ′
1 (1−) = lim

r→1

1
4(1 − r)F0(r)2

[
4α
π
G(r) log 16

1 − r
− G0(r)

B
log eR

1 − r
+ O((1 − r) log(1 − r))

]

= 1
4πB lim

r→1

[
4αBG(r) log 16 − πRG0(r)

(1 − r)F0(r)2
+ 4αBG(r) − πG0(r)

(1 − r)F0(r)
· log(1/(1 − r))

F0(r)

]

= π(1 − 4ab)
4B + 1

4πB lim
r→1

4αBG(r) log 16 − πRG0(r)
(1 − r)F0(r)2

=

⎧⎪⎪⎨
⎪⎪⎩
∞, if R < log 16,
π(1 − 4ab)/(4B), if R = log 16,
−∞, if R > log 16.

(3.7)

(1) If 4ab ≤ min{1, c}, then Δ1(n, ab, c) ≤ 0, and c1, n is decreasing in n ∈ N0 by (3.2). Hence by [29, 
Lemma 2.1], f1 is decreasing on (0, 1).

If 1 < 4ab < c and R ≥ log 16, then it follows from (3.2) and (3.7) that c1, n is decreasing and then 
increasing in n ∈ N0, and f ′

1 (1−) < 0. Hence by Lemma 2.4(1), f1 is decreasing on (0, 1).
Clearly, if 4ab ≤ min{1, c}, then 4ab ≤ 1. Conversely, if 4ab ≤ 1 and c > 1 (4ab ≤ 1 and c ≤ 1), then 

4ab ≤ min{1, c} = 1 (4ab ≤ c2 ≤ c = min{1, c} by (1.3), respectively). Hence the condition 4ab ≤ min{1, c}
can be simplified as ab ≤ 1/4.

(2) If 4ab ≥ max{1, c}, then Δ1(n, ab, c) ≥ 0, and c1, n is increasing in n ∈ N0 by (3.2). Hence f1 is 
increasing on (0, 1) by [29, Lemma 2.1].

Since 4ab ≤ c2 by (1.3), the condition 4ab ≥ max{1, c} implies that c2 ≥ max{1, c}, so that c ≥ 1. Hence 
the condition 4ab ≥ max{1, c} can be simplified as ab ≥ c/4.

(3) If 1/4 < ab < c/4 and R < log 16, then c1, n is decreasing and then increasing in n ∈ N0, and 
f ′
1 (1−) = ∞. Hence part (3) follows from Lemma 2.4(2).

(4) Part (4) follows from parts (1)–(3). �
Lemma 3.2. For a, b ∈ (0, ∞) with c = a + b, and for r ∈ (0, 1), let f2(r) ≡ G(r)/G0(r).

(1) If ab ≤ 1/4, then f2 is decreasing from (0, 1) onto (π/(4αB), 1).
(2) If ab ≥ (c + 1)/8, then f2 is increasing from (0, 1) onto (1, π/(4αB)).
(3) In other cases not stated in parts (1)–(2), that is, 1/4 < ab < (c + 1)/8, there exists a number 

r2 = r2(a, b) ∈ (0, 1) such that f2 is decreasing on (0, r2] and increasing on [r2, 1), with f2(0) = 1 and 
f2(1−) = π/(4αB).

(4) If ab ≤ 1/4 or ab ≥ (c + 1)/8, then for r ∈ (0, 1),

min
{

1, π

4αB

}
≤ F (a, b; c + 1; r)

F (1/2, 1/2; 2; r) ≤ max
{

1, π

4αB

}
, (3.8)

with equality in each instance if and only if a = b = 1/2. In other cases, that is, 1/4 < ab < (c + 1)/8, the 
second inequality in (3.8) also holds.
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Proof. The limiting value f2(0) = 1 is clear. By (2.14), we obtain f2(1) = π/(4αB). For n ∈ N0, set

a2, n = (a, n)(b, n)
(c + 1, n)n! , b2, n = (1/2, n)2

n!(n + 1)! , c2, n = a2, n

b2, n
,

Δ2(n, ab, c) =
(
ab + c− 5

4

)
n + 2

(
ab− c + 1

8

)
,

ζ1 = 1
c + 1

(
ab− c + 1

8

)
, ζ2 = π

4αB (abR− c + 1 − log 2).

Then by (1.1) and (2.11),

f2(r) =
∑∞

n=0 a2, nr
n∑∞

n=0 b2, nr
n
,
c2, n+1

c2, n
= 1 + Δ2(n, ab, c)

(n + c + 1)(n + 1/2)2 , (3.9)

f ′
2 (r) = 1

G0(r)2

[
ab

c + 1F+(r)G0(r) −
1
8F3/2(r)G(r)

]
. (3.10)

Clearly, f ′
2 (0) = ζ1. By (2.14) and l’Hôpital’s rule,

lim
r→1

[cπ
B

G0(r) −G(r)
]

= 4c
abB

(
ab− 1

4

)
,

lim
r→1

[cπG0(r)/B] −G(r)
r ′ = 0 if ab = 1

4 .

Hence we can apply (2.13) and (3.10) to obtain

f ′
2 (1−) = 1

G0(1)2 lim
r→1

[
abG0(r)

(c + 1)B+
log eR+

1 − r
− G(r)

8B(3/2, 3/2) log eR(3/2,3/2)

1 − r

]

= π2

16 lim
r→1

[
cG0(r)

B
log eR−1/α

1 − r
− G(r)

π
log eR(1/2)−4

1 − r

]

= ζ2 + π

16 lim
r→1

[cπ
B

G0(r) −G(r)
]
log 1

1 − r

=

⎧⎪⎪⎨
⎪⎪⎩
−∞, if ab < 1/4,
ζ2, if ab = 1/4,
∞, if ab > 1/4.

(3.11)

(1) If ab ≤ min{(5/4) − c, (c + 1)/8}, then Δ2(n, ab, c) ≤ 0, and c2, n is decreasing in n ∈ N0 by (3.9). 
Hence f2 is decreasing on (0, 1) by [29, Lemma 2.1].

If ab ≤ 1/4 and c ≤ 1, then min{(5/4) − c, (c + 1)/8} = (c + 1)/8, so that ab ≤ c2/4 ≤ (c + 1)/8 =
min{(5/4) − c, (c + 1)/8} by (1.3). Hence f2 is decreasing on (0, 1).

If ab ≤ 1/4 and c > 1, and if ab ≤ (5/4) − c, then ab − (c + 1)/8 < ab − 1/4 ≤ 0, so that ab ≤
min{(5/4) − c, (c + 1)/8}. Hence f2 is decreasing on (0, 1).

If ab ≤ 1/4 and c > 1, and if ab > (5/4) −c, then ab −(c +1)/8 < ab −1/4 ≤ 0, and c2, n is decreasing and 
then increasing in n ∈ N0 by (3.9), and f ′

2 (1−) < 0 by (3.11) and Lemma 2.2(4). Hence by Lemma 2.4(1), 
f2 is decreasing on (0, 1).

From the above discussion, we obtain part (1).
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(2) If ab ≥ max{(5/4) −c, (c +1)/8}, then c2, n is increasing in n ∈ N0 by (3.9), and hence f2 is increasing 
on (0, 1) by [29, Lemma 2.1]. By (1.3)

ab ≥ max{(5/4) − c, (c + 1)/8} ⇒ (c + 1)/8 ≤ c2/4 ⇔ c ≥ 1,

so that ab ≥ max{(5/4) − c, (c + 1)/8} = (c + 1)/8, and hence part (2) follows.
(3) If 1/4 < ab < (c + 1)/8, then c > 1, and (5/4) − c < 1/4 < ab < (c + 1)/8. Hence by (3.9)

and (3.11), c2, n is decreasing and then increasing in n ∈ N0, and f ′
2 (1−) = ∞, so that part (3) follows from 

Lemma 2.4(2).
(4) Part (4) follows from parts (1)–(3). �
The following corollary follows immediately from Lemmas 3.1 and 3.2.

Corollary 3.3. For a, b ∈ (0, ∞),

αB(a, b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≥ πα, if ab ≤ 1/4, or 1/4 < ab < c/4 with R ≥ log 16,
≤ πα, if ab ≥ c/4,
≥ π/4, if ab ≤ 1/4,
≤ π/4, if ab ≥ (c + 1)/8 ≥ 1/4.

(3.12)

Remark 3.4. (1) The monotonicity properties of f1 and f2 defined in Lemmas 3.1–3.2 have been given in 
[38, Propositions 3.3 & 3.5] (cf. also [30, Lemma 2.2]). However, the formulations of the conditions in our 
Lemmas 3.1–3.2 are simpler and clearer than those in [38, Propositions 3.3 & 3.5] and in [30, Lemma 2.2], 
and our proofs of the monotonicity properties of f1 and f2 are more natural and simpler.

(2) By Lemma 2.2, {(a, b)| 1/4 < ab < c/4, R(a, b) < log 16} �= ∅ and {(a, b)| 1/4 < ab < c/4, R(a, b) ≥
log 16} �= ∅.

(3) For a, b, a1, b1 ∈ (0, ∞), c = a + b and c1 = a1 + b1, [30, Lemma 2.2] introduced the notations

D1 = {(a, b)| ab ≤ a1b1, abc1 − a1b1c ≤ 0},

D3 = {(a, b)| ab ≥ a1b1, abc1 − a1b1c ≥ 0},

D5 = {(a, b)| ab + c− (a1b1 + c1) ≤ 0, ab(c1 + 1) − a1b1(c + 1) ≤ 0},

D7 = {(a, b)| ab + c− (a1b1 + c1) ≥ 0, ab(c1 + 1) − a1b1(c + 1) ≥ 0},

D21 = {(a, b)| ab < a1b1, abc1 − a1b1c > 0, R(a, b) ≤ R(a1, b1)},

D22 = {(a, b)| ab < a1b1, abc1 − a1b1c > 0, R(a, b) > R(a1, b1)},

D41 = {(a, b)| ab > a1b1, abc1 − a1b1c < 0, R(a, b) ≥ R(a1, b1)},

D42 = {(a, b)| ab > a1b1, abc1 − a1b1c < 0, R(a, b) < R(a1, b1)},

D61 = {(a, b)| ab ≥ a1b1, ab + c− (a1b1 + c1) < 0, ab(c1 + 1) − a1b1(c + 1) > 0},

D81 = {(a, b)| ab ≤ a1b1, ab + c− (a1b1 + c1) > 0, ab(c1 + 1) − a1b1(c + 1) < 0},

and proved the following results: (i) f1(r) ≡ F (r)/F0(r) is strictly decreasing (increasing) on (0, 1) if 
(a, b) ∈ D1 ∪ D41 ((a, b) ∈ D3 ∪ D21, respectively). Moreover, if (a, b) ∈ D22 (D42), then there exists 
r0 ∈ (0, 1) (r∗0 ∈ (0, 1)) such that f1 is strictly increasing (decreasing) on (0, r0) ((0, r∗0)), and decreasing 
(increasing) on (r0, 1) ((r∗0 , 1), respectively). (ii) f2(r) ≡ G(r)/G0(r) is strictly decreasing (increasing) on 
(0, 1) if (a, b) ∈ D5 ∪D81 ((a, b) ∈ D7 ∪D61, respectively).
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(4) Observe that it is difficult to verify whether the conditions in D21, D22, D41 and in D42 are satisfied, 
without the help of Lemmas 2.1 and 2.2. For instance, by virtue of Lemma 2.1(2), it is clear that D21 =
D41 = ∅ if a + b = a1 + b1.

(5) For a1 = b1 = 1/2 and j = 1, 3, 5, 7, 22, 42, 61, 81, still denote Dj|a1=b1=1/2 by Dj . Then by Lemmas 2.1
and 2.2, and by (1.4), it is easy to verify that

D1 = {(a, b)| ab ≤ 1/4, ab ≤ c/4} = {(a, b)| ab ≤ 1/4},

D3 = {(a, b)| ab ≥ 1/4, ab ≥ c/4} = {(a, b)| ab ≥ c/4},

D5 = {(a, b)| ab + c ≤ 5/4, ab ≤ (c + 1)/8} = {(a, b)| c ≤ 1} ∪ {(a, b)| c ≥ 1, ab ≤ (5/4) − c},

D7 = {(a, b)| ab + c ≥ 5/4, ab ≥ (c + 1)/8} = {(a, b)| ab ≥ (c + 1)/8},

D22 = {(a, b)| c/4 < ab < 1/4, R(a, b) > log 16} = ∅,

D61 = {(a, b)| ab ≥ 1/4, ab + c < 5/4, ab > (c + 1)/8} = ∅,

D42 = {(a, b)| 1/4 < ab < c/4, R(a, b) < log 16},

D81 = {(a, b)| 5/4 − c < ab ≤ 1/4}.

Hence we see that Lemmas 3.1 and 3.2 improve [30, Lemma 2.2] in the case when a1 = b1 = 1/2.

The following two lemmas perfect [31, Lemma 3.2] and its proof.

Lemma 3.5. For a, b ∈ (0, ∞) with c = a + b, and for r ∈ (0, 1), let C = (c + 1)/2 and f3(r) = F (r)/F0(r).
(1) If c ≤ 1, then f3 is decreasing on (0, 1), with f3(0) = 1, f3(1−) = 0 (f3(1−) = sin(πa)) if c < 1

(c = 1, respectively).
(2) If ab ≥ (c + 1)/8, then f3 is increasing from (0, 1) onto (1, ∞).
(3) In other cases not stated in parts (1)–(2), namely, ab < (c + 1)/8 and c > 1, there exists a number 

r3 = r3(a, b) ∈ (0, 1) such that f3 is decreasing on (0, r3] and increasing on [r3, 1), with f3(0) = 1 and 
f3(1−) = ∞.

Proof. Clearly, f3(0) = 1. If c = 1, then by (2.13),

f3(1−) = lim
r→1

F (a, 1 − a; 1; r)
F0(r)

= π

B(a) lim
r→1

log
[
eR(a)/(1 − r)

]
log[16/(1 − r)] = π

B(a) = sin(πa). (3.13)

If c < 1, then C − c = (1 − c)/2 > 0, so that F (1) = Γ(C)Γ(C − c)/[Γ(C − a)Γ(C − b)] by (2.10). Hence

f3(1−) = lim
r→1

F (r)/F0(r) = 0, c < 1. (3.14)

If c > 1, then c − C = C − [(C − a) + (C − b)] = (c − 1)/2 > 0. Hence by (2.10) and (2.12),

f3(1−) = lim
r→1

F (r)
F0(r)

= lim
r→1

F (C − a,C − b;C; r)
(1 − r)c−CF0(r)

= ∞, c > 1. (3.15)

The monotonicity properties of f3 were proved in [31, Lemma 3.2(1)]. One can also use the same method 
as in the proof of Lemma 3.1 to show the monotonicity properties of f3. We would like to give a simpler 
and more natural proof of the piecewise monotonicity of f3 stated in part (3), as follows.
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If 1/4 < ab < (c +1)/8, then c > 1, C− [(C−a) +(C− b)] = C− 1 > 0, and by (2.10)–(2.12) and (2.14),

lim
r→1

[
4abF (C − a,C − b;C + 1; r) − C

G0(r)
F0(r)

F (C − a,C − b;C; r)
]

= 4CΓ(C)2

Γ(a)Γ(b) ,

f ′
3 (r) = 1

F0(r)2

[
ab

C
F0(r)F (a + 1, b + 1;C + 1; r) − G0(r)

4(1 − r)F (r)
]

= 1
4C(1 − r)CF0(r)

[
4abF (C − a,C − b;C + 1; r) − C

G0(r)
F0(r)

F (C − a,C − b;C; r)
]
,

and hence

f ′
3 (0) = 1

C

(
ab− c + 1

8

)
< 0, f ′

3 (1−) = ∞. (3.16)

In the case when 1/4 < ab < (c + 1)/8, it is easy to show that the ratio of the nth coefficient in the power 
series of F (r) to that of F0(r) is decreasing and then increasing in n ∈ N0 (see [31, Proof of Lemma 3.2(1)]). 
Hence part (3) follows from Lemma 2.4(2), (3.15) and (3.16). �
Lemma 3.6. For a, b ∈ (0, ∞) with c = a + b and r ∈ (0, 1), let C = (c + 1)/2, τ = [sin(πa)]/[4a(1 − a)] and 
f4(r) = G(r)/G0(r). Then we have the following conclusions:

(1) If c ≤ 1, then f4 is decreasing on (0, 1), with f4(0) = 1 and f4(1−) = 0 (f4(1−) = τ) if c < 1 (c = 1, 
respectively).

(2) If ab ≥ (11 − 7c)/16, then f4 is increasing from (0, 1) onto (1, ∞).
(3) In other cases not stated in parts (1)–(2), that is, ab < (11 −7c)/16 < 1/4, there exists r4 = r4(a, b) ∈

(0, 1) such that f4 is decreasing on (0, r4] and increasing on [r4, 1), with f4(0) = 1 and f4(1−) = ∞.

Proof. Clearly, f4(0) = 1. If c = 1, then by (2.10), (2.12), (2.2) and (2.7),

f4(1−) = lim
r→1

F (a + 1, 2 − a; 2; r)
F (3/2, 3/2; 2; r) = lim

r→1

F (a, 1 − a; 2; r)
F (1/2, 1/2; 2; r) = τ. (3.17)

If c < 1, then C < 1, C + 1 − [(a + 1) + (b + 1)] = −C, C + 1 − [(C − a) + C − b)] = C, and by (2.10)
and (2.12),

f4(1−) = lim
r→1

(1 − r)1−C F (C − a,C − b;C + 1; r)
F (1/2, 1/2; 2; r) = 0, c < 1. (3.18)

If c > 1, then C + 1 − [(C − a) + (C − b)] = C > 1, and it follows from (2.10) and (2.12) that

f4(1−) = lim
r→1

F (C − a,C − b;C + 1; r)
(1 − r)C−1F (1/2, 1/2; 2; r) = ∞, c > 1. (3.19)

The monotonicity properties of f4 have been obtained in [31, Lemma 3.2(2)]. Here we give a simpler and 
more natural proof of the piecewise monotonicity of f4 stated in part (3).

Suppose that ab < (11 −7c)/16 < 1/4. Then c > 1 and C+2 −[(C−a) +(C−b)] > C+1 −[(C−a) +(C−b)] =
C > 1. In this case, it is easy to show that the ratio of the nth coefficient in the power series of G(r) to 
that of G0(r) is decreasing and then increasing in n ∈ N0 (cf. [31, Proof of Lemma 3.2]). Let

g10(r) = (a + 1)(b + 1)
C + 1 G0(r)F (C − a,C − b;C + 2; r) − 9

8F (1/2, 1/2; 3; r)F (C − a,C − b;C + 1; r).
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Then by (2.10)–(2.12), g10(1) = C(C−1)Γ(C)2/[2πabΓ(a)Γ(b)] > 0 and f ′
4 (r) = g10(r)(1 −r)−(C+2)G0(r)−2. 

Hence f ′
4 (1−) = ∞, so that part (3) follows from (3.19) and Lemma 2.4(2). �

Next, we prove two lemmas playing a key role in the proofs of our main results in Sections 4–5.

Lemma 3.7. For a, b ∈ (0, ∞) with c = a + b and r ∈ (0, 1), let r2 be as in Lemma 3.2, β = 1 − 4α, 
δ = (R− log 16)/B, and let f5(r) ≡ F (r) − F0(r)F ′(r)/F ′

0(r).
(1) f5 is increasing from (0, 1) onto (β, δ) if and only if ab ≤ 1/4.
(2) f5 is decreasing from (0, 1) onto (δ, β) if and only if ab ≥ (c + 1)/8.
(3) In other cases not stated in parts (1)–(2), that is, 1/4 < ab < (c + 1)/8, then f5 is increasing from 

(0, r2] onto (β, f5(r2)], and decreasing from [r2, 1) onto (δ, f5(r2)].

Proof. Let f2 be as in Lemma 3.2. Then by (2.14),

F ′(r)/F ′
0(r) = 4αG(r)/G0(r) = 4αf2(r), (3.20)

f5(r) = F (r) − 4αF0(r)f2(r), (3.21)

f ′
5(r) = −F0(r)

d

dr

[
F ′(r)
F ′

0(r)

]
= −4αF0(r)f ′

2(r).

Hence the monotonicity properties of f5 stated in parts (1)–(3) follow from Lemma 3.2.
By (3.21), f5(0) = 1 − 4α = β. By (2.11) and (2.13), and by l’Hôpital’s rule, we obtain

lim
r→1

πG0(r) − 4αBG(r)
r ′ = lim

r→1
r ′
[
4abαB
c + 1 F+(r) − π

8F3/2(r)
]

= 0. (3.22)

From (2.8), (2.13)–(2.14) and (3.21)–(3.22), we obtain the limiting value

f5(1−) = lim
r→1

[
1
B

log eR

1 − r
− 4αG(r)

πG0(r)
log 16

1 − r

]

= δ + 1
πB

lim
r→1

1
G0(r)

· πG0(r) − 4αBG(r)
r ′ ·

(
r ′ log 1

1 − r

)
= δ. � (3.23)

Lemma 3.8. For a, b ∈ (0, ∞) with c = a + b and C = (c + 1)/2, let r4 be as in Lemma 3.6, and put

ρ = ab

C
, σ = 1 − 4ρ, δ = R(a) − log 16

B(a) , θ = sin((C − a)π)
sin(Cπ) ,

and for r ∈ (0, 1), let f6(r) ≡ F (r) − F0(r)F
′(r)/F ′

0(r). Then we have the following conclusions:
(1) f6 is increasing on (0, 1) if and only if c ≤ 1.
(2) f6 is decreasing on (0, 1) if and only if ab ≥ (11 − 7c)/16.
(3) In other cases not stated in parts (1)–(2), that is, ab < (11 −7c)/16 < 1/4, f6 is increasing on (0, r4], 

and decreasing on [r4, 1).
(4) f6(0) = σ, f6(1−) = δ if c = 1, f6(1−) = θ if c < 1, and f6(1−) = −∞ if c > 1.

Proof. Let f4 as in Lemma 3.6. Then by (2.11), we obtain

F
′(r)/F ′

0(r) = 4ρG(r)/G0(r) = 4ρf4(r), (3.24)
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f6(r) = F (r) − 4ρF0(r)f4(r), (3.25)

f ′
6 (r) = −F0(r)

d

dr

[
F

′(r)
F ′

0(r)

]
= −4ρF0(r)f ′

4 (r).

Hence the monotonicity properties of f6, which are stated in parts (1)–(3), follow from Lemma 3.6.
Next, we prove part (4). By (3.24) and Lemma 3.6, f6(0) = 1 − 4ρ = σ. If c = 1, then by (2.10), (2.7)

and by l’Hôpital’s rule,

lim
r→1

[πG0(r) − 4a(1 − a)B(a)F (a, 1 − a; 2; 1)] = 0,

lim
r→1

πG0(r) − 4a(1 − a)B(a)F (a, 1 − a; 2; r)
r ′

= lim
r→1

r ′
[
2a2(1 − a)2B(a)F (a + 1, 2 − a; 3; r) − π

8F
(

3
2 ,

3
2 ; 3; r

)]
= 0,

and hence by (2.11)–(2.13) and (3.25), we obtain

f6(1−) = lim
r→1

[
F (a, 1 − a; 1; r) − 4a(1 − a)F (a + 1, 2 − a; 2; r)

F (3/2, 3/2; 2; r) F0(r)
]

= lim
r→1

[
F (a, 1 − a; 1; r) − 4a(1 − a)F (a, 1 − a; 2; r)

G0(r)
F0(r)

]

= lim
r→1

[
1

B(a) log eR(a)

1 − r
− 4a(1 − a)F (a, 1 − a; 2; r)

πG0(r)
log 16

1 − r

]

=δ + lim
r→1

πG0(r) − 4a(1 − a)B(a)F (a, 1 − a; 2; r)
4B(a)r ′ ·

(
r ′ log 1

1 − r

)
= δ. (3.26)

If c < 1, then C − c = (1 − c)/2 > 0, 0 < C − a = (1 + c − 2a)/2 < 1 − a < 1, G0(r) = (1 − r)−1G0(r) by 
(2.12) and G(r) = (1 − r)−CF (C − a, C − b; C + 1; r). It follows from (2.7), (2.10) and (3.25) that

f6(1−) = Γ(C)Γ(C − c)
Γ(C − a)Γ(C − b) − 4ρ lim

r→1
(1 − r)1−CF0(r)

F (C − a,C − b;C + 1; r)
G0(r)

= Γ(C)Γ(1 − C)
Γ(C − a)Γ(1 − (C − a)) = sin((C − a)π)

sin(Cπ) = θ. (3.27)

If c > 1, then C > 1, C − c = 1 − C = (1 − c)/2 < 0, C − [(C − a) + (C − b)] = C − 1 > 0 and 
C + 1 − [(C − a) + (C − b)] = C > 1. By (2.12) and (3.25),

f6(r) = F0(r)
(1 − r)(c−1)/2

[
F (C − a,C − b;C; r)

F0(r)
− 4ρF (C − a,C − b;C + 1; r)

G0(r)

]
, (3.28)

so that f6(1−) = −∞, since the function inside the brackets tends to −πΓ(C)2/[Γ(a)Γ(b)] as r → 1. �
Corollary 3.9. For a, b ∈ (0, ∞) with c = a + b, let C = (c + 1)/2 and ρ = ab/C.

(1) If ab ≤ 1/4, then the function f1 defined in Lemma 3.1 is concave on (0, 1), and the function 
f7(r) ≡ [F (r) − 1]/[F0(r) − 1] is decreasing from (0, 1) onto (π/B, 4α). If ab ≥ (c + 1)/8, then f7 is 
increasing from (0, 1) onto (4α, π/B). In particular, if ab ≤ 1/4, then for r ∈ (0, 1),

π

B
F0(r) ≤ min

{[
1 −

(
1 − π

B

)
r
]
F0(r), 1 − π

B
+ π

B
F0(r)

}
≤ F (r) ≤ 1 − 4α + 4αF0(r), (3.29)
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and if ab ≥ (c + 1)/8, then for r ∈ (0, 1),

1 − 4α + 4αF0(r) ≤ F (r) ≤ 1 − π

B
+ π

B
F0(r), (3.30)

with equality in each instance if and only if a = b = 1/2.
(2) If c ≤ 1, then the function f3 defined in Lemma 3.5 is concave on (0, 1), and f8(r) ≡

[F (r) − 1]/[F0(r) − 1] is decreasing on (0, 1) with f8(0+) = 4ρ, f8(1−) = 0 (f8(1−) = sin(πa)) if c < 1
(c = 1, respectively). If ab ≥ (11 − 7c)/16 and c > 1, then f8 is increasing from (0, 1) onto (4ρ, ∞). In 
particular, for r ∈ (0, 1),

(1 − r)F0(r) < F (r) < 1 − 4ρ + 4ρF0(r), (c < 1), (3.31)

1 − sin(πa) + F0(r) sin(πa) ≤ F (r) ≤ 1 − 4a(1 − a) + 4a(1 − a)F0(r), (c = 1), (3.32)

1 − 4ρ + 4ρF0(r) < F (r),
(
ab ≥ 11 − 7c

16 and c > 1
)
, (3.33)

with equality in each inequality in (3.32) if and only if a = b = 1/2.

Proof. Let g11(r) = F ′
0(r)/F0(r)2 for r ∈ (0, 1), and f5 and f6 be as in Lemma 3.7 and Lemma 3.8, 

respectively. Since g11(r) = G0(r)
/ [

4(1 − r)F0(r)2
]

by (2.14), and since the function r �→ (1 − r)F0(r)2 is 
strictly decreasing on (0, 1) by [3, Lemma 5.4(1)], g11 is strictly increasing on (0, 1).

(1) Differentiation gives

f ′
1 (r) = F ′(r)F0(r) − F ′

0(r)F (r)
F0(r)2

= F ′
0(r)

F0(r)2

[
F ′(r)
F ′

0(r)
F0(r) − F (r)

]
= −f5(r)g11(r), (3.34)

which is decreasing on (0, 1) by Lemma 3.7(1) if ab ≤ 1/4. Hence the concavity of f1 follows.
Since 

{
d
dr [F (r) − 1]

}{
d
dr [F0(r) − 1]

}−1 = F ′(r)/F ′
0(r) = 4αf2(r) by (3.20), the monotonicity properties 

of f7 follow from Lemma 3.2 and the Monotone l’Hôpital’s rule [5, Theorem 1.25]. By l’Hôpital’s rule, 
f7(0+) = 4α, and by (2.13), we obtain f7(1−) = π/B.

The first inequality in (3.29) holds by Corollary 3.3. The first lower bound in the second inequality in 
(3.29) follows from the concavity of f1. The remaining inequalities in (3.29) and the double inequality (3.30)
follow from the monotonicity of f7.

(2) Similarly, the concavity of f3 follows from Lemma 3.8(1), since f ′
3 (r) = −f6(r)g11(r). The proofs of the 

remaining conclusions in part (2) are similar to the proofs of the monotonicity of f7 and (3.29)–(3.30). �
4. Landen transformation inequalities for hypergeometric functions

In this section, we shall give a complete answer to Question 1.1 by proving Theorem 4.1 and its corollar-
ies, which extend the identities in (1.7) to the zero-balanced hypergeometric function F (a, b; a + b; r) and 
substantially improve all results obtained in [29] and all the related results presented in [30,38].

Theorem 4.1. For a, b ∈ (0, ∞) with c = a + b, let α = ab/c, β = 1 − 4α and δ = (R− log 16)/B, and define 
the function f on (0, 1) by

f(r) = (1 + r)F
(
a, b; c; r2)− F

(
a, b; c; 4r

2

)
− βr.
(1 + r)
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(1) If ab ≤ 1/4, then f is increasing from [0, 1) onto [0, δ − β). In particular, if ab ≤ 1/4, then for 
r ∈ (0, 1),

βr ≤ (1 + r)F
(
a, b; c; r2)− F

(
a, b; c; 4r

(1 + r)2

)
≤ δ − β(1 − r), (4.1)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ (c +1)/8, then f is decreasing from [0, 1) onto (δ−β, 0]. In particular, if ab ≥ (c +1)/8, then 

for r ∈ (0, 1),

δ − β(1 − r) ≤ (1 + r)F
(
a, b; c; r2)− F

(
a, b; c; 4r

(1 + r)2

)
≤ βr, (4.2)

with equality in each instance if and only if a = b = 1/2.
(3) In other cases not stated in parts (1)–(2), that is, 1/4 < ab < (c + 1)/8, f is not monotone on (0, 1), 

and neither (4.1) nor (4.2) holds for all r ∈ (0, 1) and for all a, b ∈ (0, ∞) with 1/4 < ab < (c + 1)/8.

Proof. Put x = 4r/(1 + r)2 for r ∈ (0, 1). Then x > r > r2 for r ∈ (0, 1), and

dx

dr
= 4(1 − r)

(1 + r)3 , 1 − x =
(

1 − r

1 + r

)2

,
1

1 − x

dx

dr
= 4

1 − r2 . (4.3)

Clearly, f(0) = 0. By (2.13) and (4.3), we obtain

f(1−) = lim
r→1

(
1 + r

B
log eR

1 − r2 − 1
B

log eR

1 − x

)
− β = δ − β. (4.4)

By (2.14) and (4.3), and by differentiation,

f ′(r) = F
(
r2)+ 2αr

1 − r
G
(
r2)− 4α

1 − r2G(x) − β. (4.5)

By (1.7), F0(x) = (1 + r)F0
(
r2). Differentiating both sides of this identity with respect to r, and using 

(2.14) and (4.3), we obtain the following relation

G0(x) =
(
1 − r2)F0

(
r2)+ r(1 + r)

2 G0
(
r2) . (4.6)

(1) If c ≤ 1 (ab ≤ 1/4 and c > 1), then α ≤ c/4 ≤ 1/4 by (1.3) (α ≤ 1/(4c) < 1/4, respectively). Hence 
β ≥ 0 for ab ≤ 1/4.

It follows from Lemma 3.2(1) and (4.6) that

G(x) ≤
G
(
r2)

G0 (r2)G0(x) =
(
1 − r2)F0

(
r2) G

(
r2)

G0 (r2) + r(1 + r)
2 G

(
r2) . (4.7)

Let f5 be as in Lemma 3.7. Then it follows from (3.21), (4.7) and Lemma 3.7(1) that for r ∈ (0, 1),

f ′(r) ≥ F
(
r2)+ 2αr

1 − r
G
(
r2)− 4αG

(
r2)

(1 − r2)G0 (r2)G0(x) − β

= F
(
r2)− 4αF0

(
r2) G

(
r2)

G0 (r2) − β = f5
(
r2)− β ≥ 0, (4.8)

and hence the monotonicity of f follows. The double inequality (4.1) and its equality case are clear.
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(2) If ab ≥ (c + 1)/8, then the inequalities in (4.7)–(4.8) are all reversed by Lemmas 3.2(2) and 3.7(2), 
and hence the monotonicity of f follows. The remaining conclusions in part (2) are clear.

(3) Let 1/4 < ab < (c + 1)/8. By (2.11), (2.14), (4.3) and (4.5), and by l’Hôpital’s rule,

lim
r→0+

f ′(r)
r

= lim
r→0

(
1 − r2)F (r2)+ 2αr(1 + r)G

(
r2)− 4αG(x) − β

(
1 − r2)

r (1 − r2)

= lim
r→0

[
F
(
r2)− 4αG(x) − β

r
− rF

(
r2)+ 2α(1 + r)G

(
r2)+ βr

]

= 2α + lim
r→0

F
(
r2)− 4αG(x) − β

r

= 2α + lim
r→0

[
2αr

1 − r2G
(
r2)− 16abα(1 − r)

(c + 1)(1 + r)3F+(x)
]

= 16α
c + 1

(
c + 1

8 − ab

)
. (4.9)

On the other hand, by (4.5), (2.9) and (2.13)–(2.14), and by l’Hôpital’s rule, we obtain

f ′(1−) = lim
r→1

(
1 − r2)F (r2)+ 2αr(1 + r)G

(
r2)− 4αG(x)

1 − r2 − β

=1
2 lim

r→1

[
2rF

(
r2)− 2α(1 + 3r)G

(
r2)− 4abα

c + 1r
2(1 + r)F+

(
r2)

+ 16abα(1 − r)
(c + 1)(1 + r)3F+(x)

]
− β

= lim
r→1

[
rF
(
r2)− 2abα

c + 1r
2(1 + r)F+

(
r2)]− 4

B
− β

= 1
B

lim
r→1

[
r log eR

1 − r2 − 2abr2(1 + r) log eR−1/α

1 − r2

]
− 4

B
− β

=(1 − 4ab)R + 4(c− 1)
B

− β + 1
B

lim
r→1

[
r − 2abr2(1 + r)

]
log 1

1 − r2

=
{
∞, if ab < 1/4,
−∞, if ab > 1/4.

(4.10)

By (4.9) and (4.10), if 1/4 < ab < (c +1)/8, then there exist r5, r6 ∈ (0, 1) with r5 < r6 such that f ′(r) > 0
for r ∈ (0, r5), and f ′(r) < 0 for r ∈ (r6, 1). Hence f is not monotone on (0, 1), and neither (4.1) nor (4.2)
holds. �
Corollary 4.2. For a, b ∈ (0, ∞) with c = a + b, let α, β and δ be as in Theorem 4.1, and let

δ1 = min {B/π, 1 + δ} , δ2 = max {B/π, 1 + δ} , δ3 = max{0, 1 + δ − β}.

(1) If ab ≤ 1/4, then for r ∈ (0, 1),

1 ≤
(1 + r)F

(
a, b; c; r2)

F (a, b; c; 4r/(1 + r)2) ≤ δ1, (4.11)
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or equivalently,

1 + r

δ1
F
(
a, b; c; r2) ≤ F

(
a, b; c; 4r

(1 + r)2

)
≤ (1 + r)F

(
a, b; c; r2) , (4.12)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ c/4, then for r ∈ (0, 1),

δ2 ≤
(1 + r)F

(
a, b; c; r2)

F (a, b; c; 4r/(1 + r)2) ≤ 1, (4.13)

or equivalently,

(1 + r)F
(
a, b; c; r2) ≤ F

(
a, b; c; 4r

(1 + r)2

)
≤ 1 + r

δ2
F
(
a, b; c; r2) . (4.14)

If (c + 1)/8 ≤ ab ≤ c/4, then for r ∈ (0, 1),

δ3 ≤
(1 + r)F

(
a, b; c; r2)

F (a, b; c; 4r/(1 + r)2) ≤ 1 + βr ≤ 1 + β. (4.15)

Each equality in (4.13)–(4.15) holds if and only if a = b = 1/2.
(3) If ab ≤ 1/4 ≤ c/4, then for r ∈ (0, 1),

π

B
≤

(1 + r)F
(
a, b; c; r2)

F (a, b; c; 4r/(1 + r)2) ≤ B

π
, (4.16)

with equality in each instance if and only if a = b = 1/2. If ab ≥ c/4, then each inequality in (4.16) is 
reversed.

Proof. (1) If ab ≤ 1/4, then δ ≥ β ≥ 0 by Theorem 4.1(1) and its proof. Hence it follows from (4.1) that

1 + βr

F (4r/(1 + r)2) ≤
(1 + r)F

(
r2)

F (4r/(1 + r)2) ≤ 1 + δ − β(1 − r)
F (4r/(1 + r)2) ≤ 1 + δ

F (4r/(1 + r)2) ,

yielding the following double inequality

1 ≤
(1 + r)F

(
r2)

F (4r/(1 + r)2) ≤ 1 + δ. (4.17)

On the other hand, it follows from (1.7), (2.13) and Lemma 3.1(1) that

(1 + r)F
(
r2)

F (4r/(1 + r)2) =
F
(
r2)

F0 (r2) ·
F0
(
4r/(1 + r)2

)
F (4r/(1 + r)2) ≤ lim

r→1

F0
(
4r/(1 + r)2

)
F (4r/(1 + r)2)

= lim
r→1

F0(r)
F (r) = B

π
lim
r→1

log(16/(1 − r))
log (eR/(1 − r)) = B

π
. (4.18)

Hence (4.11) follows from (4.17) and (4.18).
(2) If ab ≥ c/4, then c ≥ 1 by (1.3) or (1.4), ab ≥ c/4 ≥ (c + 1)/8 ≥ 1/4, β ≤ 0, and δ ≤ 0 by 

Lemma 2.2(1). It follows from (4.2) that

1 + δ

F (4r/(1 + r)2) ≤ 1 + δ + β(r − 1)
F (4r/(1 + r)2) ≤

(1 + r)F
(
r2)

F (4r/(1 + r)2) ≤ 1 + βr

F (4r/(1 + r)2) , (4.19)
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which yields

1 + δ ≤
(1 + r)F

(
r2)

F (4r/(1 + r)2) ≤ 1, (4.20)

with equality in each instance if and only if a = b = 1/2. By Lemma 3.1(2) and the first equality in (4.18),

(1 + r)F
(
r2)

F (4r/(1 + r)2) ≥ lim
r→1

F0
(
4r/(1 + r)2

)
F (4r/(1 + r)2) = B

π
. (4.21)

Hence (4.13) follows from (4.20) and (4.21).
If (c + 1)/8 ≤ ab ≤ c/4, then β ≥ 0, and by Theorem 4.1(2),

1 + δ − β ≤ 1 + δ − β + βr

F (4r/(1 + r)2) ≤
(1 + r)F

(
r2)

F (4r/(1 + r)2)

≤ 1 + βr

F (4r/(1 + r)2) ≤ 1 + βr ≤ 1 + β (4.22)

for r ∈ (0, 1), and hence the second lower bound 1 + δ − β and the second and third inequalities in (4.15)
follow. The first lower bound 0 in (4.15) and the equality cases of (4.13)–(4.15) are clear.

(3) If ab ≤ 1/4 and c ≥ 1, then (4.18) is still valid by Lemma 3.1(1). Furthermore, by (2.13) and 
Lemma 3.1(1), we obtain

(1 + r)F
(
r2)

F (4r/(1 + r)2) =
F
(
r2)

F0 (r2) ·
F0
(
4r/(1 + r)2

)
F (4r/(1 + r)2) ≥ lim

r→1

F (r2)
F0 (r2) = π

B
. (4.23)

Hence (4.16) follows from (4.18) and (4.23). The equality case of (4.16) is clear.
If ab ≥ c/4, then each inequality in (4.18) and in (4.23) is reversed by Lemma 3.1(2), so that each 

inequality in (4.16) is reversed. �
Remark 4.3. (1) In Corollary 4.2, B/π and 1 + δ are not directly comparable. We explain this as follows.

To simplify the explaining, we take c = 1, as an example. Then B = B(a) and R = R(a) for a ∈ (0, 1/2], 
and by [34, Theorem 2.2]) and [24, Lemma 2.2], R(a) and B(a) have the following series expansions

R(a) = 1
a

+
∞∑

n=1
[1 + (−1)n] ζ(n + 1)an

= log 16 + 4
∑
n=1

λ(2n + 1)(1 − 2a)2n, (4.24)

B(a) = 1
a

+
∞∑

n=1

[
1 + (−1)n+1] η(n + 1)an

= 4
∑
n=0

β(2n + 1)(1 − 2a)2n, (4.25)

where λ(·), η(·) and β(·) are defined as follows

λ(n + 1) =
∞∑
k=0

1
(2k + 1)n+1 , η(n) =

∞∑
k=1

(−1)k−1

kn
, β(n) =

∞∑
k=0

(−1)k

(2k + 1)n , n ∈ N

(see [1, 23.2.19–23.2.21]). By (2.7) and (4.24)–(4.25), we obtain
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lim
a→0

π2

B(a)

[
(1 + δ) − B(a)

π

]
= lim

a→0
[B(a) + R(a) − log 16] sin2(πa) − π

= π2 lim
a→0

{
a2[B(a) + R(a)]

}
·
(

sin(πa)
πa

)2

− π = −π,

which shows that

1 + δ < B(a)/π for sufficiently small a. (4.26)

Next, β(1) = π/4 by [1, 23.2.30], and it follows from (2.7), (4.24)–(4.25) and [1, Table 23.3] that

lim
a→1/2

B(a)
(1 − 2a)2

[
(1 + δ) − B(a)

π

]
= lim

a→1/2

1
(1 − 2a)2

[
B(a) + R(a) − log 16 − 1

π
B(a)2

]

= lim
a→1/2

1
(1 − 2a)2

[
4

∞∑
n=1

[λ(2n + 1) + β(2n + 1)](1 − 2a)2n − π cot2(πa)
]

= 4[λ(3) + β(3)] − π

[
lim

a→1/2

cos(πa)
1 − 2a

]2
= 4[λ(3) + β(3)] − π3

4 = 0.33141 · · · ,

and hence

1 + δ > B(a)/π when a is close to 1/2. (4.27)

From (4.26) and (4.27), we see that B/π and 1 + δ are not directly comparable.
(2) It is clear that Corollary 4.2 improves [29, Theorem 2.2 and Corollary 2.3].
(3) (4.12) and (4.14) in Corollary 4.2 give an answer to the open problem in [4, p.79].

The following two corollaries generalize the second identity in (1.7) and substantially improves [29, 
Theorem 2.5], that is, Theorem 1.2(3).

Corollary 4.4. For a, b ∈ (0, ∞) with c = a + b, let α, β and δ be as in Theorem 4.1, and for r ∈ (0, 1), let

g(r) = 2
1 + r

F

(
a, b; c;

(
1 − r

1 + r

)2
)

− F
(
a, b; c; 1 − r2)− β

1 − r

1 + r
.

(1) If ab ≤ 1/4, then g is decreasing from (0, 1] onto [0, δ − β). In particular, if ab ≤ 1/4, then for 
r ∈ (0, 1),

β(1 − r) ≤ 2F
(
a, b; c;

(
1 − r

1 + r

)2
)

− (1 + r)F
(
a, b; c; 1 − r2) ≤ β(1 − r) + (δ − β)(1 + r), (4.28)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ (c + 1)/8, then g is increasing from (0, 1] onto (δ−β, 0]. In particular, if ab ≥ (c + 1)/8, then 

for r ∈ (0, 1),

β(1 − r) + (δ − β)(1 + r) ≤ 2F
(
a, b; c;

(
1 − r

1 + r

)2
)

− (1 + r)F
(
a, b; c; 1 − r2) ≤ β(1 − r), (4.29)

with equality in each instance if and only if a = b = 1/2.
(3) In other cases not stated in parts (1)–(2), that is, 1/4 < ab < (c + 1)/8, g is not monotone on (0, 1), 

and neither (4.28) nor (4.29) holds for all r ∈ (0, 1) and for all a, b ∈ (0, ∞) with 1/4 < ab < (c + 1)/8.
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Proof. Let f be as in Theorem 4.1, and put t = (1 − r)/(1 + r). Then 2/(1 + r) = 1 + t, 1 − r2 = 4t
/
(1 + t)2, 

and g(r) = f(t). Hence the results follow from Theorem 4.1. �
Corollary 4.5. For a, b ∈ (0, ∞) with c = a + b, let δ1, δ2 and δ3 be as in Corollary 4.2.

(1) If ab ≤ 1/4, then for r ∈ (0, 1),

1
2 ≤

F
(
a, b; c; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b; c; 1 − r2) ≤ 1

2δ1, (4.30)

with equality in each instance if and only if a = b = 1/2.
(2) For r ∈ (0, 1), if ab ≥ c/4, then

1
2δ2 ≤

F
(
a, b; c; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b; c; 1 − r2) ≤ 1

2 , (4.31)

and if (c + 1)/8 ≤ ab ≤ c/4, then

1
2δ3 ≤

F
(
a, b; c; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b; c; 1 − r2) ≤ 1 + β

2 , (4.32)

with equality in each instance if and only if a = b = 1/2.
(3) If ab ≤ 1/4 ≤ c/4, then for r ∈ (0, 1),

π

2B ≤
F
(
a, b; c; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b; c; 1 − r2) ≤ B

2π , (4.33)

with equality in each instance if and only if a = b = 1/2. If ab ≥ c/4, then each inequality in (4.33) is 
reversed.

Proof. For r ∈ (0, 1), let t = (1 − r)/(1 + r). Then

F
(
a, b; c; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b; c; 1 − r2) =

(1 + t)F
(
a, b; c; t2

)
2F (a, b; c; 4t/(1 + t)2) ,

and hence the results follow from Corollary 4.2. �
5. Another kind of Landen transformation inequalities

In this section, we shall refine the related main results in [31] by proving the following theorem and its 
corollaries.

Theorem 5.1. For a, b ∈ (0, ∞) with c = a +b and C = (c +1)/2, let ρ = ab/C, σ = 1 −4ρ, δ = (R−log 16)/B,

θ = sin((C − a)π)
sin(Cπ) for c < 1, ω =

⎧⎪⎪⎨
⎪⎪⎩
δ, if c = 1,
θ, if c < 1,
−∞, if c > 1,

and define the function h on (0, 1) by

h(r) = (1 + r)F
(
a, b;C; r2)− F

(
a, b;C; 4r

2

)
− σr.
(1 + r)
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(1) If c ≤ 1, then h is increasing from [0, 1) onto [0, ω − σ). In particular, if c ≤ 1, then for r ∈ (0, 1),

σr ≤ (1 + r)F
(
a, b;C; r2)− F

(
a, b;C; 4r

(1 + r)2

)
≤ ω − σ + σr, (5.1)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ (11 − 7c)/16 and c > 1, then h is decreasing from [0, 1) onto (−∞, 0]. In particular, if 

ab ≥ (11 − 7c)/16 and c > 1, then for r ∈ (0, 1),

(1 + r)F
(
a, b;C; r2)− F

(
a, b;C; 4r

(1 + r)2

)
< σr. (5.2)

(3) In other cases note stated in parts (1)–(2), that is, ab < (11 − 7c)/16 < 1/4, h is not monotone 
on (0, 1), and neither (5.1) nor (5.2) holds for all r ∈ (0, 1) and for all a, b ∈ (0, ∞) with ab < (11 − 7c)/
16 < 1/4.

Proof. Put x = 4r/(1 + r)2 for r ∈ (0, 1). Then x > r > r2 for r ∈ (0, 1), and equalities in (4.3) hold. 
By (1.7), F0(x) = (1 + r)F0

(
r2). Differentiating both sides of this identity with respect to r, we obtain

G0(x) = (1 + r)3

1 − r

[
F0
(
r2)+ r(1 + r)

2 G0
(
r2)] . (5.3)

Differentiation gives

h′(r) = F
(
r2)+ 2ρr(1 + r)G

(
r2)− 4ρ(1 − r)

(1 + r)3 G(x) − σ. (5.4)

Clearly, h(0) = 0. If c = 1, then h(r) = (1 + r)F
(
a, 1 − a; 1; r2)− F (a, 1 − a; 1; x) − σr, and by (2.13),

h(1−) = 1
B(a) lim

r→1

[
(1 + r) log eR(a)

1 − r2 − log eR(a)

1 − x

]
− σ = δ − σ = ω − σ. (5.5)

If c < 1, then C − c = 1 − C = (1 − c)/2 > 0, 0 < C − a = (1 + b − a)/2 < (1 + c)/2 < 1, 
0 < C − b = 1 − (C − a) < 1, and hence by (2.10) and (2.7),

h(1−) = F (a, b;C; 1) − σ = Γ(C)Γ(1 − C)
Γ(C − a)Γ(C − b) − σ = θ − σ = ω − σ. (5.6)

If c > 1, then C > 1, C − c = (1 − c)/2 = 1 −C < 0, C − [(C − a) + (C − b)] = C − 1 > 0. It follows from 
(2.12) and (4.3) that

h(r) = (1 + r)
(
1 − r2)C−c

F
(
C − a,C − b;C; r2)− (1 − x)C−cF (C − a,C − b;C;x) − σr

=
(1 + r)1+3(C−c)(1 − r)c−CF

(
C − a,C − b;C; r2)− F (C − a,C − b;C;x)

(1 − r)c−1(1 + r)2(C−c) − σr.

Hence we obtain

h(1−) = ω − σ = −∞, c > 1, (5.7)

since by (2.10),
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lim
r→1

[
(1 + r)1+3(C−c)(1 − r)c−CF

(
C − a,C − b;C; r2)− F (C − a,C − b;C;x)

]

= − Γ(C)2

(C − 1)Γ(a)Γ(b) .

Consequently, by (5.5)–(5.7), h(1−) = ω − σ for a, b ∈ (0, ∞).
(1) If c ≤ 1, then by Lemma 3.6(1) and (5.3),

G(x) ≤ G0(x)
G
(
r2)

G0 (r2)
= (1 + r)3

1 − r

G
(
r2)

G0 (r2)

[
F0
(
r2)+ r(1 + r)

2 G0
(
r2)] . (5.8)

Let f6 be as in Lemma 3.8. Then by (3.25) and (5.8), and by Lemma 3.8(1), we obtain

h′(r) ≥ F
(
r2)+ 2ρr(1 + r)G

(
r2)− 4ρ

G
(
r2)

G0 (r2)

[
F0
(
r2)+ r(1 + r)

2 G0
(
r2)]− σ

= F
(
r2)− 4ρF0

(
r2) G

(
r2)

G0 (r2)
− σ = f6

(
r2)− σ ≥ 0 (5.9)

for r ∈ (0, 1). Hence the monotonicity of h follows. The double inequality (5.1) and its equality case are 
clear.

(2) If ab ≥ (11 − 7c)/16 and c > 1, then by Lemmas 3.6(2) and 3.8(2), the inequalities in (5.8)–(5.9) are 
all reversed, and hence the result for h follows. The remaining conclusions in part (2) are clear.

(3) Clearly, h′(0) = 0, and the condition ab < (11 − 7c)/16 < 1/4 implies c > 1. By (2.12) and (5.4),

h′(r) =
(
1 − r2)C−c

F
(
C − a,C − b;C; r2)

+ 2ρr(1 + r)
(
1 − r2)C−(c+1)

F
(
C − a,C − b;C + 1; r2)

− 4ρ(1 − r)
(1 + r)3 (1 − x)C−(c+1)F (C − a,C − b;C + 1;x) − σ

=(1 + r)(1−c)/2(1 − r)(1−c)/2F
(
C − a,C − b;C; r2)

+ 2ρr(1 + r)1−C(1 − r)−CF
(
C − a,C − b;C + 1; r2)

− 4ρ(1 + r)2C−3(1 − r)1−2CF (C − a,C − b;C + 1;x) − σ

= 1
(1 − r)c

[
(1 + r)(1−c)/2(1 − r)(1+c)/2F

(
C − a,C − b;C; r2)

+2ρr(1 + r)(1−c)/2(1 − r)(c−1)/2F
(
C − a,C − b;C + 1; r2)

−4ρ(1 + r)c−2F (C − a,C − b;C + 1;x)
]
− σ. (5.10)

Since c > 1, C − [(C − a) + (C − b)] = (c − 1)/2 > 0 and (C + 1) − [(C − a) + (C − b)] = (c + 1)/2 > 1, so 
that the function in the brackets in (5.10) tends to −2cρF (C − a, C − b; C + 1; 1) < 0 as r → 1. Hence it 
follows from (2.10) and (5.10) that h′(1−) = −∞, so that there exists a number r7 = r7(a, b) ∈ (0, 1) such 
that

h′(r) < 0 for r ∈ (r7, 1). (5.11)
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On the other hand, by (5.4), we obtain

(1 + r)3

r
h′(r) =

(1 + r)3F
(
r2)− 4ρ(1 − r)G(x) − σ(1 + r)3

r
+ 2ρ(1 + r)4G

(
r2)

=
F
(
r2)− 4ρG(x) − σ

r
+
(
3 + 3r + r2)F (r2)+ 2ρ(1 + r)4G

(
r2)

+ 4ρG(x) − σ
(
3 + 3r + r2)

=f9(r) + f10(r), (5.12)

where f9(r) = f11(r)/f12(r), f11(r) = F
(
r2)− 4ρG(x) − σ, f12(r) = r and

f10(r) =
(
3 + 3r + r2)F (r2)+ 2ρ(1 + r)4G

(
r2)+ 4ρG(x) − σ

(
3 + 3r + r2) .

Clearly, f11(0) = f12(0) = 0. Hence by (2.11), (4.3) and (5.12), and by l’Hôpital’s rule, we obtain

lim
r→0

h′(r)
r

= lim
r→0

(1 + r)3h′(r)
r

= f10(0) + lim
r→0

f11(r)
f12(r)

= f10(0) + f ′
11(0)

= lim
r→0

[
2ρrG

(
r2)− 16(a + 1)(b + 1)ρ(1 − r)

(C + 1)(1 + r)3 F (a + 2, b + 2;C + 2;x)
]

+ 3 + 6ρ− 3σ

=3 + 6ρ− 3σ − 16(a + 1)(b + 1)ρ
C + 1 = 32ρ

c + 3

(
11 − 7c

16 − ab

)
> 0.

This shows that there exists a number r8 = r8(a, b) ∈ (0, 1) such that

h′(r) > 0 for r ∈ (0, r8). (5.13)

Part (3) now follows from (5.11) and (5.13). �
Corollary 5.2. For a, b ∈ (0, ∞) with c = a + b and C = (c + 1)/2, let ρ, δ, σ and ω be as in Theorem 5.1.

(1) If c ≤ 1, then for r ∈ (0, 1),

1 ≤
(1 + r)F

(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2) ≤ 1 + ω, (5.14)

1
2 ≤

F
(
a, b;C; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b;C; r ′ 2) ≤ 1 + ω

2 , (5.15)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ (c + 1)/8, then for r ∈ (0, 1),

(1 + r)F
(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2) ≤ 1, (5.16)

F
(
a, b;C; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b;C; r ′ 2) ≤ 1

2 , (5.17)

with equality in each instance if and only if a = b = 1/2.
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(3) If (11 − 7c)/16 ≤ ab < (c + 1)/8, then for r ∈ (0, 1),

(1 + r)F
(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2) < 1 + σ, (5.18)

F
(
a, b;C; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b;C; r ′ 2) <

1 + σ

2 . (5.19)

Proof. (1) Since c ≤ 1, ω ≥ 0 by Lemma 2.2(1), ω − σ ≥ 0 by Theorem 5.1(1), and σ ≥ 1 − 2c2/(c + 1) =
(1 − c)(2c + 1)/(c + 1) ≥ 0 by (1.3). Hence it follows from (5.1) that

1 + σr

F (a, b;C; 4r/(1 + r)2) ≤
(1 + r)F

(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2)

≤ 1 + ω − σ(1 − r)
F (a, b;C; 4r/(1 + r)2) ≤ 1 + ω

F (a, b;C; 4r/(1 + r)2) , (5.20)

yielding the double inequality (5.14).
Put t = (1 − r)/(1 + r). Then 1 + t = 2/(1 + r), r = (1 − t)/(1 + t), r ′ 2 = 4t

/
(1 + t)2 and

F
(
a, b;C; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b;C; r ′ 2) =

(1 + t)F
(
a, b;C; t2

)
2F
(
a, b;C; 4t

/
(1 + t)2

) . (5.21)

Hence (5.15) follows from (5.14) and (5.21). The equality case of (5.14) and (5.15) is clear.
(2) Since ab ≥ (c + 1)/8(≥ 1/4), σ = 1 − 8ab/(c + 1) ≤ 0 and ab ≥ (c + 1)/8 ≥ (11 − 7c)/16, so that (5.2)

is valid. It follows from (5.2) that

(1 + r)F
(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2) ≤ 1 + σr

F (a, b;C; 4r/(1 + r)2) ≤ 1, (5.22)

with equality if and only if a = b = 1/2. This yields (5.16) and its equality case. (5.17) and its equality case 
follow from (5.16) and (5.21).

(3) If (11 − 7c)/16 ≤ ab < (c + 1)/8, then σ > 0, and the first inequality in (5.22) also holds by (5.2). 
Hence for r ∈ (0, 1),

(1 + r)F
(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2) < 1 + σ

F (a, b;C; 4r/(1 + r)2) < 1 + σ, (5.23)

that is, (5.18) holds. The inequality (5.19) follows from (5.21) and (5.18). �
Remark 5.3. (1) Let θ be as in Theorem 5.1. In [31, p.524], θ was denoted and expressed by

H(a, b) = B((a + b + 1)/2, (1 − a− b)/2)
B((1 − a + b)/2, (1 + a− b)/2) , c = a + b < 1. (5.24)

By (2.1), for C = (a + b + 1)/2 = (c + 1)/2 < 1,

B((a + b + 1)/2, (1 − a− b)/2)
B((1 − a + b)/2, (1 + a− b)/2) = Γ(C)Γ(1 − C)

Γ((1 − a + b)/2)Γ(1 − (1 − a + b)/2) .

Clearly, if c < 1, then 1/2 < (1 −a + b)/2 = (1 + c −2a)/2 < (1 + c)/2 < 1 by (1.3). It follows from the third 
equality in (2.7) that H(a, b) = sin((1 −a +b)π/2)/ sin(Cπ) = θ, which is simpler than the expression (5.24).

(2) Theorem 5.1 and its Corollary 5.2 substantially improve [31, Theorems 2.1–2.2].
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6. Applications to the generalized Grötzsch ring functions and the modular functions

For a ∈ (0, 1/2], r ∈ (0, 1) and p ∈ (0, ∞), a Ramanujan’s generalized modular equation with signature 
1/a and order (or degree) p is

F (a, 1 − a; 1; 1 − s2)
F (a, 1 − a; 1; s2) = p

F (a, 1 − a; 1; 1 − r2)
F (a, 1 − a; 1; r2) (6.1)

(cf. [16, p. 91]), which is extensively studied by S. Ramanujan (see [12–17]), who also gave numerous algebraic 
identities for the solution s of (6.1) for some rational values of a. In their important paper [17], B. Berndt, 
S. Bhargava and F. Garvan studied generalized modular equations and gave proofs for numerous statements 
concerning these equations made by S. Ramanujan in his unpublished notebooks.

For a, b, p ∈ (0, ∞) and r ∈ (0, 1), more general modular equation can be defined as

F (a, b; a + b; 1 − s2)
F (a, b; a + b; s2) = p

F (a, b; a + b; 1 − r2)
F (a, b; a + b; r2) . (6.2)

For a, b ∈ (0, ∞) with c = a + b and for r ∈ (0, 1), the generalized Grötzsch ring function is defined by

μa, b(r) = B(a, b)
2

F
(
a, b; c; 1 − r2)
F (a, b; c; r2) , (6.3)

which is strictly decreasing from (0, 1) onto (0, ∞). For 0 < a ≤ 1/2, the function μa ≡ μa,1−a is also said to 
be the generalized Grötzsch ring function, and μ ≡ μ1/2 is exactly the well-known Grötzsch ring function in 
the quasiconformal theory (cf. [3,5,18,21,25,27,31,36,37,41]). The function μa, b has applications in several 
fields of mathematics such as the theories of quasiconformal mappings and Ramanujan’s modular equations. 
Many properties of μ(r) and μa(r) have been obtained. However, only a few properties of μa, b have been 
revealed.

For a, b ∈ (0, ∞) with C = (a + b + 1)/2, let

μa, b(r) = B(a, b)
2

F
(
a, b;C; 1 − r2)
F (a, b;C; r2) , (6.4)

which is another generalization of μ(r) and μa(r) since μa, b(r) = μa(r) if b = 1 − a.
It is well known that for r ∈ (0, 1),

μ(r) = 2μ
(
2
√
r/(1 + r)

)
(6.5)

(see [5,21]). For a, b ∈ (0, ∞) with a + b ≥ 2 and ab ≥ a + b − 10/9, it was proved in [31, Theorem 2.3] that

2μa, b

(
2
√
r/(1 + r)

)
< μa, b(r), r ∈ (0, 1). (6.6)

For a, b, K ∈ (0, ∞) and r ∈ (0, 1), let

ϕK(a, b, r) = μ−1
a, b (μa, b(r)/K) , ϕK(a, b, 0) = ϕK(a, b, 1) − 1 = 0, (6.7)

ϕK(a, b, r) = μ−1
a, b

(
μa, b(r)/K

)
, ϕK(a, b, 0) = ϕK(a, b, 1) − 1 = 0, (6.8)

ϕK(a, r) = ϕK(a, 1 − a, r) = ϕK(a, 1 − a, r), ϕK(a, 0) = ϕK(a, 1) − 1 = 0. (6.9)

Clearly, as a function of r, ϕK is an increasing homeomorphism from [0, 1] onto itself. ϕK(a, r) is called the 
modular function with signature 1/a and degree 1/K (cf. [3]). We also call ϕK(a, b, r) the modular function. 
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In the case when a = 1/2, ϕK(r) ≡ ϕK(1/2, r) is exactly the well-known Hersch–Pfluger distortion function 
in the theory of quasiconformal mappings (see [5,21]). Many properties of ϕK(r) and ϕK(a, r) have been 
obtained (see, for example, [3,5,12–16]). For instance, ϕK(r) satisfies the following well-known identities

ϕK(r)2 + ϕ1/K (r ′)2 = 1, (6.10)

ϕ2K(r) = ϕK

(
2
√
r

1 + r

)
, ϕ2K

(
1 − r

1 + r

)
= ϕK (r ′) (6.11)

for r ∈ [0, 1] (see [5, Theorem 10.5]).
By (6.3), (6.1) and (6.2) can be rewritten as

μa(s) = pμa(r) and μa, b(s) = pμa, b(r), (6.12)

respectively, so that the solution of (6.1) ((6.2)) can be given by

s = ϕ1/p(a, r)
(
s = ϕ1/p(a, b, r), respectively

)
. (6.13)

In this section, we shall apply the results proved in Sections 4–5 to present several inequalities for μa, b(r), 
μa, b(r) and ϕK(a, b, r), which extend the well-known Landen transformation identity (6.5) to the functions 
μa, b and μa, b (see Theorems 6.1–6.2 below), and extend (6.11) to ϕK(a, b, r) (see Corollaries 6.3–6.4 below). 
In particular, (6.6) is improved in Theorem 6.2.

Theorem 6.1. For a, b ∈ (0, ∞) and c = a + b, let α and β be as in Theorem 4.1, and δ1, δ2 and δ3 as in 
Corollary 4.2.

(1) If ab ≤ 1/4, then for r ∈ (0, 1),

μa, b(r) ≤ 2μa, b

(
2
√
r

1 + r

)
≤ δ2

1μa, b(r), (6.14)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ c/4, then for r ∈ (0, 1),

δ2
2μa, b(r) ≤ 2μa, b

(
2
√
r

1 + r

)
≤ μa, b(r), (6.15)

and if (c + 1)/8 ≤ ab ≤ c/4, then for r ∈ (0, 1),

δ2
3μa, b(r) ≤ 2μa, b

(
2
√
r

1 + r

)
≤ (1 + β)2μa, b(r), (6.16)

with equality in each instance if and only if a = b = 1/2.

Proof. (1) Set t = 2
√
r/(1 + r) for r ∈ (0, 1). Then

1 − t2 =
(

1 − r

1 + r

)2

, t2 = 4r
(1 + r)2 , (6.17)

and by (6.3),
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2μa, b(t) =
B(a, b)F

(
a, b; c; t ′ 2

)
F (a, b; c; t2) =

B(a, b)F
(
a, b; c; ((1 − r)/(1 + r))2

)
F (a, b; c; 4r/(1 + r)2)

=μa, b(r)
(1 + r)F

(
a, b; c; r2)

F (a, b; c; 4r/(1 + r)2) ·
2F
(
a, b; c; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b; c; r ′ 2) . (6.18)

Hence the double inequality (6.14) follows from (4.11), (4.30) and (6.18). The equality case of (6.14) is clear.
(2) Similarly, the double inequality (6.15) ((6.16)) follows from (4.13), (4.31) and (6.18) ((4.15), (4.32)

and (6.18), respectively). The equality case of (6.15) and (6.16) is clear. �
Theorem 6.2. For a, b ∈ (0, ∞) with c = a + b and C = (a + b + 1)/2, let ρ, σ and ω be as in Theorem 5.1.

(1) If c ≤ 1, then for r ∈ (0, 1),

μa, b(r) ≤ 2μa, b

(
2
√
r

1 + r

)
≤ (1 + ω)2μa, b(r), (6.19)

with equality if and only if a = b = 1/2.
(2) If ab ≥ (c + 1)/8, then for r ∈ (0, 1),

2μa, b

(
2
√
r

1 + r

)
≤ μa, b(r), (6.20)

and if (11 − 7c)/16 ≤ ab ≤ (c + 1)/8, then for r ∈ (0, 1),

2μa, b

(
2
√
r

1 + r

)
≤ (1 + σ)2μa, b(r), (6.21)

with equality in each instance if and only if a = b = 1/2.

Proof. Let t = 2
√
r/(1 + r) for r ∈ (0, 1). Then (6.17) is valid.

(1) By (6.4), we can write

2μa, b(t) = μa, b(r)
(1 + r)F

(
a, b;C; r2)

F (a, b;C; 4r/(1 + r)2) ·
2F
(
a, b;C; ((1 − r)/(1 + r))2

)
(1 + r)F (a, b;C; r ′ 2) . (6.22)

Hence part (1) follows from Corollary 5.2(1).
(2) If ab ≥ (c + 1)/8 ((11 − 7c)/16 ≤ ab ≤ (c + 1)/8), then (6.20) ((6.21)) follows from (5.16)–(5.17)

and (6.22) ((5.18)–(5.19) and (6.22), respectively). �
Corollary 6.3. For a, b ∈ (0, ∞) and c = a + b, let α and β be as in Theorem 4.1, and δ1, δ2 and δ3 as in 
Corollary 4.2, and let K1 = 2K/δ2

1, K2 = 2K/δ2
2, K3 = 2K/(1 + β)2 and K4 = 2K/δ2

3.
(1) If ab ≤ 1/4, then for r ∈ (0, 1),

ϕK1(a, b, r) ≤ ϕK

(
a, b,

2
√
r

1 + r

)
≤ ϕ2K(a, b, r), (6.23)

with equality in each instance if and only if a = b = 1/2.
(2) If ab ≥ c/4, then for r ∈ (0, 1),

ϕ2K(a, b, r) ≤ ϕK

(
a, b,

2
√
r

1 + r

)
≤ ϕK2(a, b, r), (6.24)
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and if (c + 1)/8 ≤ ab ≤ c/4, then for r ∈ (0, 1),

ϕK3(a, b, r) ≤ ϕK

(
a, b,

2
√
r

1 + r

)
≤ ϕK4(a, b, r), (6.25)

with equality in each instance if and only if a = b = 1/2.

Proof. (1) It follows from Theorem 6.1(1) that

μ−1
a, b

(
δ2
1

2Kμa, b(r)
)

≤ μ−1
a, b

(
1
K

μa, b

(
2
√
r

1 + r

))
≤ μ−1

a, b

(
1

2Kμa, b(r)
)
,

with equality in each instance if and only if a = b = 1/2. This yields part (1).
(2) Similarly, part (2) follows from Theorem 6.1(2). �

Corollary 6.4. For a, b ∈ (0, ∞) with c = a + b and C = (a + b + 1)/2, let ρ, σ and ω be as in Theorem 5.1, 
and let K5 = 2K/(1 + ω)2 and K6 = 2K/(1 + σ)2.

(1) If c ≤ 1, then for r ∈ (0, 1),

ϕK5
(a, b, r) ≤ ϕK

(
a, b,

2
√
r

1 + r

)
≤ ϕ2K(a, b, r), (6.26)

with equality if and only if a = b = 1/2.
(2) If ab ≥ (c + 1)/8, then for r ∈ (0, 1),

ϕK

(
a, b,

2
√
r

1 + r

)
≥ ϕ2K(a, b, r), (6.27)

and if (11 − 7c)/16 ≤ ab < (c + 1)/8, then for r ∈ (0, 1),

ϕK

(
a, b,

2
√
r

1 + r

)
≥ ϕK6

(a, b, r), (6.28)

with equality in each instance if and only if a = b = 1/2.

Proof. (1) By Theorem 6.2(1), we obtain

μ−1
a, b

(
(1 + ω)2

2K μa, b(r)
)

≤ μ−1
a, b

(
1
K

μa, b

(
2
√
r

1 + r

))
≤ μ−1

a, b

(
1

2Kμa, b(r)
)
,

with equality in each instance if and only if a = b = 1/2, which yields part (1).
(2) Similarly, part (2) follows from Theorem 6.2(2). �
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