
J. Math. Anal. Appl. 478 (2019) 195–211
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Large time behavior of solutions to a chemotaxis model with 

porous medium diffusion ✩

Chunhua Jin
School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 July 2018
Available online 20 May 2019
Submitted by M. Winkler

Keywords:
Chemotaxis system
Porous medium diffusion
Logistic source
Large time behavior

In this paper, we study the large time behavior of a chemotaxis model with nonlinear 
diffusion and consumption

⎧⎨
⎩

ut = Δum −∇ · (u∇v) + μu(1 − u),

vt − Δv = −vu,

where m > 1. In a previous paper [5], we have proved the existence and uniform 
boundedness of global weak solutions for any nonnegative initial data and any 
m > 1. In this work, we show that the weak solutions strongly converge to (1, 0) in 
the large time limit.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following chemotaxis model

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δum −∇ · (u∇v) + μu(1 − u), in Q,

vt − Δv = −vu, in Q,

(∇um − u∇v) · n|∂Ω = ∂v

∂n

∣∣∣∣
∂Ω

= 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where m > 1, Q = Ω × R+, Ω ⊂ R3 is a bounded domain, and the boundary ∂Ω is appropriately smooth, 
u, v represent the bacterial density, the chemoattractant concentration respectively, J = −u · ∇v is the 
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chemotactic flux, Δum denotes migration of the bacteria, for which, the motility depends on the bacterial 
density, Δv is the diffusion of chemoattractant, μu(1 − u) (μ > 0) characterizes the proliferation or death 
of bacteria according to the logistic law, −vu is the consumption of chemoattractant.

Since Keller and Segel [6] introduced the classical chemotaxis model in 1970, the chemotaxis models 
have been widely studied by many authors, and fruitful results have been achieved in the global existence, 
uniform boundedness of solutions. In addition, some significant progresses for the large time behavior of 
solutions also have been made for these models with linear diffusion. For example, the following chemotaxis 
model with signal production has been widely studied,

{
ut = Δu−∇ · (u∇v) + μu(1 − u),

τvt − Δv = −v + u,

and it is shown that for large μ, the solutions will go to the constant equilibrium (1, 1) strongly in the sense 
of L∞, see for example [1,4,16]. While for the following chemotaxis model with consumption

{
ut = Δu−∇ · (u∇v) + μu(1 − u),

vt − Δv = −vu,
(1.2)

it is shown that the solutions go to (u0, 0) uniformly when μ = 0 [12], where u0 = 1
|Ω|

∫
Ω u0(x)dx; and the 

solutions go to the constant equilibrium (1, 0) uniformly when μ > 0 [7]. However, the global existence of 
classical solutions is still open for small values of μ > 0 or μ = 0 [7,12,20].

From a physical point of view, migration of the cells should be considered as a movement in porous media 
[10], and the cell motility is a nonlinear function of the cell density. So in recent years, the chemotaxis systems 
with porous medium diffusion have been widely studied. For the following system

{
ut = Δum −∇ · (u∇v),

vt − Δv = −vu,

the global bounded weak solutions were obtained for any m > 1 in dimension 2 [11]. While, the research is 
rather tortuous for the three dimensional space. In 2011, Liu and Lorz [9] established the global existence 
of a L1-weak solution for m = 4

3 , afterwards, Duan and Xiang [3] proved the global existence of this kind of 
weak solutions for all adiabatic exponents m ≥ 1. However, such kind of weak solution may be unbounded, 
from which, it is not possible to see whether the blow up phenomenon has occurred. Hence, the existence 
of bounded weak solutions is always a focus of people’s concerning. In 2010, Di Francesco [2] obtained 
the global existence of bounded weak solutions for m ∈ (m∗, 2] with m∗ ≈ 1.81, and also showed that 
(u, v) → (u0, 0) in L1(Ω) ×L2(Ω) for m = 2; in 2013, a locally bounded global weak solution for m > 8

7 was 
obtained by Tao and Winkler [13]; subsequently, Winkler [17] supplemented the boundedness for m > 7

6 ; 
recently, Winkler [18] further improved the result to m > 9

8 , and also showed that all these global solutions 
will always go to (u0, 0) in Lp(Ω) ×W 1,∞ for any p ≥ 1. However, there remains a gap for m ∈ (1, 98 ].

In a previous paper, we established the existence and boundedness of global weak solutions for the system 
(1.1) for any m > 1 [5]. That is

Theorem 1.1 (Global Existence and Uniform Boundedness [5]). Assume u0, v0 ≥ 0, u0 ∈ L∞(Ω) ∩W 1,2(Ω), 
v0 ∈ C2(Ω), and m > 1. Then for any μ > 0, the problem (1.1) admits a nonnegative weak solution 
(u, v) ∈ X1 ×X2 (as defined in Definition 2.1 below), such that

sup (‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞) ≤ M1, (1.3)

t∈(0,∞)
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sup
t∈(0,+∞)

∫
Ω

|∇um|2dx + sup
t∈(0,+∞)

(
‖um−1

2 ut‖L2(Q1(t)) + ‖∇u
m
2 ‖L2(Q1(t))

)
≤ M2, (1.4)

sup
t∈(0,+∞)

‖v‖W 2,1
p (Q1(t)) ≤ M3, for any p > 1, (1.5)

where Q1(t) = Ω × (t, t + 1),

X1 = {u ∈ L∞(Ω ×R+);∇um ∈ L∞((0,∞);L2(Ω)),
(
u

m+1
2

)
t
,∇u

m
2 ∈ L2

loc([0,∞);L2(Ω))},

X2 = {v ∈ L∞((0,∞);W 1,∞(Ω); vt,Δv ∈ Lp
loc([0,∞);Lp(Ω)), for any p > 1},

and Mi (i = 1, 2, 3) depend only on μ, m, Ω, u0, v0.

Remark 1.1. It is worth noting that in [5], the result of the main theorem is that ∇u
m+1

2 ∈ L2
loc(R+; L2(Ω)).

However, it can be replaced by ∇u
m
2 ∈ L2

loc(R+; L2(Ω)). In fact, by testing the regularized equation (11) in 
[5] with 1 + ln uε, one can obtain

sup
t∈(0,+∞)

t+1∫
t

∫
Ω

|∇u
m
2
ε |2dxds ≤ C,

where C is independent of ε. Letting ε → 0, we also have

sup
t∈(0,+∞)

t+1∫
t

∫
Ω

|∇u
m
2 |2dxds ≤ C.

In the present paper, we will study the large time behavior of these solutions. We will show that the 
solutions we obtained above go to (1, 0) as t → ∞ in the sense of Theorem 1.2. Although the result is not 
surprising, and it is similar to the linear diffusion case, but it’s quite different in methods. For the linear 
diffusion case, there is a good Lyapunov functional with dissipative structure. That is, let

F (u) =
∫
Ω

(u− 1 − ln u)dx +
∫
Ω

v2dx,

by a direct calculation, it is not difficult to see that

dF (u)
dt

≤ −
∫
Ω

(
1
2
|∇u|2
u2 + 1

2 |∇v|2 + v2u + μ(u− 1)2
)
dx.

Using this functional, one can establish the stability of the equilibrium state (1, 0) directly. While, for the 
chemotaxis model with porous medium diffusion, although we can also construct a Lyapunov functional 
with dissipative structure, namely

dG(u)
dt

≤ −
∫
Ω

(αm
2 uα+m−2|∇u|2 + (A− α

2mχ2‖u‖α+2−m
L∞ )|∇v|2 + Av2u + μu(u− 1)(uα − 1)

)
dx,

where α > (m − 2)+, A > α
2mχ2‖u‖α+2−m

L∞ , and

G(u) =
∫ (

1
α + 1u

α+1 − u + A

2 v2
)
dx,
Ω
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nevertheless, from this Lyapunov functional, the large time behavior of solutions is not easy to be found. In 
[18], the author established the large time behavior by some elaborate analytical skills, compared with this 
work, the main difficulty lies in the calculation of the limit for the integral mean value of u(x, t) in Ω. We 
use five Lemmas, that is Lemma 3.1-Lemma 3.5 to show that

lim
t→∞

1
|Ω|

∫
Ω

u(x, t)dx = 1.

Based on this result, we finally establish the convergence of u, and the convergence of v is further established. 
That is for any initial datum, the solution we obtained in Theorem 1.1 goes to (1, 0). In fact, for the system 
(1.1), there is no other nonnegative and nontrivial steady state, see Remark 1.3, which is very different from 
the case with signal production, namely, the second equation is replaced by vt − Δv = −v + u, for which, 
many different steady states have been constructed by some authors in dimension 1 [14,15].

More precisely, we have the following result

Theorem 1.2. Assume that u0 �≡ 0. For any initial datum, let (u, v) ∈ X1 × X2 be a global weak solution of 
(1.1). Then for any μ > 0, m > 1, we have

lim
t→∞

(‖u(·, t) − 1‖Lp + ‖v(·, t)‖L∞) = 0, for any p ≥ 1.

Furthermore, there exists T0 > 0, such that

‖v(·, t)‖H1 ≤ Ce−
1
2 t, ‖v(·, t)‖L∞ ≤ Ce−

1
3 t, for any t > T0,

where C is a constant depending only on u0, v0, Ω, μ, m.

Remark 1.2. The decay rate of v obtained in Theorem 1.2 is not optimal. In fact, by a more accurate 
calculation, a faster decay rate will be reached.

Remark 1.3. In fact, the steady problem of (1.1) admits no nontrivial and nonnegative steady solution 
(u, v) ∈ X̃1 × X̃2, where

X̃1 = {u ∈ L∞(Ω);∇um ∈ L2(Ω)}; X̃2 = {v ∈ L∞(Ω) ∩H2(Ω)}.

In fact, let (u(x), v(x)) be a steady solution of (1.1). We denote

1
|Ω|

∫
Ω

um(x)dx = Am,
1
|Ω|

∫
Ω

v(x)dx = B,

and by a direct calculation, we also have
∫
Ω

(
1
2 |∇um|2 + (M − 1

2χ
2‖u‖2

L∞)|∇v|2 + Av2u + μu(u− 1)(um − 1)
)
dx ≤ 0, (1.6)

for any constant M > 1
2χ

2‖u‖2
L∞ . Then by Poincaré inequality, we see that

∫
Ω

|v(x) −B|2dx ≤ C

∫
Ω

|∇v|2dx = 0,
∫
Ω

|um(x) −Am|2dx ≤ C

∫
Ω

|∇um|2dx = 0,

which implies that v = B, u = A a. e. in Ω.
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2. Preliminaries

We first give the definition of weak solutions.

Definition 2.1. (u, v) ∈ X1 × X2 is called a weak solution of (1.1), if u ≥ 0, v ≥ 0, and for any t > 0, 
(ϕ, ψ) ∈ D1 ×D2,∫

Ω

u(x, t)ϕ(x, t)dx−
∫
Ω

u0(x)ϕ(x, 0)dx−
∫∫
Qt

uϕtdxdt +
∫∫
Qt

(∇um − u∇v)∇ϕdxdt

= μ

∫∫
Qt

u(1 − u)ϕdxdt, (2.1)

∫∫
Qt

vtψdxdt−
∫∫
Qt

Δvψdxdt +
∫∫
Qt

uvψdxdt = 0, (2.2)

where Qt = Ω × (0, t), X1, X2 are defined as in Theorem 1.1,

D1 = {ϕ(x, t) ∈ L∞(R+;L1(Ω));uϕt, u∇ϕ, u
m
2 ∇ϕ ∈ L2(QT ), for any T > 0},

D2 = {ψ(x, t) ∈ L2(QT ) for any T > 0}.

It is worth noting that the above definition looks different from the definition given in [5], but they are 
equivalent when (u, v) ∈ X1 × X2. However, to make readers more directly to figure out what kinds of test 
functions are admissible, we use the above definition. For example, from Definition 2.1, it is easy to see that 
for any α ≥ m−1

2 , uα can be chosen as the test function since u ∈ X1.
To show the stability of steady states, we give two preliminary lemmas, which are important in the proof 

of large time behavior.

Lemma 2.1. Assume that f ≥ 0, f(t) ∈ L1(T, ∞) for some constant T > 0, and

f(t) − f(s) ≤ A(t− s) ( or ≥ −A(t− s)), for all t > s > T,

where A is a positive constant. Then

lim
t→∞

f(t) = 0.

Proof. We only prove the case

f(t) − f(s) ≤ A(t− s), for all t > s > T.

Suppose the contrary, then there exists a constant σ0 > 0 and a sequence {tj}∞j=1 with t1 > T + σ0
A , and 

tj ↗ ∞ such that

f(tj) > σ0.

Noticing that 
∫∞
T

f(t)dt converges, then for any ε0 > 0, there exists T0(ε0) > 0, such that for any t > T0, 
we have

+∞∫
f(s)ds < ε0. (2.3)
t
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Noticing

f(t) − f(s) ≤ A(t− s), ∀ t > s > T,

when s ∈ (tj − σ0
2A , tj),

f(tj) − f(s) ≤ A(tj − s),

that is

f(s) ≥ f(tj) −A(tj − s) > σ0 −
σ0

2 = σ0

2 , for all s ∈ (tj −
σ0

2A, tj).

Then

tj∫
tj− σ0

2A

f(t)dt > σ0

2 · σ0

2A = σ2
0

4A.

Taking ε0 = σ2
0

4A in (2.3), and noticing that tj ↗ ∞, then there exists tj0 with tj0 − σ0
2A > T0, thus, we have

σ2
0

4A <

tj0∫
tj0−

σ0
2A

f(t)dt ≤
∞∫

tj0−
σ0
2A

f(t)dt < σ2
0

4A.

It is a contradiction. �
Lemma 2.2. Assume that f(t), g(t) ≥ 0, lim

t→∞
g(t) = 0, and f(t) ∈ L1(T, +∞) with some constant T ≥ 0. 

Let F (t) = f(t) − g(t), and that

F (t) − F (s) ≥ −A(t− s), ∀t > s > T (2.4)

for some positive constant A, then

lim
t→∞

f(t) = 0.

Proof. Suppose the contrary, then there exists a constant σ0 > 0 and a sequence {tj} with tj ↗ ∞ such 
that

F (tj) > σ0.

Then for any s ∈ (tj , tj + σ0
2A )

F (s) ≥ F (tj) −A(s− tj) > σ0 −
σ0

2 = σ0

2 ,

which implies

f(s) > σ0

2 , ∀ s ∈ (tj , tj + σ0

2A ).

Then similar to the proof of Lemma 2.1, it will lead to a contradiction. The proof is complete. �
At last, we also give the following generalized Gagliardo-Nirenberg interpolation inequality [8].
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Lemma 2.3. For functions u : Ω → R defined on a bounded Lipschitz domain Ω ∈ RN , we have

‖u‖Lp ≤ C1‖Du‖αLq‖u‖1−α
Ls + C2‖u‖Lr ,

where p ≥ s > 0, q ≥ 1, r > 0, 0 ≤ α ≤ 1, and 1
p = (1

q − 1
N )α + 1−α

s .

3. Large time behavior

In this section, we study the large time asymptoticity of the weak solutions obtained in Theorem 1.1. In 
what follows, for simplicity, we use C, C̃, Ĉ, Ci denote some different positive constants, which depend at 
most on μ, m, u0, v0, Ω and Mi(i = 1, 2, 3) in Theorem 1.1.

We first have the following lemma.

Lemma 3.1. Let (u, v) ∈ X1 ×X2 be a solution of (1.1). Then we have

∞∫
0

∫
Ω

(|Δv|2 + |∇v|2 + v2u)dxdt ≤ C1, (3.1)

∞∫
0

∫
Ω

uα+m−2|∇u|2dxdt +
∞∫
0

∫
Ω

u(u− 1)(uα − 1)dxdt ≤ C2, ∀α > max
{

(m− 2)+,
m− 1

2

}
, (3.2)

where C1, C2 depend on u0, v0, μ, Ω, α.

Proof. Noticing that v ∈ X2 by Theorem 1.1, by the definition of weak solutions, and taking the test 
function ψ = v in (2.2), we obtain

1
2

∫
Ω

v2(x, t)dx +
t∫

0

∫
Ω

|∇v|2dxds +
t∫

0

∫
Ω

v2udxds = 1
2

∫
Ω

v2
0(x)dx, for any t > 0.

Letting t → ∞, we arrive at

∞∫
0

∫
Ω

(|∇v|2 + v2u)dxdt ≤
∫
Ω

|v0|2. (3.3)

Choosing the test function ψ = Δv in (2.2), and using Young’s inequality, we see that

∫
Ω

|∇v(x, t)|2dx +
t∫

0

∫
Ω

|Δv|2dxds ≤
∫
Ω

|∇v0|2dx +
t∫

0

∫
Ω

v2u2dxds

≤
∫
Ω

|∇v0|2dx + ‖u‖L∞

t∫
0

∫
Ω

v2udxds,

letting t → ∞, we obtain

∞∫
0

∫
Ω

|Δv|2dxdt ≤
∫
Ω

|∇v0|2 + sup
t>0

‖u‖L∞

∞∫
0

∫
Ω

v2udxdt. (3.4)
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Combining (1.3), (3.3) and (3.4), we obtain (3.1).
Noticing that um−1

2 ut ∈ L2
loc[0, ∞); L2(Ω)), taking the test function ϕ = χ[0,T ](uα − 1), for any α >

max{(m − 2)+, m−1
2 } and T > 0, where χ[0,T ] is the characteristic function of the segment [0, T ], we see 

that
∫
Ω

(
1

α + 1u
α+1(x, T ) − u(x, T )

)
dx + αm

∫∫
QT

uα+m−2|∇u|2dxdt + μ

∫∫
QT

u(u− 1)(uα − 1)dxdt

= α

∫∫
QT

uα∇v∇udxdt +
∫
Ω

(
1

α + 1u
α+1
0 (x) − u0(x)

)
dx

≤ αm

2

∫∫
QT

uα+m−2|∇u|2dxdt + α

2m

∫∫
QT

uα+2−m|∇v|2dxdt +
∫
Ω

(
1

α + 1u
α+1
0 (x) − u0(x)

)
dx

≤ αm

2

∫∫
QT

uα+m−2|∇u|2dxdt + α

2m sup
t

‖u(·, t)‖α+2−m
L∞

∫∫
QT

|∇v|2dxdt +
∫
Ω

(
1

α + 1u
α+1
0 (x) − u0(x)

)
dx.

Using (1.3), (3.1), and letting T → ∞, we obtain (3.2). �
Using Lemma 3.1, we can further prove that

Lemma 3.2. Let (u, v) ∈ X1 ×X2 be a solution of (1.1). Then we have

∫
Ω

|∇v(x, t)|2dx−
∫
Ω

|∇v(x, s)|2dx +
t∫

s

∫
Ω

|Δv|2dxdτ ≤ 2C(t− s), for any t > s > 0, (3.5)

and we further have

lim
t→∞

∫
Ω

|∇v(x, t)|2dx = 0, (3.6)

lim
t→∞

∫
Ω

u(t, x)(u(t, x) − 1)2dx = 0. (3.7)

Proof. Choosing the test function ψ = 2Δvχ[s,t] in (2.2) and using Young’s inequality, we obtain

∫
Ω

|∇v(x, t)|2dx−
∫
Ω

|∇v(x, s)|2dx +
t∫

s

∫
Ω

|Δv|2dxdτ ≤
t∫

s

∫
Ω

v2u2dxdτ

for any t > s > 0. By (1.3), we have (3.5). Combining (3.5), Lemma 2.1 and the inequality (3.1), (3.6) is 
achieved.

Next, we show (3.7). Recalling (1.3), and noticing that when α > 1, |u − 1| ≤ |uα − 1| ≤ C|u − 1|, then 
by (3.2), we have

∞∫
0

∫
Ω

u(uα − 1)2dxdt ≤ C2, ∀α > max
{

(m− 2)+,
m− 1

2 , 1
}
. (3.8)
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By (1.3), we see that for any α > max
{
(m− 2)+, m−1

2 , 1
}
, t > s > 0, choosing uαχ[s,t], u2αχ[s,t], χ[s,t] as 

the test functions, we conclude that

∫
Ω

u(x, t)(uα(x, t) − 1)2dx−
∫
Ω

u(x, s)(uα(x, s) − 1)2dx

=
∫
Ω

(u2α+1 − 2uα+1 + u)(x, t)dx−
∫
Ω

(u2α+1 − 2uα+1 + u)(x, s)dx

= −2αm(2α + 1)
t∫

s

∫
Ω

u2α+m−2|∇u|2dxdτ + 2αm(α + 1)
t∫

s

∫
Ω

um+α−2|∇u|2dxdτ

+ 2α
t∫

s

∫
Ω

(uα+1 − u2α+1)Δvdxdτ + μ

t∫
s

∫
Ω

((2α + 1)u2α − 2(α + 1)uα + 1)u(1 − u)dxdτ

≥ −2αm(2α + 1)
t∫

s

∫
Ω

u2α+m−2|∇u|2dxdτ + 2αm(α + 1)
t∫

s

∫
Ω

um+α−2|∇u|2dxdτ

− C(t− s) −
t∫

s

∫
Ω

|Δv|2dxdτ.

Noticing that 2αm(2α + 1)u2α+m−2 ≤ Cu2(m−1) when α ≥ m
2 since u is bounded, and (2α + 1)u2α+m−2 ≤

(α + 1)uα+m−2 + Cu2(m−1) when α < m
2 for some sufficiently large constant C, combining with (1.4) and 

the above inequality, we get

∫
Ω

u(x, t)(uα(x, t) − 1)2dx−
∫
Ω

u(x, s)(uα(x, s) − 1)2dx

≥− C

t∫
s

∫
Ω

|∇um|2dxdτ −
t∫

s

∫
Ω

|Δv|2dxdτ

≥− C̃(t− s) −
t∫

s

∫
Ω

|Δv|2dxdτ, for any t > s > 0. (3.9)

Letting F (t) =
∫
Ω
(
u(t, x)(uα(t, x) − 1)2 − |∇v(t, x)|2

)
dx, and using (3.5), (3.9), we have

F (t) − F (s) ≥ −Ĉ(t− s), for any t > s > 0,

using Lemma 2.2, and combining with (3.2), (3.6), we arrive at

lim
t→∞

∫
Ω

u(t, x)(uα(t, x) − 1)2dx = 0, ∀α > max
{

(m− 2)+,
m− 1

2 , 1
}
.

Noticing that |u − 1| ≤ |uα − 1| for any α > 1, then (3.7) is a direct result of the above inequality. �
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In what follows, we pay our attention to show that

lim
t→∞

1
|Ω|

∫
Ω

u(x, t)dx = 1.

We first show the following lemma.

Lemma 3.3. Let (u, v) ∈ X1 ×X2 be a solution of (1.1). Denote a(t) = 1
|Ω|

∫
Ω u(x, t)dx, bm(t) = 1

|Ω|
∫
Ω umdx. 

Then it is easy to obtain that

a(t) ≤ b(t),

and we have

lim
t→∞

∫
Ω

|um(x, t) − bm(x, t)|2dx = 0. (3.10)

And if there exists a sequence {tj} with tj ↗ ∞ and a positive constant σ0, such that

lim
j→∞

a(tj) = σ0,

then σ0 = 1, which implies

lim
j→∞

a(tj) = lim
j→∞

b(tj) = 1,

and

lim
j→∞

∫
Ω

|u(x, tj) − 1|2dx = 0. (3.11)

Proof. Notice that

bm(t) = 1
|Ω|

∫
Ω

umdx ≥

⎛
⎝ 1
|Ω|

∫
Ω

udx

⎞
⎠

m

= a(t)m,

which implies that a(t) ≤ b(t).
By a direct calculation, and using (1.3), (1.4), we obtain

d

dt

∫
Ω

|um − bm|2dx = d

dt

∫
Ω

u2mdx− 2|Ω|bm(bm)′ =
∫
Ω

2mu2m−1utdx− 2|Ω|bm(bm)′,

then for any t > s > 0, we have
∫
Ω

|um(x, t) − bm(t)|2dx−
∫
Ω

|um(x, s) − bm(s)|2dx

= 2m2(m− 1)
t∫
bm(τ)

∫
u2m−3|∇u|2dxdτ − 2(2m− 1)

t∫ ∫
um−1|∇um|2dxdτ
s Ω s Ω
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− (2m− 1)
t∫

s

∫
Ω

u2mΔvdxdτ + 2(m− 1)
t∫

s

bm(τ)
∫
Ω

umΔvdxdτ

+ 2 μm
t∫

s

∫
Ω

u2m(1 − u)dxdτ − 2mμ

t∫
s

bm(τ)
∫
Ω

um(1 − u)dxdτ

≥ −C(t− s) −
t∫

s

∫
Ω

|Δv|2dxdτ, for any t > 0.

Combining with (3.5), for any t > s > 0 we obtain

∫
Ω

(|um(x, t) − bm(t)|2 − |∇v(x, t)|2)dx−
∫
Ω

(|um(x, s) − bm(s)|2 − |∇v(x, s)|2)dx ≥ −C(t− s).

Furthermore, by Poincaré inequality, and using (3.2) with α = m, we see that

∞∫
0

∫
Ω

|um − bm|2dxdt ≤ C

∞∫
0

∫
Ω

|∇um|2dxdt ≤ C̃. (3.12)

Combining with Lemma 2.2, (3.6), we obtain (3.10).
Noticing that |um − bm| ≥ bm−1|u − b|, then we have

a(t)2m−2
∫
Ω

|u− b|2dx ≤ b2m−2(t)
∫
Ω

|u− b|2dx ≤
∫
Ω

|um − bm|2dx. (3.13)

If lim
j→∞

a(tj) = σ0 > 0, and noticing that

|a(t) − b(t)|2 =

∣∣∣∣∣∣
1
|Ω|

∫
Ω

(u− b)dx

∣∣∣∣∣∣
2

≤ 1
|Ω|

∫
Ω

|u− b|2dx, (3.14)

combining with (3.10), (3.13) and (3.14), we obtain

lim
j→∞

(b(tj) − a(tj)) = 0. (3.15)

We note that∫
Ω

|u(x, tj) − σ0|2dx ≤ 3
∫
Ω

|u(x, tj) − b(tj)|2dx + 3
∫
Ω

|b(tj) − a(tj)|2dx + 3
∫
Ω

|a(tj) − σ0|2dx,

by (3.10), (3.13) and (3.15), we obtain

lim
j→∞

∫
Ω

|u(x, tj) − σ0|2dx = 0. (3.16)

On the other hands, we see that for any α > (m − 2)+,
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∫
Ω

b(t)(u− 1)2dx =
∫
Ω

u(u− 1)2dx−
∫
Ω

(u− b(t))(u− 1)2dx

≤
∫
Ω

u(u− 1)2dx + 1
2

∫
Ω

(u− b(t))2

b(t) (u− 1)2dx + 1
2

∫
Ω

b(t)(u− 1)2dx,

which implies that

∫
Ω

b(t)(u− 1)2dx ≤ 2
∫
Ω

u(u− 1)2dx + C

∫
Ω

(u− b(t))2

b(t) dx.

By (3.7), (3.10) and (3.13), we get

lim
j→∞

∫
Ω

(u(x, tj) − 1)2dx = 0, (3.17)

since limj→∞ b(tj) = σ0 > 0.
By (3.16) and (3.17), and note that

|Ω||σ0 − 1|2 ≤ 2
∫
Ω

(u(x, tj) − 1)2dx + 2
∫
Ω

(u(x, tj) − σ0)2dx,

then we have σ0 = 1. The proof is complete. �
From the above lemma, if limtj→∞ a(tj) exists, it is either 1 or 0. To show that limtj→∞ a(tj) = 0 is 

impossible, we need the following lemma.

Lemma 3.4. Let (u, v) ∈ X1 ×X2 be a solution of (1.1). If limt→∞ ‖u(·, t)‖L1 = 0, then

lim
t→∞

‖u(·, t)‖L∞ = 0.

Proof. By (1.3), and notice that

‖u(·, t)‖Lr ≤ ‖u(·, t)‖
1
r

L1‖u(·, t)‖
r−1
r

L∞ ,

then for any fixed r > 1, we have

lim
t→∞

‖u(·, t)‖Lr = 0.

Therefore, for any sufficiently small constant ε0 > 0, there exists a constant T > 0, such that

‖u(·, t)‖L3m < ε0, for any t > T (3.18)

Using smoothing operator, we can construct a cut off function η(t) ∈ C1[T, +∞) with η(T ) = 0, η(t) = 1
for t > T + 1, and |η′(t)| ≤ C for some positive constant C, see for example [19].

Testing the first equation of (1.1) with ϕ = rχ[T,s]η
rur−1et for any r > 4m, s > T , and using (1.3), we 

obtain
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∫
Ω

ηr(s)ur(x, s)esdx + mr(r − 1)
s∫

T

∫
Ω

etηrum+r−3|∇u|2dxdt

≤ r(r − 1)
s∫

T

∫
Ω

etηrur−1∇v∇udxdt + (μr + 1)
s∫

T

∫
Ω

etηrurdt + r

s∫
T

∫
Ω

etη′ηr−1urdxdt

≤ mr(r − 1)
4

s∫
T

∫
Ω

etηrum+r−3|∇u|2dxdt + Cr2
s∫

T

∫
Ω

etηrur+1−mdxdt + Cr

s∫
T

∫
Ω

etηr−1urdxdt. (3.19)

Using Lemma 2.3 (choosing p = 2(r+1−m)
r+m−1 , q = 2, s = r

m+r−1 ) and Young’s inequality, for any sufficiently 
small σ > 0, and noticing that u is bounded, we see that

Cr2ηr‖u‖r+1−m
Lr+1−m =Cr2ηr‖u r+m−1

2 ‖
2(r+1−m)
r+m−1

L
2(r+1−m)
r+m−1

≤C1r
2ηr‖∇u

r+m−1
2 ‖

6(r+2−2m)
6(m−1)+5r
L2 ‖u r+m−1

2 ‖
4r(r+2(m−1))

(6(m−1)+5r)(r+m−1)

L
r

m+r−1
+ C2r

2ηr‖u‖r+1−m
r
2

≤σηr‖∇u
r+m−1

2 ‖2
L2 + Cσr

6(m−1)+5r
6(m−1)+r ηr‖u‖

r(2(m−1)+r)
6(m−1)+r

r
2

+ C2r
2ηr‖u‖r+1−m

r
2

≤σηr‖∇u
r+m−1

2 ‖2
L2 + Cσr

5ηr‖u‖
r(2(m−1)+r)
6(m−1)+r

r
2

+ C2r
2ηr‖u‖r+1−m

r
2

≤σηr‖∇u
r+m−1

2 ‖2
L2 + Ĉσr

5‖ηu‖r−4m
r
2

since 2(r+1−m)
r+m−1 < 6, 6(r+2−2m)

6(m−1)+5r < 2, 6(m−1)+5r
6(m−1)+r < 5, r > 1, and noticing that 2r

r+m−1 < 6, 6r
6(m−1)+5r < 2, 

then by Lemma 2.3 (choosing p = 2r
r+m−1 , q = 2, s = r

m+r−1 ), we also have

Crηr−1‖u‖rLr =Crηr−1‖u r+m−1
2 ‖

2r
r+m−1

L
2r

r+m−1

≤C1rη
r−1‖∇u

r+m−1
2 ‖

6r
6(m−1)+5r
L2 ‖u r+m−1

2 ‖
4r2+6r(m−1)

(6(m−1)+5r)(r+m−1)

L
r

m+r−1
+ C2rη

r−1‖u‖rr
2

≤σηr‖∇u
r+m−1

2 ‖2
L2 + Cση

r− 6(m−1)+5r
6(m−1)+2r r

6(m−1)+5r
6(m−1)+2r ‖u‖

r(3(m−1)+2r)
6(m−1)+2r

r
2

+ C2rη
r−1‖u‖rr

2

≤σηr‖∇u
r+m−1

2 ‖2
L2 + Cσr

5/2‖ηu‖r−3m
r
2

+ C2r‖ηu‖r−1
r
2

≤σηr‖∇u
r+m−1

2 ‖2
L2 + C̃σr

5‖ηu‖r−4m
r
2

.

Taking σ appropriately small, and substituting the above two inequalities into (3.19), we obtain

es
∫
Ω

ηr(s)ur(x, s)dx ≤ C3

s∫
T

r5‖ηu‖r−4m
r
2

etdt. (3.20)

Letting rj = 2rj−1 = 2jr0, r0 = 5m, Mj = sup
t∈(T,∞)

‖ηu‖Lrj , then by a direct calculation, we conclude that

M
rj
j ≤ C3r

5
jM

rj−4m
j−1 ,

by an iteration process, we see that
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Mj ≤C
1
rj

3 r
5
rj

j M
1− 4m

r02j

j−1

≤C

∑j
k=1

1
r02k

3 r

∑j
k=1

5
r02k

0 M

∏j
k=1(1− 4m

r02k
)

0 ≤ C4M

∏j
k=1

r02k−4m
r02k

0 .

Next, we show that S =
∏∞

k=1
r02k−4m

r02k > 0. Denote Sn =
∏n

k=1
r02k−4m

r02k , then Sn ↘ S. We see that 
ln 1

Sn
=

∑n
k=1 ln(1 + 4m

r02k−4m ), it is easy to see that 0 ≤ ln(1 + 4m
r02k−4m ) ≤ 4m

r02k−4m , it implies that ∑∞
k=1 ln(1 + 4m

r02k−4m ) converges since 
∑∞

k=1
4m

r02k−4m converges. Then there exists a positive constant A > 0
such that ln 1

Sn
↗ A, namely S = e−A > 0. Hence,

Mj ≤ C4M
S
0 , for any j ≥ 1.

Letting j → ∞, we obtain

sup
t>T

‖ηu(x, t)‖L∞ ≤ C4 sup
t>T

‖ηu(x, t)‖SL5m ,

and this lemma is proved. �
Using the above lemmas, we finally prove that

Lemma 3.5. Let (u, v) ∈ X1 ×X2 be a solution of (1.1). Then

lim
t→∞

a(t) = 1,

and

lim
t→∞

∫
Ω

|u(x, t) − 1|2dx = 0, (3.21)

where a(t) is defined in Lemma 3.3.

Proof. We first show that

lim
t→∞

a(t) �= 0. (3.22)

Otherwise, by Lemma 3.4, we have

lim
t→∞

‖u(·, t)‖L∞ = 0.

Then there exists T > 0, such that or any t > T , u(x, t) ≤ 1
2 a.e. in Ω. Choosing the test function 

ϕ = e−
μ
2 sχ[T,t] in (2.1), with u(x, 0), ϕ(x, 0) being replaced by u(x, T ) and ϕ(x, T ), we obtain

∫
Ω

ue−
μ
2 tdx−

∫
Ω

ue−
μ
2 T dx = μ

t∫
T

∫
Ω

u(1 − u)e−
μ
2 sdxds− μ

2

t∫
T

∫
Ω

ue−
μ
2 sdxds ≥ 0, for t > T ,

which implies
∫

u(x, t)dx ≥ e
μ
2 (t−T )

∫
u(x, T )dx → ∞, as t → ∞.
Ω Ω
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It is a contradiction. Thus, we have (3.22). Next, we show

lim
t→∞

a(t) = 1.

Suppose the contrary, by (3.22) and Lemma 3.3, there exists two sequences {t(1)j }j and {t(2)j }j with 

t
(1)
j , t(2)j → ∞ as j → ∞, such that

lim
j→∞

a(t(1)j ) = 0, lim
j→∞

a(t(2)j ) = 1, (3.23)

since a is bounded. Note that

|a′(t)| = μ

|Ω|

∣∣∣∣∣∣
∫
Ω

u(1 − u)dx

∣∣∣∣∣∣ ≤ C,

which implies that a is Lipschitz continuous. Then by (3.23) and intermediate value theorem, there exists 
{t(3)j }j with t(3)j → ∞ as j → ∞, such that

lim
j→∞

a(t(3)j ) = 1
2 .

It contradicts with Lemma 3.3, and (3.21) is a direct result of Lemma 3.3. �
Next, we show that v → 0 as t → ∞.

Lemma 3.6. Let (u, v) ∈ X1 ×X2 be a solution of (1.1). Then there exists a constant T0, such that

‖v‖H1 ≤ Ce−
1
2 t, ‖v(·, t)‖L∞ ≤ Ce−

1
3 t

for any t > T0.

Proof. Choosing the test function φ = vetχ[τ,s] in (2.2), and using Gagliardo-Nirenberg interpolation in-
equality and Cauchy’s inequality, for any s > τ > 0, we have

1
2

⎡
⎣et ∫

Ω

v2dx

⎤
⎦
s

τ

+
s∫

τ

et
∫
Ω

|∇v|2dxdt + 1
2

s∫
τ

et
∫
Ω

v2dxdt =
s∫

τ

et
∫
Ω

v2(1 − u)dxdt

≤
s∫

τ

et‖v‖2
L4‖u− 1‖L2dt

≤ C1

s∫
τ

et(‖∇v‖
3
2
L2‖v‖

1
2
L2‖u− 1‖L2)dt + C2

s∫
τ

et‖v‖2
L2‖u− 1‖L2dt

≤ C3

s∫
τ

et
(
‖∇v‖2

L2‖u− 1‖L2 + ‖v‖2
L2‖u− 1‖L2

)
dt.

By (3.21), there exists a large constant T > 0, such that

C3‖u(·, t) − 1‖L2 <
1
, for any t ≥ T.
4
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Then we obtain⎡
⎣∫

Ω

etv2dx

⎤
⎦
s

τ

+ 3
2

s∫
τ

∫
Ω

|∇v|2etdxdt + 1
2

s∫
τ

∫
Ω

v2etdxdt ≤ 0, for any s > τ ≥ T. (3.24)

Choosing the test function ψ = −etχ[τ,s]Δv in (2.2), and using Gagliardo-Nirenberg interpolation inequality 
and Cauchy’s inequality, we have

⎡
⎣1

2

∫
Ω

|∇v|2etdx

⎤
⎦
s

τ

+
s∫

τ

∫
Ω

|Δv|2etdxdt + 1
2

s∫
τ

∫
Ω

|∇v|2etdxdt =
s∫

τ

∫
Ω

v(u− 1)Δvetdxdt

≤ 1
2

s∫
τ

∫
Ω

|Δv|2etdxdt + 1
2

s∫
τ

∫
Ω

v2(u− 1)2etdxdt

≤ 1
2

s∫
τ

∫
Ω

|Δv|2etdxdt + 1
2

s∫
τ

‖v‖2
L4‖u− 1‖L2‖u− 1‖L∞etdt

≤ 1
2

s∫
τ

∫
Ω

|Δv|2etdxdt + C4

s∫
τ

‖∇v‖
3
2
L2‖v‖

1
2
L2‖u− 1‖L2etdt + C5

s∫
τ

‖v‖2
L2‖u− 1‖L2etdt

≤ 1
2

s∫
τ

∫
Ω

|Δv|2etdxdt + C6

s∫
τ

(
‖∇v‖2

L2‖u− 1‖L2 + ‖v‖2
L2‖u− 1‖L2

)
etdt, for any s > τ > 0.

By (3.21), there exists a large constant T ′ > 0, such that

C6‖u(·, t) − 1‖L2 <
1
4 , for any t ≥ T ′.

Then for any s > τ ≥ T0 = max{T, T ′}, we obtain
⎡
⎣∫

Ω

|∇v|2etdx

⎤
⎦
s

τ

+
s∫

τ

∫
Ω

|Δv|2etdxdt + 1
2

s∫
τ

∫
Ω

|∇v|2etdxdt ≤ 1
2

s∫
τ

∫
Ω

v2etdxdt. (3.25)

Combining with (3.24), we obtain[
‖v(·, t)‖2

H1et
]s
τ
≤ 0, for any s > τ ≥ T0,

that is

‖v(·, s)‖2
H1 ≤ ‖v(·, T0)‖2

H1e−(t−T0), for any s > T0. (3.26)

By Gagliardo-Nirenberg interpolation inequality and Sobolev inequality, we get

‖v‖L∞ ≤ C1‖∇v‖
1
3
L∞‖v‖

2
3
L6 + C2‖v‖L2 ≤ C3‖∇v‖

1
3
L∞‖v‖

2
3
H1 + C2‖v‖L2 ,

combining with (3.26), we obtain

‖v(·, t)‖L∞ ≤ Ce−
1
3 t, for any t > T0.

The proof is complete. �
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Proof of Theorem 1.2. If p < 2, then

‖u− 1‖Lp ≤ C‖u− 1‖L2 → 0.

Noticing that

‖u− 1‖Lp ≤ ‖u− 1‖
2
p

L2‖u− 1‖
p−2
p

L∞ , for any p ≥ 2,

and using Lemma 3.5 and Lemma 3.6, we complete the proof of Theorem 1.2. �
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