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1. Introduction

The Banach-Stone theorem is a classical result in the theory of function spaces which describes all linear 
isometries from C(X) onto C(Y ) as weighted composition operators based on a homeomorphism between 
the compact spaces X and Y . Stemming from this result, linear isometries on different contexts have been 
studied extensively. Indeed, the isometries of most of the well-known function spaces and algebras whose 
underlying spaces are (locally) compact have been described, similarly, as weighted composition operators 
(see, e.g., [4]). However, without assuming compactness, a linear isometry from Cb(X) onto Cb(Y ) does not 
yield a homeomorphism between the Tychonoff spaces X and Y (see [7, Example 1.2]), a fact which might 
explain the scarcity of results concerning isometries between function spaces in a noncompact framework 
(see [1] and [2]).

In this paper we study surjective linear isometries defined between spaces of scalar-valued absolutely 
continuous functions on arbitrary subsets of the real line (with at least two points). We use, following the 
direction of [6], a natural norm ‖ · ‖ in this context and show how ‖ · ‖-isometries are related to supremum 
norm isometries. It should be noted that we provide an example which shows that the space of absolutely 
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continuous functions is not uniformly dense in the space of all bounded uniformly continuous functions 
and, consequently, the known results concerning supremum norm isometries cannot be used in this context. 
Indeed, we have to apply some technical lemmas to obtain the description of the isometries, which turns 
out to be based on a homeomorphism between the closure of the domains. As a consequence, we get 
generalizations of [6, Example 5] and [5, Corollary 4.4] to a noncompact framework.

2. Preliminaries

Let X be a subset of the real line R with at least two points. We recall that a scalar-valued function f
on X has bounded variation if the total variation V(f) of f is finite, i.e.,

V(f) := sup
{

n∑
i=1

|f(xi) − f(xi−1)| : n ∈ N, x0, x1, ..., xn ∈ X,x0 < x1 < ... < xn

}
< ∞.

Moreover, a scalar-valued function f on X is said to be absolutely continuous if given ε > 0, there exists a 
δ > 0 such that

n∑
i=1

|f(bi) − f(ai)| < ε,

for every finite family of non-overlapping open intervals {(ai, bi) : i = 1, · · · , n} whose extreme points belong 
to X with 

∑n
i=1(bi − ai) < δ. We denote by ACb(X) the space of all scalar-valued absolutely continuous 

functions of bounded variation on X, equipped with the norm ‖ · ‖ = max{‖ · ‖∞, V(·)}, where ‖ · ‖∞ denotes 
the supremum norm of a function. Let us remark that when X is bounded, each absolutely continuous 
function is automatically of bounded variation, and in this case we simply write ACb(X) = AC(X).

Given a scalar-valued function f on X, we denote the cozero set and the support of f by coz(f) and 
Supp(f), respectively. For the case where f is bounded, we denote the maximum modulus set of f by 
Mf = {x ∈ X : |f(x)| = 1 = ‖f‖∞}.

Meantime, for any f ∈ ACb(X), let f̃ be the unique extension of f to the Stone-Čech compactification, 
βX, of X.

3. The results

From now on, we shall assume that X and Y are arbitrary (not necessarily closed or bounded) subsets 
of the real line with at least two points. Moreover, T will stand for a surjective linear ‖ · ‖-isometry from 
ACb(X) onto ACb(Y ) with respect to the norm ‖ · ‖ such that T1 is bounded away from zero, which is to 
say that there exists t > 0 such that, for each y ∈ Y , we have |T1(y)| ≥ t. In particular, this is clearly the 
case when T1 is a unimodular function. Furthermore, it is shown that if the underlying spaces X and Y are 
connected, then T1 is bounded away from zero (see Corollary 3.15).

Note also that when the underlying spaces X and Y are compact, the condition that “T1 is bounded 
away from zero” coincides with property P in [2] and property Q in [3] (see also [5]).

Lemma 3.1. Each absolutely continuous function f on X has a unique absolutely continuous extension f to 
the closure X̄ of X.

Proof. Since f is uniformly continuous, f has a unique uniformly continuous extension to the closure X̄
of X, which we denote by f . We claim that f is absolutely continuous. To this end, let ε > 0 and choose 
δ > 0 associated to the absolutely continuity of f with respect to ε . Assume that {(ai, bi) : i = 1, · · · , n} is 
3
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a finite family of non-overlapping open intervals whose extreme points belong to X̄ and 
∑n

i=1(bi − ai) < δ
3 . 

With no loss of generality, assume that

a1 < b1 < a2 < b2 < · · · < an < bn.

Put

x1 = a1, x2 = b1, x3 = a2, · · · , x2n−1 = an, x2n = bn.

For each i ∈ {1, · · · , 2n}, consider x′
i = xi if xi ∈ X, otherwise, if xi does not belong to X, we choose x′

i in 
X as follows:

If x1 /∈ X, select x′
1 ∈ X such that |x1 − x′

1| < δ
3n , |f(x1) − f(x′

1)| < ε
3n , and we have either x′

1 < x1, or 
x1 < x′

1 < x2. If x2 /∈ X, choose x′
2 ∈ X such that |x2 − x′

2| < δ
3n , |f(x2) − f(x′

2)| < ε
3n , and we have either

max{x′
1, x1} < x′

2 < x2, or x2 < x′
2 < x3.

By continuing this process, for 2 ≤ i ≤ 2n − 1, if xi /∈ X, take x′
i ∈ X such that |xi − x′

i| < δ
3n , 

|f(xi) − f(x′
i)| < ε

3n , and we have either

max{x′
i−1, xi−1} < x′

i < xi, or xi < x′
i < xi+1.

Meantime, for i = 2n, if x2n /∈ X, we choose x′
2n ∈ X such that |x2n − x′

2n| < δ
3n , |f(x2n) − f(x′

2n)| < ε
3n , 

and also x2n < x′
2n or max{x′

2n−1, x2n} < x′
2n < x2n.

We rename again x′
i by a′i if i is odd, and by b′i if i is even. Hence we get a′1, · · · , a′n, b′1, · · · , b′n ∈ X and 

{(a′i, b′i) : i = 1, ..., n} is a finite family of non-overlapping open intervals whose extreme points belong to 
X. Also

n∑
i=1

(b′i − a′i) ≤
n∑

i=1
(|b′i − bi| + |bi − ai| + |ai − a′i|) <

n∑
i=1

δ

3n + δ

3 +
n∑

i=1

δ

3n = δ.

Thus it follows that

n∑
i=1

|f(bi) − f(ai)| ≤
n∑

i=1
(|f(bi) − f(b′i)| + |f(b′i) − f(a′i)| + |f(a′i) − f(ai)|)

<

n∑
i=1

ε

3n + ε

3 +
n∑

i=1

ε

3n = ε,

which implies that f is absolutely continuous. �
As a consequence of this lemma, the spaces of absolutely continuous functions defined on an arbitrary 

subset of the real line and on its completion coincide. In the next lemmas, we shall assume that X and Y
are closed subsets of the real line.

Lemma 3.2. If f ∈ ACb(X) and ‖Tf‖∞ > V(Tf), then V(f) ≤ ‖f‖∞.

Proof. Let f ∈ ACb(X) and y0 ∈ βY such that |T̃ f(y0)| = ‖Tf‖∞ > V(Tf). Suppose, contrary to what we 
claim, that V(f) > ‖f‖∞. Let ε be a positive scalar such that ‖f‖∞ + ε < V(f).

As y0 ∈ βY , choose a net (yi)i in Y such that yi −→ y0. Since T1 is bounded away from zero, there exists 
t > 0 such that for every i we have |T1(yi)| ≥ t. Then |T̃1(y0)| ≥ t because T̃1 is a continuous function.
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Meantime, since ‖f‖∞ + ε < V(f), it is clear that

‖f ± ε‖ = max{‖f ± ε‖∞,V(f ± ε)}
= max{‖f ± ε‖∞,V(f)}
= V(f) = ‖f‖.

On the other hand, we have ‖Tf±εT1‖ = ‖f±ε‖ and ‖Tf‖ = ‖f‖. Now it easily follows that ‖Tf±εT1‖ =
‖Tf‖ = |T̃ f(y0)|, and so

|T̃ f(y0) ± εT̃1(y0)| ≤ ‖Tf ± εT1‖∞ ≤ ‖Tf ± εT1‖ = |T̃ f(y0)|.

Then |T̃ f(y0) ±εT̃1(y0)| ≤ |T̃ f(y0)| which implies that T̃1(y0) = 0. This contradicts the fact that |T̃1(y0)| ≥
t. Therefore, V(f) ≤ ‖f‖∞. �
Lemma 3.3. If f ∈ ACb(X), then ‖Tf‖∞ = ‖f‖∞.

Proof. We divide the proof of this lemma into three parts as follows:

(i) First we show that for any f ∈ ACb(X), ‖Tf‖∞ ≤ ‖f‖∞. We verify this part by an argument similar 
to the proof of [8, Proposition 1.3]. Let f ∈ ACb(X) and y0 ∈ βY with |T̃ f(y0)| = ‖Tf‖∞. Assume, on the 
contrary, that ‖f‖∞ < ‖Tf‖∞. Let ε be a positive scalar such that ‖f‖∞ + ε < |T̃ f(y0)|. Choose λ > 0
large enough so that (λ + 1)|T̃ f(y0)| = ‖λT̃ f(y0) + Tf‖∞ > V(λT̃ f(y0) + Tf) = V(Tf). Then, taking into 
account Lemma 3.2, we have

‖λT−1(T̃ f(y0)) + f‖∞ ≥ V(λT−1(T̃ f(y0)) + f).

Hence, from the above relations, it follows that

‖λT−1(T̃ f(y0)) + f‖∞ ≤ ‖λT−1(T̃ f(y0))‖∞ + ‖f‖∞

≤ λ‖T−1(T̃ f(y0))‖ + ‖f‖∞ = λ|T̃ f(y0)| + ‖f‖∞

< λ|T̃ f(y0)| + |T̃ f(y0)| − ε = (λ + 1)|T̃ f(y0)| − ε

= ‖λT̃ f(y0) + Tf‖ − ε

= ‖λT−1(T̃ f(y0)) + f‖ − ε

= ‖λT−1(T̃ f(y0)) + f‖∞ − ε,

which is a contradiction showing that ‖Tf‖∞ ≤ ‖f‖∞.

(ii) We claim that for each x ∈ X, |T−11(x)| = 1. Suppose, contrary to what we claim, that there exists 
x0 ∈ X and |T−11(x0)| < 1. Note that ‖T−11‖∞ = 1, because from the above part we have

1 = ‖1‖∞ ≤ ‖T−11‖∞ ≤ ‖T−11‖ = ‖1‖ = 1.

Define the function h by h(x) := 1 − |T−11(x)| for all x ∈ X. It is easy to see that h ∈ ACb(X). Moreover, 
|h(x)| + |T−11(x)| = 1 for all x ∈ X, h(x0) = 1 − |T−11(x0)| and Th = T1 − T (|T−11|). Since Th �= 0, we 
have 1 < max{‖1 + Th‖∞, ‖1 − Th‖∞}. On the other hand, again from (i), it follows that

‖1 ± Th‖∞ = ‖T (T−11 ± h)‖∞ ≤ ‖T−11 ± h‖∞.



M. Hosseini, J.J. Font / J. Math. Anal. Appl. 487 (2020) 123962 5
Thus there exists x′ ∈ βX with 1 < max{|h̃(x′) + ˜T−11(x′)|, |h̃(x′) − ˜T−11(x′)|}. Consequently, 1 < |h̃(x′)| +
| ˜T−11(x′)| = 1, which is a contradiction. Hence the claim has been proved.

(iii) Finally, let f ∈ ACb(X). By (i), ‖Tf‖∞ ≤ ‖f‖∞. Next, taking into account (ii), an assertion 
similar to the part (i) for T−1 shows that ‖f‖∞ = ‖T−1(Tf)‖∞ ≤ ‖Tf‖∞. Therefore, ‖f‖∞ = ‖Tf‖∞, as 
desired. �
Remark 3.4. From Lemma 3.3, one might think that all the results concerning || · ||-isometries on ACb(X)-
spaces could be deduced from similar ones concerning supremum norm isometries (see basically [1]) provided 
ACb(X) was uniformly dense in the space of all bounded (uniformly) continuous functions on X. However, 
such density result is not true as the following example shows: let X = N, M be the set of odd numbers, 
N be the set of even numbers, and define g(x) = 1 if x ∈ M , and g(x) = 0 if x ∈ N . Then g is a bounded 
and uniformly continuous function but there is no function f of bounded variation with ‖f − g‖∞ < 1

3 .

Lemma 3.5. T1 is a unimodular constant function.

Proof. If |X| = 2, then it is easily seen that |Y | = 2 and so the result follows from [5]. Otherwise, we can 
assume y1, y2, y3 are distinct points in Y such that y1 < y2 < y3. Define

f(y) =
(

y − y1

y2 − y1
χ[y1,y2](y) + y − y3

y2 − y3
χ(y2,y3](y)

)
(y ∈ Y ).

Clearly, f ∈ ACb(Y ). Since ‖f‖ = V(f) = 2 > ‖f‖∞ = 1 and T is an isometry with respect to ‖ · ‖ and 
‖ · ‖∞, we get ‖T−1f‖ = 2 > ‖T−1f‖∞ = 1. Hence V(f ± T 1

2 ) = ‖f ± T 1
2‖ = ‖T−1f ± 1

2‖ = V(T−1f) = 2. 
So it follows that

2 = V
(
f ± T

1
2

)
≥

∣∣∣∣(f ± T
1
2

)
(y1) −

(
f ± T

1
2

)
(y2)

∣∣∣∣
+

∣∣∣∣(f ± T
1
2

)
(y2) −

(
f ± T

1
2

)
(y3)

∣∣∣∣
=

∣∣∣∣±1
2T1(y1) −

(
1 ± 1

2T1(y2)
)∣∣∣∣ +

∣∣∣∣1 ± 1
2T1(y2) −

(
±1

2T1(y3)
)∣∣∣∣

≥
∣∣∣∣2 ±

(
T1(y2) −

(
T1(y1)

2 + T1(y3)
2

))∣∣∣∣ ,
which implies that T1(y2) − (T1(y1)

2 + T1(y3)
2 ) = 0. Hence T1(y2) = T1(y1)+T1(y3)

2 . Using an argument 
similar to the part (ii) in the proof of Lemma 3.3, one can observe that |T1(y2)| = 1. Now, from the 
fact that each point in the unit circle is an extreme point of the closed unit ball of C, it follows that 
T1(y1) = T1(y2) = T1(y3). This argument shows T1 is a unimodular constant function. �

In the sequel, without loss of generality, we shall assume that T is unital, i.e., T1 = 1.
The next result may be considered as a version of the additive Bishop’s lemma for absolutely continuous 

function spaces.

Lemma 3.6. (1) Let f ∈ ACb(X) and x0 ∈ X. If f(x0) = 0, then for any r > ‖f‖∞, there exists h ∈ ACb(X)
such that h(x0) = 1, Mh = {x0} and ‖|f | + rh‖∞ = ‖f ± rh‖∞ = r.

(2) Assume that f ∈ ACb(X), x0 ∈ X, f(x0) �= 0 and r ≥ ‖f‖∞
|f(x0)| . Then there exists a non-negative 

function u ∈ ACb(X) such that u(x0) = 1, Mu = {x0} and ‖|f | + ru|f(x0)|‖∞ = ‖f + ruf(x0)‖∞ =
|f(x0)|(1 + r).

Furthermore, for every scalar e with |e| ≥ |f(x0)| we have ‖|f | + ru|e|‖∞ = |f(x0)| + r|e|.
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Proof. (1) We prove this first part following the ideas given in the proof of [9, Lemma 1]. Assume that 
f(x0) = 0 and r > ‖f‖∞. Let {Vn} be a decreasing sequence of neighborhoods of x0 in X such that each 
Vn is compact and 

⋂∞
n=1 Vn = {x0}. Define

Un =
{
x ∈ Vn : |f(x)| < r − ‖f‖∞

2n+1

}
(n ∈ N).

It is apparent that for each n ∈ N, Un is a neighborhood of x0 in X, Un+1 ⊆ Un and 
⋂∞

n=1 Un = {x0}. 
For any n ∈ N, choose a function hn ∈ ACb(X), hn(x0) = 1, 0 ≤ hn ≤ 1, V(hn) ≤ 2, and hn = 0 on 
X \Un. Put h = r

∑∞
n=1

hn

2n . First we note that since ‖h‖ ≤ r
∑∞

n=1
‖hn‖
2n ≤ 2r and h has a compact support 

(Supp(h) ⊆ U1 ⊆ V1), the function h belongs to ACb(X). Clearly, 0 ≤ h ≤ 1 and h(x0) = 1. Finally, by an 
argument similar to [9], it can be checked that ‖|f | + rh‖∞ = ‖f ± rh‖∞ = r.

(2) We prove the second part by an argument similar to the one in the proof of [5, Lemma 3.8]. Clearly, 
there is a decreasing sequence {Vn} of neighborhoods of x0 in X such that each Vn is compact and 

⋂∞
n=1 Vn =

{x0}. Put e0 = f(x0). For any n ∈ N, we define

Un =
{
x ∈ Vn : ||f(x)| − |e0|| <

|e0|
2n+1

}
.

It is obvious that Un is a neighborhood of x0 in X and Un+1 ⊆ Un for all n ∈ N. For each n ∈ N, choose 
un ∈ ACb(X) such that 0 ≤ un ≤ 1, un(x0) = 1, V(un) ≤ 2, and un = 0 on X \ Vn. Now, set u =

∑∞
n=1

un

2n . 
Since u has a compact support (Supp(u) ⊆ U1 ⊆ V1) and 

∑∞
n=1

‖un‖
2n ≤ 2, u belongs to ACb(X). By 

arguments similar to [5], one may observe that ‖|f | + ru|e0|‖∞ = ‖f + rue0‖∞ = |e0|(1 + r), and that for 
every scalar e with |e| ≥ |e0| we have ‖|f | + ru|e|‖∞ = |e0| + r|e|. �
Lemma 3.7. T and T−1 are disjointness preserving maps, i.e., they map functions with disjoint cozeros to 
functions with disjoint cozeros.

Proof. Taking into account Lemma 3.6 (2), the result can be obtained by an approach similar to [2, Propo-
sition 4.7] and [5, Lemma 3.9]. �

Given x ∈ X, we define

Fx := {f ∈ ACb(X) : f(x) = 1 = ‖f‖∞},

which is a non-empty set. We also set

Ix :=
⋂

{M
T̃ f

: f ∈ Fx},

where M
T̃ f

= {y ∈ βY : |T̃ f(y)| = 1 = ‖T̃ f‖∞}. Let us also recall that T̃ f denotes the unique extension of 
Tf to the Stone-Čech compactification, βY , of Y .

Lemma 3.8. Given x ∈ X, the set Ix is non-empty.

Proof. It is a typical result in the context of supremum norm isometries, but we include its proof for the 
sake of completeness. Since βY is compact, it is enough to show that the family {M

T̃ f
: f ∈ Fx} has the 

finite intersection property. To see this, let f1, ..., fn in Fx. Define f =
∑n

i=1
fi
n . It is clear that f ∈ Fx. By 

Lemma 3.3, ‖T̃ f‖∞ = ‖Tf‖∞ = ‖f‖∞ = 1. Hence there exists a point y in the compact set βY such that 
|T̃ f(y)| = 1. Hence we have
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1 = |T̃ f(y)| =

∣∣∣∣∣
n∑

i=1

T̃ fi(y)
n

∣∣∣∣∣ ≤
n∑

i=1

|T̃ fi(y)|
n

≤
n∑

i=1

‖T̃ fi‖∞
n

= 1,

which yields that |T̃ fi(y)| = 1 for i = 1, ..., n. Thus y ∈
n⋂

i=1
M

T̃ fi
. Therefore, we get Ix �= ∅, as desired. �

In the next lemma we show that the subset Ix of βY is indeed a subset of Y . To this end, let us first 
introduce two types of functions in ACb(X) as follows:

Type 1. There are a, b ∈ R such that a < b,

f(x) = χ[b,+∞)(x) + x− a

b− a
χ(a,b)(x) (x ∈ X),

and {0, 1} ⊆ f(X).

Type 2. There are a, b ∈ R such that a < b,

f(x) = χ(−∞,a](x) + x− b

a− b
χ(a,b)(x) (x ∈ X),

and {0, 1} ⊆ f(X).

Let also Si denote the set of all functions of type i (i = 1, 2).

Lemma 3.9. Given x ∈ X, Ix is a subset of Y .

Proof. If Y is compact, then the claim clearly holds. Otherwise, taking into account the closedness of X
and Y , we are in one of the following cases:

Case 1. X and Y are unbounded both from below and from above. We first prove the following claim.

Claim 1. For each f ∈ S1 ∪ S2, {0, 1} ⊆ Tf(Y ) ⊆ [0, 1].

Let f ∈ S1. It is easy to find nonzero functions g, h ∈ ACb(X) such that coz(f) ∩ coz(g) = ∅ and 
coz(1 −f) ∩ coz(h) = ∅. Hence coz(Tf) ∩ coz(Tg) = ∅ and coz(T (1 −f)) ∩ coz(Th) = ∅ by Lemma 3.7. Now, 
since Tg �= 0 and Th �= 0, we conclude that there exist y, y′ ∈ Y such that Tf(y) = 0 and T (1 − f)(y′) = 0. 
Thus, from T1 = 1 it follows that Tf(y′) = 1. Therefore, {0, 1} ⊆ Tf(Y ). Finally, if t ∈ Tf(Y ) and t /∈ [0, 1], 
then taking into account that |t| + |1 − t| > 1 we conclude that V(Tf) > 1, which is impossible because 
‖Tf‖ = 1 = ‖Tf‖∞. A similar discussion shows that the result holds for any function in S2. Now, the proof 
of Claim 1 is completed.

Given f ∈ S1 ∪ S2, we have Tf is continuous and V(f) ≤ 1. Hence, thanks to Claim 1, it is not difficult 
to check that there exists y0 ∈ R such that we have one of the following forms

Tf |(−∞,y0]∩Y = 0 and Tf |(y0,+∞)∩Y �= 0,

or

Tf |(−∞,y0)∩Y �= 0 and Tf |[y0,+∞)∩Y = 0.
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For each x ∈ X, define

fx(z) = z − a

x− a
χ(a,x)(z) + z − b

x− b
χ[x,b)(z) (z ∈ X),

for some a, b ∈ R with a < x < b.
We can find f1 ∈ S1 and f2 ∈ S2 such that coz(f1) ∩ coz(f2) = ∅ and coz(fi) ∩ coz(fx) = ∅ (i = 1, 2). 

From the argument after Claim 1, it follows that coz(Tfx) is included in a bounded subset of R. Thus 
Supp(Tfx) is a compact subset of Y .

Now, since fx ∈ Fx and Supp(Tfx) is a compact subset of Y , one easily concludes that Ix ⊆ Supp(Tfx) ⊆
Y .

Case 2. X and Y are bounded below and unbounded above. In this case we first prove the following claim.

Claim 2. For each f ∈ S1, we have 0 ∈ Tf(Y ) and 1 ∈ Tf(Y ) ⊆ [0, 1]. Moreover, for each f ∈ S2, we have 
1 ∈ Tf(Y ) and 0 ∈ Tf(Y ) ⊆ [0, 1].

Let f ∈ S2. We have 2 = ‖Tf‖∞ + 1 = ‖Tf + 1‖∞, which, taking into account that T1 = 1, follows 
straightforwardly from Lemma 3.3 because ‖Tf + 1‖∞ = ‖f + 1‖∞ = ‖f‖∞ + 1 = ‖Tf‖∞ + 1. Thus there 
is a sequence {yn} in Y such that {Tf(yn)} is convergent and |Tf(yn) + 1| −→ 2. Now it is easily derived 
that Tf(yn) −→ 1. Therefore, 1 ∈ Tf(Y ).

Now, choose h ∈ ACb(X) such that coz(f) ∩ coz(h) = ∅. Then coz(Tf) ∩ coz(Th) = ∅ because T is a 
disjointness preserving map by Lemma 3.7, and as a consequence, since Th �= 0, we have 0 ∈ Tf(Y ). (Note 
that there is not necessarily such a function for 1 −f (compare with Claim 1). For example, let X = [0, +∞)
and define f(x) = (−x + 1)χ[0,1](x).) In a similar way to Case 1, it can be checked that Tf(Y ) ⊆ [0, 1].

Now take f ∈ S1. Clearly 1 − f is a function in S2. Then from above, we get 1 ∈ T (1 − f)(Y ) and 
0 ∈ T (1 − f)(Y ) ⊆ [0, 1], which show that 0 ∈ Tf(Y ) and 1 ∈ Tf(Y ) ⊆ [0, 1] because T1 = 1 and the proof 
of Claim 2 is done.

If x ∈ X and x �= minX, then by considering fx as in Case 1 and using a similar reasoning, we conclude 
that Ix ⊆ Y . Note that, for example, if X = [0, +∞), x = 0, and fx(x) = (−x + 1)χ[0,1](x), we cannot find 
f ∈ S2 with coz(fx) ∩ coz(f) = ∅ (compare with Case 1). Then we have to apply another method for the 
minimum point of X as follows:

Suppose that x = minX. We first consider the case where x is a limit point of X. Define

fx(z) = z − a

x− a
χ[x,a)(z) (z ∈ X),

where a ∈ R with x < a. Obviously, fx ∈ S2. Assume that there exists y0 ∈ R such that

Tfx|(−∞,y0]∩Y = 0 and Tfx|(y0,+∞)∩Y �= 0.

Then we can find a nonzero function g ∈ ACb(Y ) such that coz(g) ∩ coz(T (1 − fx)) = ∅. Then we have 
coz(T−1g) ∩ coz(1 − fx) = ∅, by Lemma 3.7. Hence T−1g(z) = 0 for all z �= x, which is impossible. This 
contradiction implies Tfx|[y,+∞)∩Y = 0 for some y ∈ R. Especially, we get Tfx has a compact support. 
Hence, as above, Ix ⊆ Y .

Now assume that the minimum point x of X is an isolated point. Let fx = χ{x}. Then 1 −fx = χ(x,+∞)∩X . 
Suppose that there exists y0 ∈ R such that Tfx|(y0,+∞)∩Y �= 0. Then Tfx = χ(y0,+∞)∩Y and T (1 − fx) =
χ(−∞,y0])∩Y because Tfx + T (1 − fx) = 1 and coz(Tfx) ∩ coz(T (1 − fx)) = ∅. Since Y is unbounded above, 
we can choose g ∈ ACb(Y ) such that coz(g) ∩ coz(T (1 − fx)) = ∅ and g �= αTfx for all α ∈ C. Thus 
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coz(T−1g) ∩ coz(1 − fx) = ∅, by Lemma 3.7. Since 1 − fx = χ(x,+∞)∩X , we get T−1g = α0χ{x} for some 
α0 ∈ C, and so g = α0Tχ{x}, which is a contradiction. This argument shows, especially, that Tfx has a 
compact support and, similarly to above, one can see that Ix ⊆ Y .

The other following cases can be obtained in a similar manner.

Case 3. X is bounded but Y is unbounded.

Case 4. X (resp. Y ) is bounded below (resp. above) and unbounded above (resp. below).

Case 5. X (resp. Y ) is bounded above (resp. below) and unbounded below (resp. above). �
Lemma 3.10. Given x ∈ X, there exists a unique point y ∈ Y such that Tf(y) = 0 for any f ∈ ACb(X) with 
f(x) = 0. Moreover, Ix = {y}.

Proof. Let x ∈ X and y ∈ Ix. Assume that f ∈ ACb(X) and f(x) = 0. We claim that Tf(y) = 0. Contrary 
to what we claim, suppose that Tf(y) �= 0. Take r > ‖f‖∞. Lemma 3.6 (1) allows us to choose h ∈ ACb(X)
such that h(x) = 1, 0 ≤ h ≤ 1 and ‖|f | + rh‖∞ = ‖f ± rh‖∞ = r. Notice that |Th(y)| = 1 because y ∈ Ix. 
Then it follows that

r = ‖f ± rh‖∞ = ‖T (f ± rh)‖∞
≥ |Tf(y) ± rTh(y)| > r,

which is a contradiction showing that Tf(y) = 0.
Since T−1 is an isometry with T−11 = 1, then similarly, for y, there exists x1 ∈ X such that T−1g(x1) = 0

for all g ∈ ACb(Y ) with g(y) = 0. These two claims combined imply that for each f ∈ ACb(X) with f(x) = 0
we have f(x1) = 0, which easily implies that x1 = x because ACb(X) separates the points of X.

Hence we have proved that y is the point in Y so that f(x) = 0 if and only if Tf(y) = 0 for any 
f ∈ ACb(X). Apparently, taking into account that ACb(Y ) separates the points of Y , such y is unique. 
Hence Ix = {y}. �

The above discussion allows us to define a function ψ : X −→ Y such that for each x ∈ X, ψ(x) is the 
unique point obtained in the above lemma. Indeed, ψ(x) is the point with the property that f(x) = 0 if 
and only if Tf(ψ(x)) = 0 for any f ∈ ACb(X), and we also have Ix = {ψ(x)}. It is clear that ψ is bijective 
then we set ϕ := ψ−1.

Lemma 3.11. For each f ∈ ACb(X) and y ∈ Y , Tf(y) = f(ϕ(y)).

Proof. Let f ∈ ACb(X) and y ∈ Y . Since (f − f(ϕ(y)))(ϕ(y)) = 0, from Lemma 3.10, we have 
T (f − f(ϕ(y)))(y) = 0. Whence Tf(y) = T (f(ϕ(y)))(y) = f(ϕ(y)) since T is unital. Therefore, 
Tf(y) = f(ϕ(y)). �
Lemma 3.12. ϕ is a monotonic function.

Proof. We consider two cases based on the cardinal number of Y . If |Y | = 2, it is plain that ϕ is monotonic. 
Now, suppose that |Y | > 2. Without loss of generality, we assume that y, y′ ∈ Y , y < y′ and ϕ(y) < ϕ(y′). 
We verify that ϕ is increasing (a similar argument shows that ϕ is decreasing if y′ < y). Let y1 ∈ Y . We 
consider the following cases:

(1) If y < y1 < y′, then we claim that ϕ(y) < ϕ(y1) < ϕ(y′).



10 M. Hosseini, J.J. Font / J. Math. Anal. Appl. 487 (2020) 123962
(2) If y1 < y < y′, then we claim that ϕ(y1) < ϕ(y) < ϕ(y′).
(3) If y < y′ < y1, then we claim that ϕ(y) < ϕ(y′) < ϕ(y1).

Contrary to what we claim in (1), let us suppose that y < y1 < y′ but we have either ϕ(y1) < ϕ(y) < ϕ(y′), 
or ϕ(y) < ϕ(y′) < ϕ(y1). Then defining

h(z) = χ(−∞,y](z) + z − y1

y − y1
χ(y,y1](z) (z ∈ Y ),

or

h(z) = χ[y′,+∞)(z) + z − y1

y′ − y1
χ[y1,y′)(z) (z ∈ Y ),

from Lemma 3.11 it follows that

‖T−1h‖ ≥ V(T−1h) ≥ |T−1h(ϕ(y1)) − T−1h(ϕ(y))| + |T−1h(ϕ(y)) − T−1h(ϕ(y′))|

= |h(y1) − h(y)| + |h(y) − h(y′)| = |0 − 1| + |1 − 0| = 2,

or

‖T−1h‖ ≥ V(T−1h) ≥ |T−1h(ϕ(y)) − T−1h(ϕ(y′))| + |T−1h(ϕ(y′)) − T−1h(ϕ(y1))|

= |h(y) − h(y′)| + |h(y′) − h(y1)| = |0 − 1| + |1 − 0| = 2.

Then we get ‖T−1h‖ > 1 while ‖T−1h‖ = ‖h‖ = 1, a contradiction. Thus the first claim is derived. By a 
similar discussion, we can deduce the other two claims. Now, it is not difficult to see that ϕ is increasing. 
Therefore, ϕ is a monotonic function. �

Meantime, taking into account the representation of T , it is easy to deduce that ϕ is a homeomorphism.
Now we state our main result which is obtained immediately from the previous lemmas. Let us recall 

here that, according to Lemma 3.1, for each f ∈ ACb(X), f denotes the extension of f to the closure X̄ of 
X. A similar notation is used for functions in ACb(Y ).

Theorem 3.13. If T : ACb(X) −→ ACb(Y ) is a surjective linear isometry such that T1 is bounded away 
from zero, then there exist a monotonic homeomorphism ϕ : Ȳ −→ X̄, and a scalar λ with |λ| = 1 such that 
Tf(y) = λf(ϕ(y)) for all f ∈ ACb(X) and y ∈ Ȳ .

Remark 3.14. (1) Note the surjective linear isometry T in the above result induces a homeomorphism 
between the closures of X and Y but not necessarily between X and Y . Indeed, since as mentioned after 
Lemma 3.1, the absolutely continuous functions on a set and its completion are the same, we can define a 
surjective linear isometry T : AC(0, 1) −→ AC[0, 1] whereas (0, 1) and [0, 1] are not homeomorphic.

(2) It should be noted that, as the following example, borrowed from [5, Remark 4.2 (ii)], shows, there 
exists a surjective linear isometry T for which T1 is not bounded away from zero, and of course, T is not a 
weighted composition operator:

Let X = Y = {1, 2}. Define T : AC(X) −→ AC(Y ) by Tf(1) = f(1) and Tf(2) = f(1) − f(2).

However, the next result, which may be considered as a generalization of [6, Example 5] and [5, Corollary 
4.4], states that if the underlying spaces are connected then T1 is always a unimodular function.
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Corollary 3.15. If X (or Y ) is connected and T : ACb(X) −→ ACb(Y ) is a surjective linear isometry, 
then there exist a monotonic homeomorphism ϕ : Ȳ −→ X̄, and a unimodular scalar λ such that Tf(y) =
λf(ϕ(y)) for all f ∈ ACb(X) and y ∈ Ȳ .

Proof. We assume, without loss of generality, that Y is connected. For simplicity, set

N = coz(T1) = {y ∈ Y : T1(y) �= 0},

and Z = Y \N . Clearly N �= ∅ because T is an isometry, and also N is an open subset of Y . Take y0 ∈ N . 
Choose an absolutely continuous function f on Y such that f(y0) = 2, Mf = {y0}, ‖f‖∞ = ‖f‖ = 2, 
V(f) ≤ 1, and |f | ≤ 3

2 on Y \ K for some compact subset K of Y . An argument similar to the proof of 
Lemma 3.2 shows that V(T−1f) ≤ ‖T−1f‖∞, which yields ‖T−1f‖ = ‖T−1f‖∞ = 2. Hence there is a point 
x0 ∈ βX such that ˜T−1f(x0) = 2eiθ for some θ ∈ (−π, π]. It is apparent that

3 = ‖eiθ‖ + ‖T−1f‖ ≥ ‖eiθ + T−1f‖ ≥ ‖eiθ + T−1f‖∞ = ‖eiθ + ˜T−1f‖∞ ≥ |(eiθ + ˜T−1f)(x0)| = 3,

and so ‖Teiθ+f‖ = ‖Teiθ+f‖∞ = 3. Then there exists an y ∈ βY with |T̃ eiθ(y) +f̃(y)| = 3. Whence y = y0
because of the equation ‖T1‖ = 1 and the properties of f . Therefore, we can deduce that |Teiθ(y0)| = 1. 
Consequently, we can write

N = {y ∈ Y : |T1(y)| = 1}.

Next, from the continuity of T1, it easily follows that N is a closed subset of Y . Then N is a non-empty 
clopen subset of Y . Therefore, from the connectedness of Y , we have N = Y , which especially shows that 
T1 is a unimodular function and hence the rest of the proof follows from Theorem 3.13. �
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