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A dozen families of integer–valued polynomials arising in finite summation of various 
trigonometric sums are known and all of them were deduced through numerical 
analysis methods. Here, using simple arguments commonly applied in work with 
polynomial sequences, we examined such expressions in full detail as well as in a 
systematic and unified manner. Two new very general integer–valued polynomial 
families (along with six other families derived from them, also integer–valued, 
including three previously studied) were obtained and they are related to each 
other by a binomial transform of sequences and associated with certain cosecant 
and cotangent sums.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A polynomial Pn(x) := anx
n + an−1x

n−1 + . . . + a1x + a0, n ∈ N := {1, 2, 3, . . . , }, is said to be 
integer–valued (or integral–valued) if it takes an integer value whenever x is an integer. These polynomials, 
of which the most known example is the sequence of binomial coefficients {

(
x
n

)
}∞n= 0 with 

(
x
0
)

= 1 and (
x
n

)
= x(x − 1)(x − 2) · · · (x − n + 1)/n!, were introduced by Pòlya and have been extensively studied in the 

meantime. It is possible to characterize all integer–valued polynomials by using 
(
x
n

)
: every integer-valued 

polynomial can be written as an integer linear combination (combination with coefficients from the set 
of integers) of binomial coefficients in exactly one way. The converse is also true (see, for instance, [15, 
pp. 129–133] and [5]).

In recent years, it has been shown that some finite trigonometric sums give rise to integer–valued polyno-
mials. Byrne and Smith [4, Theorems 1 and 2], resorting to the Lagrange interpolation formula, established 
that evaluation of the cotangent sums,

pn(q) =
q∑

p= 1
(−1)p−1 cot2n−1

(
(2p− 1)π

4 q

)
(1.1)
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and

qn(q) =
q∑

p= 1
cot2n

(
(2p− 1)π

4 q

)
, (1.2)

with n and q non–negative integers, leads to two sequences of integral–valued polynomials whose coefficients 
could be determined recursively from certain relations. Six more such mutually different, and, in this in-
stance, explicitly defined polynomial sequences were found by Hassan [13, Remark 4.5 (5), Equations 3.44, 
3.46, 3.48, 3.50, 4.5, 4.22, 4.23 and 4.24] using a sampling theorem associated with second–order discrete 
eigenvalue problem and through considering

q∑
p= 1

sec2n
(

pπ

2 q + 1

)
and

q∑
p= 1

tan2n
(

pπ

2 q + 1

)
(1.3)

as well as
q∑

p= 1
cot2n

(
(2p− 1)π
2 (2q + 1)

)
and

q∑
p= 1

csc2n
(

(2p− 1)π
2 (2q + 1)

)
(1.4)

and another four trigonometric sums. Annaby and Hassan [2, Theorem 4.1], making use of the Hermite 
interpolation, deduced additional four, not necessarily distinct, recursively defined sequences of integer–
valued polynomials associated with

q∑
p= 1

(−1)p−1 sin
(

(2p− 1)π
q

)
trig2n+2

(
(2p− 1)π

4 q

)
(trig = csc, sec) (1.5)

and
q∑

p= 1
(−1)p−1 sin

(
(2p− 1)π

q

)
trig2n

(
(2p− 1)π

4 q

)
(trig = cot, tan). (1.6)

Finally, interpolation was also used by Annaby and Asharabi [1] to obtain several integer–valued polyno-
mials.

Herein, it was aimed to avoid utilizing somewhat specialized methods, examples being the Lagrange 
and Hermite interpolation, and consider integral–valued polynomials arising in finite summation of various 
trigonometric sums by making use of more familiar arguments commonly used in work with polynomials 
in general. By doing so, the main intention was to provide, in a general context as well as in a systematic 
and unified manner, more straightforward proofs for some already known and to generate and prove new 
results.

2. Statement of main results

Two definitions are needed before we can proceed. When two sequences, {an}∞n=0 and {bn}∞n=0, are 
related as

bn =
n∑

k= 0

(
n

k

)
ak and an =

n∑
k= 0

(−1)n−k

(
n

k

)
bk (n ∈ N0 := N ∪ {0}) (2.1)

we say that the sequence {bn}∞n=0 is the (direct) binomial transform of the sequence {an}∞n=0 and that 
{an}∞n=0 is the inverse binomial transform of {bn}∞n=0 [19, pp. 13 and 22]. A polynomial sequence is a 
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sequence of polynomials indexed by the non–negative integers 0, 1, 2, 3, ..., in which each index is equal to 
the degree of the corresponding polynomial.

Observe that, throughout the text, as usual, δij stands for the Kronecker delta and we set an empty sum 
to be zero. Our main results are as follows.

Theorem 1. Let us define two sequences of real functions in x, {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0, by generating 
relations

GA(x, t) =
∞∑

n= 0
A2n(x) t2n and GB(x, t) =

∞∑
n= 0

B2n(x) t2n,

where

GA(x, t) = x

1 + t2
[
1 + t tan (x arctan t)

]
and

GB(x, t) = x + tx
tan (x arcsin t)√

1 − t2
.

Then, the following holds:

a) The sequences {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 are related to each other through the binomial transform 
of sequences

B2n(x) =
n∑

k= 0

(
n

k

)
A2k(x) and A2n(x) =

n∑
k= 0

(−1)n−k

(
n

k

)
B2k(x) (n ∈ N0),

while their ordinary generating functions, GA(x, t) and GB(x, t), are related to each other with

GB(x, t) = 1
1 − t2

GA

(
x,

t√
1 − t2

)
and GA(x, t) = 1

1 + t2
GB

(
x,

t√
1 + t2

)
.

b) {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 are polynomial sequences defined explicitly by

A2n(x) = (−1)n x
n∑

k= 0

(
n

k

) k−1∑
l= 0

22 k−2 l−2
l∑

m=−l

(−1)m
(

2 l
l + m

)(
(m− 1)x + k − 1

2 k − 1

)
+ (−1)nx

and by

B2n(x) = (−1)n x
n−1∑
l= 0

22n−2 l−2
l∑

m=−l

(−1)m
(

2 l
l + m

)(
(m− 1)x + n− 1

2n− 1

)
+ δ0nx.

c) {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 are sequences of integer-valued polynomials with rational coefficients.

We have that A0(x) = B0(x) = x, while, for any positive integer n, A2n(x) and B2n(x) are polynomials 
in a variable x of degree exactly equal to 2 n. Concerning the sequence {B2n(x)}∞n= 1, each B2n(x) is even 
and has a root at x = 0. In case of {A2n(x)}∞n= 1 each A2n(x) has a root at x = 0 and at x = 1.
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Remark 1. We remark that the polynomial sequence {B2n(x)}∞n= 0 could be defined by B0(x) = x and 
by means of GB(x, t) − x = t x tan(x arcsin t)/

√
1 − t2 to generate all other polynomials in {B2n(x)}∞n= 1. 

However, for the purposes of the binomial transform, it is necessary to work with {B2n(x)}∞n= 0 and to 
employ the complete generating function GB(x, t).

Corollary 1. Assume n to be any positive integer and consider the polynomial sequences {A2n(x)}∞n=0 and 
{B2n(x)}∞n= 0 defined by Theorem 1.

a) Let A2n(x) = x a2n−1(x) and B2n(x) = x b2n−1(x).
Then, {a2n−1(x)}∞n= 1 and {b2n−1(x)}∞n= 1 are integer-valued polynomial sequences.

b) Let

A∗
2n(x)

B∗
2n(x)

⎫⎬
⎭ :=

⎧⎨
⎩

1
2A2n(2x)
1
2B2n(2x)

and

A∗∗
2n(x)

B∗∗
2n(x)

⎫⎬
⎭ :=

⎧⎨
⎩

1
2A2n(2x + 1)
1
2 [B2n(2x + 1) − 1]

.

Then, {A∗
2n(x)}∞n=1, {B∗

2n(x)}∞n= 1, {A∗∗
2n(x)}∞n= 1 and {B∗∗

2n(x)}∞n= 1 are sequences of integer-valued poly-
nomials with rational coefficients.

Theorem 2. Let {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 be the integer–valued polynomials defined as in Theorem 1.
Then, for any positive integer n and q, we have that

q∑
p= 1

cot2n
(

(2p− 1)π
2 q

)
= A2n(q) and

q∑
p= 1

csc2n
(

(2p− 1)π
2 q

)
= B2n(q).

Corollary 2. Under the same assumptions as in Theorem 2, for a positive integer n and q, the following 
summations hold

q∑
p= 1

q is odd

tan2n
(
pπ

q

)
= A2n(q),

q∑
p=1

q is odd

sec2n
(
pπ

q

)
= B2n(q),

q∑
p= 1

cot2n
(

(2p− 1)π
4 q

)
=

q∑
p= 1

tan2n
(

(2p− 1)π
4 q

)
= 1

2 A2n(2 q),

q∑
p= 1

cot2n
(

(2p− 1)π
2 (2 q + 1)

)
=

q∑
p= 1

tan2n
(

pπ

2 q + 1

)
=

q∑
p= 1

tan2n
(

2 pπ
2 q + 1

)

=
q∑

p= 1
tan2n

(
(2 p− 1)π

2 q + 1

)
= 1

2 A2n(2 q + 1),

q∑
csc2n

(
(2p− 1)π

4 q

)
=

q∑
sec2n

(
(2p− 1)π

4 q

)
= 1

2 B2n(2 q),

p= 1 p= 1
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q∑
p= 1

csc2n
(

(2p− 1)π
2 (2 q + 1)

)
=

q∑
p= 1

sec2n
(

pπ

2 q + 1

)
=

q∑
p= 1

sec2n
(

2 pπ
2 q + 1

)

=
q∑

p= 1
sec2n

(
(2 p− 1)π

2 q + 1

)
= 1

2 [B2n(2 q + 1) − 1] .

Remark 2. Five (among eight) sequences of integral–valued polynomials given in Theorem 1 and Corollary
1 are new: {A2n(x)}∞n= 0, {B2n(x)}∞n= 0, {a2n−1(x)}∞n= 1, {b2n−1(x)}∞n= 1, and {B∗

2n(x)}∞n= 0. On the other 
hand, {A∗

2n(x)}∞n= 0, the sequence associated with the sum (1.2), was deduced by Byrne and Smith [4, 
Theorem 2], while the polynomial sequences {A∗∗

2n(x)}∞n= 0 and {B∗∗
2n(x)}∞n= 0 associated with the sums in 

(1.4) were obtained by Hassan (see, respectively, Theorem 4.3 and Eq. (3.18) together with Remark 4.5 (2) 
in [13, pp. 822 and 817]. Clearly, all these three known sequences along with the new one {B∗

2n(x)}∞n= 0 are 
straightforward special cases of more general, and novel, results stated by Theorem 1.

Remark 3. Some of the above sums were previously evaluated in closed form by Hassan: 
∑q

p= 1 csc2n((2p −
1)π/(4 q)) [13, p. 817, Eq. (3.7)], 

∑q
p= 1 cot2n((2p − 1)π/(4 q)) [13, p. 817, Eq. (3.8)], 

∑q
p= 1 csc2n((2p −

1)π/(2 (2 q + 1)) [13, p. 818, Eq. (3.18)] and 
∑q

p= 1 cot2n((2p − 1)π/(2 (2 q + 1))) [13, p. 818, Eq. (3.19)].

However, although no recorded summation of c2n(q) =
∑q

p= 1 cot2n((2p − 1)π/(2 q)) and s2n(q) =∑q
p= 1 csc2n((2p − 1)π/(2 q)) may be found in the literature, in fact, these, and, moreover, all sums given 

by Corollary 2 can be summed by means of already known results. Namely, by c2n(q) = C2n(2 q) − C2n(q)
and s2n(q) = S2n(2 q) − S2n(q), the sums c2n(q) and s2n(q) are related to C2n(q) =

∑q−1
p= 1 cot2n(pπ/q)

and S2n(q) =
∑q−1

p= 1 csc2n(pπ/q) whose summations are known. C2n(q) and S2n(q) were first closed–form 
summed by Chu and Marini [6, p. 137 and p. 126]. Furthermore, C2n(q) was differently evaluated by Cvijović 
and Klinowski [8, p. 156], Cvijović, Klinowski and Srivastava [9, p. 251, Corollary 1], Berndt and Yeap [3, 
p. 364] and Cvijović [7, p. 1137], while summations for S2n(q) were reported by Cvijović, Klinowski and 
Srivastava [9, p. 251, Corollary 1] as well as Cvijović and Srivastava [10, Eq. (2.8)]. A general review of such 
series can be found in [11].

To summarize, two explicit formulae for the polynomial sequences {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 given 
by Theorem 1(b), provide, in a relatively simple manner, closed-form summations of 16 families of finite 
trigonometric sums (which, in essence, amounts to eight distinct families) specified in Theorem 2 and 
Corollary 2. These summations, in comparison with existing ones, apart from being deduced through a 
systematic and unified approach, are also in a more compact and simple form.

3. Proof of the results

The Gauss (or ordinary) hypergeometric 2F1 is, as usual, defined by the following hypergeometric series 
[14, Ch. 15, p. 384, Eq. (15.2.1)]

2F1

[
α, β

γ
; z
]

:=
∞∑

n= 0

(α)n(β)n
(γ)n

zn

n! (3.1)

on the disk |z| < 1, and by analytic continuation elsewhere. Here, a variable z and, respectively, numerator 
and denominator parameters α, β and γ are, in general, complex numbers, provided that γ is not zero or 
a negative integer, while (·)n denotes the Pochhammer symbol [14, Ch. 5, p. 136, Eqs. (5.2.4) and (5.2.5)]
given by

(λ)n = (−1)nn!
(
−λ

n

)
= Γ(λ + n)

Γ(λ) =
{

1 (n = 0)
λ(λ + 1) · · · (λ + n− 1) (n ∈ N)

(3.2)



6 D. Cvijović / J. Math. Anal. Appl. 488 (2020) 124057
in terms of the familiar (generalized) binomial coefficient 
()

or classical gamma function Γ (when λ �=
0, −1, −2, . . .). On the circle of convergence, |z| = 1, the series converges absolutely if �(γ − α− β) > 0.

In order to establish the main results we need several (known) auxiliary, rather heterogeneous results 
collected separately here for a better clarity of the proofs given below and proved for the sake of a self-
contained presentation.

Proposition 1. Let two even-indexed sequences of real functions of a single real variable, {a2n(x)}∞n= 0 and 
{b2n(x)}∞n=0, be defined by generating relations

A(x, t) =
∞∑

n= 0
a2n(x) t2n and B(x, t) =

∞∑
n= 0

b2n(x) t2n. (3.3)

Then, these sequences are a binomial transform pair, as defined in (2.1), if and only if their ordinary 
generating functions, A(x, t) and B(x, t), are related as

B(x, t) = 1
1 − t2

A

(
x,

t√
1 − t2

)
and A(x, t) = 1

1 + t2
B

(
x,

t√
1 + t2

)
. (3.4)

Proof. Suppose that {a2n(x)}∞n= 0 and {b2n(x)}∞n= 0 are the pair, then the first relation between generating 
functions in (3.4) could be deduced like this

1
1 − t2

A

(
x,

t√
1 − t2

)
=

∞∑
m= 0

a2m(x) t2m 1
(1 − t2)m+1

=
∞∑

m= 0

∞∑
n= 0

a2m(x) t2m

(
n + m

m

)
t2n

=
∞∑

m= 0

m∑
n= 0

a2(m−n)(x) t2 (m−n)
(

m

m− n

)
t2n

=
∞∑

m= 0
t2m

m∑
n= 0

(
m

n

)
a2n(x) =

∞∑
m= 0

b2m(x) t2m = B(x, t),

while the second one (3.4) follows in the exact same manner.
Two summations are employed here, 1/(1 − t)m+1 =

∑∞
n= 0

(
n+m
m

)
tn, |t| < 1, [16, p. 564, Eq. (5.2.11.3)]

and the elementary double series identity 
∑∞

n= 0
∑∞

k= 0 A(k, n) =
∑∞

n= 0
∑n

k= 0 A(k, n − k) [18, p. 57, Eq. 
(2)]. The former is available upon mth derivation of the both sides of the well–known 1/(1 − t) =

∑∞
n= 0 t

n, 
|t| < 1, with respect to t, whereas the simple short proof of the latter can be found in [18, p. 57].

Conversely, suppose that A(x, t) and B(x, t) are related as proposed, then, by an analogous argument, it 
is easy to conclude that {a2n(x)}∞n= 0 and {b2n(x)}∞n= 0 form a binomial transform pair. �
Proposition 2. For any real θ and m a non-negative integer, we have that

sin2m+1 θ cos θ = 1
22m+1

m∑
k=−m

(−1)k−1
(

2m
m + k

)
sin

[
2 (k − 1)θ

]
. (3.5)

Proof. To derive the formula (3.5), it suffices to use the following identity

(−1)m22m+2ı sin2m+1 θ cos θ =
(
eıθ − e−ıθ

)2m+1(
eıθ + e−ıθ

)
in conjunction with the last line of this expression
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RHS : =
(
eıθ − e−ıθ

)2m+1(
eıθ + e−ıθ

)
=

(
eıθ − e−ıθ

)2m(
e2 ıθ − e−2ıθ)

=
(
e2ıθ − e−2ıθ) 2m∑

k= 0

(−1)2m−k

(
2m
k

)
e−2ıθ(m−k)

=
2m∑
k= 0

(−1)2m−k

(
2m
k

)[
e−2ıθ(m−k−1) − e−2ıθ(m−k+1)]

=
2m∑
k= 0

(−1)2m−k

(
2m
k

)
(−1)ı

[
sin

(
2(m− k − 1)θ

)
− sin

(
2(m− k + 1)θ

)]

= 2 (−1)mı
2m∑
k= 0

(−1)m−k−1
(

2m
k

)
sin

[
2(m− k − 1)θ

]
. �

Proposition 3. (See, for instance, [17, p. 389, Eq. (7.3.1.94)].) If θ �= (2 n + 1)π2 for any integer n, then

2 sin(aθ)
a sin(2 θ) = 2F1

[
1 + a

2 , 1 − a
2
3
2

; sin2 θ

]
. (3.6)

Proof. Making use of the familiar binomial expansion (u + v)λ =
∑∞

k= 0
(
λ
k

)
ukvλ−k, the Euler identity 

eıθ = cos θ + ı sin θ and the Moivre identity 
(
eıθ

)λ = eıλθ, there is no difficulty in showing that

1
cosa−1 θ

sin(aθ)
sin θ

=
∞∑

k= 0

(
a

2 k + 1

)
(− tan2 θ)k.

Next, we need the following identities involving the Pochhammer symbol, (a)2m = 22m(a/2)m(1/2 +a/2)m, 
(1 + a)m = (a)m(a + m)/a as well as its special value 

( 3
2
)
m

= 2−2m(2m + 1)!/m!, which are all valid for 
each non-negative integer m and can be derived (or, use identities tabulated in [17, pp. 647–648]) starting 
from the definition in (3.2) by applying known properties of the gamma function, for instance, the Legendre 
duplication formula. Now, since we have

(
a

2 k + 1

)
= a− 2 k

2 k + 1

(
a

2 k

)
= a− 2 k

(2 k + 1)! (−a)2k = a(1 − a)2k
(2 k + 1)! =

(
1 − a

2
)
k

( 1
2 − a

2
)
k( 3

2
)
k

a

k! ,

and, on taking into account (3.1), we get

1
cosa−1 θ

sin(aθ)
a sin θ

=
∞∑

k= 0

(
1 − a

2
)
k

( 1
2 − a

2
)
k( 3

2
)
k

(− tan2 θ)k

k!

= 2F1

[
1 − a

2 ,
1
2 − a

2
3
2

; sin2 θ

sin2 θ − 1

]
.

Finally, the expansion (3.6) is deduced upon transforming the obtained Gauss hypergeometric function 
by the Pfaff transformation [14, p. 390, Eq. (15.8.1)]

2F1

[
β, γ − α

γ
; z

z − 1

]
= (1 − z)β2F1

[
α, β

γ
; z
]
. �
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Proposition 4. We have

2F1

[
1 − a, 1 + a

3
2

; z2

]
= 1

4 a z2

∞∑
m= 1

(−1)m−1
(
a + m− 1
2m− 1

)
(2z)2m. (3.7)

Proof. Like in the proof of Proposition 3, we need (1 +a)m = (a)m(a +m)/a and 
(3

2
)
m

= 2−2m(2m +1)!/m!, 
while (1 − a)m = (−1)m(a −m)2m/(a)m follows from the definition in (3.2) in conjunction with the gamma 
function properties (or, use tabulated identities in [17, pp. 647–648]). Then

a
(1 + a)m(1 − a)m( 3

2
)
m
m!

= (−1)m (a−m)2m(a + m)
(2m + 1)! = (−1)m (a−m)2m+1

(2m + 1)!

= (−1)m−1 (−a−m)2m+1

(2m + 1)! = (−1)m
(

a + m

2m + 1

)
.

In other words, the next holds

4 a z2
2F1

[
1 − a, 1 + a

3
2

; z2

]
=

∞∑
m= 0

(−1)m
(

a + m

2m + 1

)
(2z)2m+2,

hence the sought formula (3.7). �
Proposition 5. For any real θ and δ, θ − δ �= 2 k π, k being an integer, the following summation holds true

n−1∑
k= 0

sin θ cos θ
cos2 θ − cos2

(
δ + 2 kπ

n

) = n sin(2nθ)
cos(2nθ) − cos(2nδ) (n ∈ N). (3.8)

Proof. Note that the factorization of the polynomial P2n(x) = x2n − 2 xn cos(nδ) + 1

x2n − 2xn cos(nδ) + 1 =
n−1∏
k= 0

[
x2 − 2x cos

(
δ + 2 kπ

n

)
+ 1

]

(see, for instance, [12, p. 41, Eq. (1.395)], or deduce the factorization upon solving the equation P2n(x) = 0) 
yields the partial–fraction decomposition

n−1∑
k= 0

1 − x2

x2 − 2x cos
(
δ + 2 kπ

n

)
+ 1

= n(1 − x2n)
x2n − 2xn cos(nδ) + 1 ,

which enables straightforward deduction of the summation (3.8) upon putting x = e2 ıθ and cos2 θ =
(1 + x)2/(4 x) in the expression Lhs = Rhs, with

Lhs :=
n−1∑
k= 0

(1 + x)2

1 + x2 − 2x cos
(
2 δ + 2 kπ

n

) =
n−1∑
k= 0

(1 + x)2/(4x)
(1 + x)2/(4x) − cos2

(
δ + kπ

n

)
and

Rhs := n(1 − x2n)(1 + x)2(
2n n

) = − n(xn − x−n)(
n −n

) 1 + x

1 − x
. �
x − 2x cos(2nδ) + 1 x + x − 2 cos(2nδ)
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Now we are ready to prove our main results. The fact that {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 are a transform 
pair (see Theorem 1(a)) much simplifies the proof of results stated in Section 2. We choose to consider 
{B2n(x)}∞n= 0 in detail, assertions for {A2n(x)}∞n= 0 then follow by the binomial transform. The formal series 
method used by Wang and Zheng [20] is provided here with necessary proofs and all details.

Proof of Theorem 1. To prove Part a, recall that Proposition 1 provides a necessary and sufficient condition 
in terms of generating functions for two even-indexed sequences related by the binomial transform. It is 
therefore enough to simply verify that there exist such relations between GA(x, t) and GB(x, t), which is 
straightforward, so as to conclude that the sequences of functions, {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0, are 
related to each other through the binomial transform of sequences.

Part b. To deduce the required explicit formulae, it is sufficient to consider only the sequence {B2n(x)}∞n= 0
using GB(x, t) −x (see Remark 1) since the formula for {A2n(x)}∞n= 0 follows at once by Theorem 1(a) from 
the formula for {B2n(x)}∞n= 0.

First, observe that the formal expansion

sin(2xθ)
cos(2xθ) − cos(2xδ) =

∞∑
k= 0

csc2 k+2(xδ) sin2 k+1(xθ) cos(xθ) (3.9)

is readily available from

sin(2xθ)
cos(2xθ) − cos(2xδ) = sin(xθ) cos(xθ)

sin2(xδ)
· sin2(xδ)
sin2(xδ) − sin2(xθ)

= sin(xθ) cos(xθ)
sin2(xδ)

∞∑
k= 0

(
sin(xθ)
sin(xδ)

)2 k

.

Next, upon substituting t = sin θ along with using

sin(2xθ)/
(
cos(2xθ) − cos(2xδ)

)∣∣
δ =− π

2 x

= tan(xθ)

and Proposition 2, the expansion (3.9) becomes

tan(x arcsin t) =
∞∑

k= 0

sin2 k+1(x arcsin t) cos(x arcsin t)

=
∞∑

k= 0

2−(2 k+1)
k∑

l=−k

(−1)l−1
(

2 k
k + l

)
sin

[
2 (l − 1)x arcsin t

]
.

Last, by utilizing the relationship

sin(a arcsin t)√
1 − t2

= a t 2F1

[
1 + a

2 , 1 − a
2
3
2

; t2
]

implied by Proposition 3, we obtain

t x√
1 − t2

tan(x arcsin t) = x

∞∑
k= 0

2−(2 k+2)
k∑

l=−k

(−1)l−1
(

2 k
k + l

)

× 4 (l − 1)x t22F1

[
1 + (l − 1)x, 1 − (l − 1)x

3
2

; t2
]
,
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which, in view of Proposition 4, results in

t x√
1 − t2

tan(x arcsin t) =
∞∑

n= 1
t2n x

∞∑
k= 0

22n−2 k−2
k∑

l=−k

(−1)l+n

(
2 k
k + l

)

×
(

(l − 1)x + n− 1
2n− 1

)
. (3.10)

Here, the sum with the index k is finite and k runs from 0 to n − 1 because the binomial coefficients with x
vanish for k ≥ n. Finally, by extracting the coefficient of t2n in (3.10), the derivation of the explicit formula 
for {B2n(x)}∞n= 1 is concluded. The term δ0nx needs to be added into the formula to take into an account 
the case B0(x) = x.

What remains is to show that {B2n(x)}∞n= 0 is a polynomial sequence. Indeed, B0(x) = x, whereas each 
B2n(x) for a fixed n, n ≥ 1, is a linear combination of polynomials in x of degree 2 n − 1

(
(m− 1)x + n− 1

2n− 1

)
= x

(m− 1)2n−1

(2n− 1)!

n−1∏
k= 1

(
x2 − k2

(m− 1)2

)
,

where m varies from −l to l and l varies from 0 to n − 1. In addition, {B2n(x)}∞n= 0, which is the binomial 
transform of {B2n(x)}∞n= 0, is a polynomial sequence too.

Part c. In proving the assertions of this part, we need the explicit formulae for {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0
given in Theorem 1(b).

Recall basic facts about integer–valued polynomials. Note, that 
(
x
n

)
, defined as 

(
x
0
)

= 1 and 
(
x
n

)
=

x(x − 1)(x − 2) · · · (x − n + 1)/n!, n = 1, 2, . . ., is an integer–valued polynomial in x of degree n. Also, any 
linear combination of integer-valued polynomials with integer coefficients is integer-valued. Hence, we can 
infer that 

((m−1) x+n−1
2n−1

)
in Theorem 1(b) is a polynomial in (m −1)x +n −1 of degree 2 n −1, which in turn 

means a polynomial in x of degree 2 n −1, and it takes integer values whenever x is an integer. To conclude, 
in essence, the formulae for {A2n(x)}∞n= 0 and {B2n(x)}∞n= 0 amount to linear combinations of 

((m−1) x+n−1
2n−1

)
with integer coefficients and therefore yield two sequences of integral–valued polynomials of degree 2 n.

With regard to roots of the polynomials, upon inspection of the formulae for {A2n(x)}∞n= 0 and 
{B2n(x)}∞n= 0, it is obvious that x = 0 annuls all the polynomials A2n(x) and B2n(x), n ≥ 1. Further-
more, the formula for {A2n(x)}∞n= 0 at once gives A2n(1) = 0, n ≥ 1, upon resorting to the identity

k−1∑
l= 0

22 k−2 l−2
l∑

m=−l

(−1)m
(

2 l
l + m

)(
m− 1 + k − 1

2 k − 1

)
= (−1)k (k ∈ N),

which is easily derivable, one of the ways being by induction on k.
In order to show that all B2n(x) are even, it suffices to apply 

(
λ
k

)
= (−1)k

(−λ+k−1
k

)
[17, p. 647] and 

verify the identity 
(−(m−1) x+n−1

2n−1
)

= −
((m−1) x+n−1

2n−1
)
. Clearly, in view of this identity, when changing x to 

−x the formula for B2n(x) does not change, in other words we have B2n(−x) = B2n(x).

Proof of Theorem 2. Note that, by the transform given by Theorem 1(a), the summation in terms of 
{A2n(x)}∞n= 1 follows at once from the sum with {B2n(x)}∞n= 1.

As a result, we consider only a cosecant sum (for any fixed n ≥ 1) by means of the generating function 
GB(x, t) −x = t x tan(x arcsin t)/

√
1 − t2 (see Remark 1). The main ingredient of the proof is Proposition 5, 

and, upon using t = sin θ and tan(xθ) = sin(2xθ)/
(
cos(2xθ) − cos(2xδ)

)∣∣
π , we get
δ =− 2 x
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GB(x, sin θ) − x|x= q = q sin θ

cos θ tan (qθ) = q sin θ

cos θ
sin(2 qθ)

cos(2 qθ) − cos
(
2 q (−π/(2q))

)
=

q∑
p= 1

sin2 θ

sin2
(

(2p−1)π
2 q

)
− sin2 θ

=
∞∑

n= 1

q∑
p= 1

sin2n θ

sin2n
(

(2p−1)π
2 q

)

=
∞∑

n= 1

(
sin θ

)2n
q∑

p= 1
csc2n

(
(2p− 1)π

2 q

)
.

In other words, for any positive integer n and q, it is shown that we have

GB(x, t) − x|x= q =
∞∑

n= 1
t2n

q∑
p= 1

csc2n
(

(2p− 1)π
2 q

)
=

∞∑
n= 1

t2nB2n(q),

which leads to the claimed summation formula by extracting the coefficient of t2n.

Proof of Corollary 1. As to prove Part a, recall that x = 0 annuls all the polynomials A2n(x) and B2n(x), 
n ≥ 1 (see Theorem 1(c)). Hence, factorizations A2n(x) = x a2n−1(x) and B2n(x) = x b2n−1(x), where, 
because of the form of the explicit formulae (linear combinations of integral–valued 

((m−1) x+n−1
2n−1

)
with 

integer coefficients), all a2n−1(x) and b2n−1(x) must take integer values at any integer x. This completes 
the proof.

Part b. For any even integer 2 q and any positive integer n, by Corollary 1(a), we have A2n(2 q) =
2 q a2n−1(2 q) and B2n(2 q) = 2 q b2n−1(2 q), where a2n−1(2 q) and a2n−1(2 q) are necessarily integer-valued. 
That is, all A2n(2 q) and B2n(2 q) are even integers, therefore all A2n(x)/2 and B2n(x)/2 are integer–valued 
polynomials.

Regarding the case of any odd integer 2 q + 1, recall that it was shown by Hassan that the sequences 
{A∗∗

2n(x)}∞n= 1 and {B∗∗
2n(x)}∞n= 1, which are associated with the sums 

∑q
p= 1 cot2n

(
(2 p − 1)π)/(2 (2 q + 1))

)
and 

∑q
p= 1 csc2n

(
(2 p −1)π)/(2 (2 q+1))

)
, are integral valued (see, respectively, Theorem 4.3 and Eq. (3.18) 

together with Remark 4.5 (2) in [13, pp. 822 and 817]). On the other hand, by making use of elementary series 
and trigonometric identities, it was shown here that A2n(2 q+1) = 2 

∑q
p= 1 cot2n

(
(2 p − 1)π)/(2 (2 q+1))

)
as well as B2n(2 q + 1) − 1 = 2 

∑q
p= 1 csc2n

(
(2 p − 1)π)/(2 (2 q + 1))

)
(see Corollary 1 and the proof of 

Corollary 2). In that way A∗∗
2n = 1

2A2n(2x + 1) and B∗∗
2n = 1

2
(
B2n(2x + 1) − 1

)
were obtained.

Proof of Corollary 2. The required summations are readily derivable by making use of either such elementary 
series identities as (for example)

q∑
p= 1

tan2n

(
pπ

2 q + 1

)
=

q∑
p= 1

cot2n

(
π

2 − pπ

2 q + 1

)
=

q∑
p= 1

cot2n

(
(2 p− 1)π
2 (2 q + 1)

)
,

or by simple arguments, for instance to show 
∑q

p= 1 cot2n
(
(2 p − 1)π)/(2 (2 q + 1))

)
= A2n(2 q + 1)/2 as 

follows: In view of

X2n(2 q + 1) =
2 q+1∑
p= q+1

cot2n

(
(2 p− 1)π
2 (2 q + 1)

)
=

q∑
p= 1

cot2n

(
2 (2 q + 1)π − (2 p + 1)π

2 (2 q + 1)

)

=
q∑

p= 1
cot2n

(
(2 p− 1)π
2 (2 q + 1)

)
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we have

A2n(2 q + 1) =
q∑

p= 1
cot2n

(
(2 p− 1)π
2 (2 q + 1)

)
+ X2n(2 q + 1) = 2

q∑
p= 1

cot2n

(
(2 p− 1)π
2 (2 q + 1)

)
.

4. Concluding remarks

By Theorem 1, two new very general families of integer–valued polynomials with rational coefficients 
and associated with finite trigonometric summation, A2n(x) and B2n(x), were introduced. As illustrative 
examples for reference, we list a few of them, respectively generated by

A2n(x) = 1
(2n)!

d2n

dt2n GA(t, x)
∣∣∣∣
t=0

(n ∈ N)

and

B2n(x) = 1
(2n)!

d2n

dt2n GB(t, x)
∣∣∣∣
t=0

(n ∈ N),

or by means of the corresponding explicit formula given in Theorem 1(b). In general, A2n(x) is of degree 
2 n in x and these first several polynomials are

A2(x) = x2 − x,

A4(x) = 1
3 x

4 − 4
3 x

2 + x,

A6(x) = 2
15 x

6 − 2
3 x

4 + 23
15 x

2 − x,

A8(x) = 17
315 x

8 − 16
45 x

6 + 44
45 x

4 − 176
105 x

2 + x,

A10(x) = 62
2835 x

10 − 34
189 x

8 + 86
135 x

6 − 718
567 x

4 + 563
315 x

2 − x,

A12(x) = 1382
155 925 x

12 − 248
2835 x

10 + 1802
4725 x

8 − 544
567 x

6 + 21 757
14 175 x

4 − 6508
3465 x

2 + x.

Similarly

B2(x) = x2,

B4(x) = 1
3 x

4 + 2
3 x

2,

B6(x) = 2
15 x

6 + 1
3 x

4 + 8
15 x

2,

B8(x) = 17
315 x

8 + 8
45 x

6 + 14
45 x

4 + 16
35 x

2,

B10(x) = 62
2835 x

10 + 17
189 x

8 + 26
135 x

6 + 164
567 x

4 + 128
315 x

2,

B12(x) = 1382
155 925 x

12 + 124
2835 x

10 + 527
4725 x

8 + 566
2835 x

6 + 3832
14 175 x

4 + 256
693 x

2.

In addition, by Corollary 1, six more example sets for a2n−1(x) and b2n−1(x) as well as A∗
2n(x), B∗

2n(x), 
A∗∗

2n(x) and B∗∗
2n(x) are readily available, since A2n(x) and B2n(x) include these integer–valued polynomials 

as special cases. It is noteworthy that five of these polynomial sequences were not previously studied, 
{A2n(x)}∞n= 0, {B2n(x)}∞n= 0, {a2n−1(x)}∞n= 1, {b2n−1(x)}∞n= 1, and {B∗

2n(x)}∞n= 0.
In conclusion, the polynomials A2n(x) and B2n(x), and their special cases, enable closed-form summation 

of a great deal of general families of finite sums involving even-powered trigonometric functions, which 
generalize the identities like
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q∑
p= 1

csc2
(

(2p− 1)π
2 q

)
= q2 − q and

q∑
p= 1

cot2
(

(2p− 1)π
2 (2 q + 1)

)
= 2 q2 + q,

which are valid for any positive integer q, and that somewhat surprisingly such sums are positive integers 
for each value of q.
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