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In this paper, we prove that if two nonconstant meromorphic functions f and g
share two small functions CM* and share other two small functions IM*, then f
must be a quasi-Mobius transformation of g. This result is a generalization of
several results obtained by G. G. Gundersen and Li-Yang.  © 2001 Academic Press
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1. INTRODUCTION

Let f be a nonconstant meromorphic function in the complex plane C.
We shall use the standard notations in Nevanlinna’s value distribution
theory of meromorphic functions such as T(r, f), N(r, f), and m(r, f)
(see, e.g., [3D. The notation S(r, f) is defined to be any quantity satisfying
S(r, f) = o(T(r, f)) as r — o possibly outside a set of r of finite linear
measure. A meromorphic function a(# ) is called a small function with
respect to f provided that T(r, a) = S(r, f).

Let f and g be two nonconstant meromorphic functions, and let a be a
small function with respect to f and g. If f — a and g — a have the same
zeros ignoring (counting) multiplicities, then we say that f and g share a
IM (CM). We say f and g share « IM (CM) if 1/f and 1/g share 0 IM
(CM).
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Let S(f =a = g) be the set of all common zeros of f —a and g — a
ignoring multiplicities, and let S,(f = a = g) be the set of all common
zeros of f—a and g — a with the same multiplicities. Furthermore, we
denote by S, ;(f =a = g) the set of all points which are zeros of f — a
with multiplicity £ as well as the zeros of g — a with multiplicity /. Denote
by N(r,f=a =g), N(r,f=a =g), and IV(k’,)(r,f = a = g) the reduced
counting functions of f and g corresponding to the sets S(f=a =g),
Se(f=a=g),and S, ,(f =a = g), respectively. If

+N

r!

1 _
_a) —2N(r.f=a=g) = S(r.f) +5(r.8).

f—a

then we say that f and g share a IM*. If

1 _
_a) —2Ny(r.f=a=g) =S(r.f) + 5(r,2),

then we say that f and g share a CM*. Obviously, any IM (CM) shared
small function must be an IM* (CM*) shared small function. And we have

_ 1 _
N(r,f—)= Y Neo(rnf=a=g) +S(rnf). (1)
k=1

provided that f and g share a IM™.

In 1926, R. Nevanlinna [9] proved that if two meromorphic functions f
and g share four values a,, a,, a;, and a, CM, then f is a Mobius
transformation of g. Since then many papers have been published on
uniqueness theory and sharing values (see, e.g., [1, 8]). Most results on
sharing values in the sense of IM or CM are still valid in the sense of IM*
or CM*. For example, we have

THEOREM A [1].  Let f and g be two nonconstant meromorphic functions,
and let a, a,, a5, and a, be four distinct values in C = C U {o}. If fand g
share a,, a, CM* and share a5, a, IM*, then f is a Mobius transformation
of 8.

When the shared values are replaced by shared small functions, most
problems will become difficult. In 1997, Li-Yang proved the following

THEOREM B [6]. Let f and g be two nonconstant meromorphic functions,
and let a,, a,, a5, and a, be four distinct small functions with respect to f and
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g. If fand g share a,, a,, a; CM* and share a, IM*, then fis a quasi-Mobius
transformation of g, i.e.,

o a g+ By
a2g+32’

where «a,, B; (i = 1,2) are small functions with respect to f and g.

A specific possible form of the quasi-Mobius transformation in Theorem
B can be found in [4]. In this paper, we generalize the above two theorems
and prove the following

THEOREM 1. Let f and g be two nonconstant meromorphic functions, and
let a,, a,, a,, and a, be four distinct small functions with respect to f and g. If
f and g share a,, a, CM* and share a;, a, IM*, then f is a quasi-Mobius
transformation of g.

2. LEMMAS

LEmMMA 1 [5]. Let f and g be two nonconstant meromorphic functions,
and let a (£ 0,1,%) be a small function with respect to f and g. Let

re o fet [0 —a)

gf=1) flg-1  flg—a)

g me) g ma)  f(8 -4
g(f—a)  (f-a)(g—1) (g-a)(f—-1)

= (f—-g)

. (2)

If f and g share 0, 1, o, a IM*, then T(r, ) = S(r, f) = S(r, g).

LEMMA 2. Let f and g be two nonconstant meromorphic functions satisfy-
ing T(r,g) < cT(r, f) + S(r, f), where c is a constant, and let a be a small
function with respect to f and g. If f and g share a IM*, and

Nyo(rif=a=g)=S(r.[)

holds for all pairs (k,1) of positive integers, then N(r,1/(f — a)) < eT(r, f)
+ S(r, f) holds for any positive number &.
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Proof.  For any positive number ¢, we select an integer n such that
¢ + 1 < ne. It follows from the assumption and (1) that

_ 1
N r’f—a)
= Z N(k,l)(”’fza:g)+5("’f)
k=1
= Y Nyy(r.f=a=g)+S(rf)
k+i>n
1 1
Sn( > kN(kl)( f + X l(kl)( +S8(r. f)
k+I1>n k+I1>n
1 1
_—(N(r, + N|r + S(r,f)
n f—a
1
< AT(r.f) + T(r,8)) +S(r.f) < ) +8(r. f)

IA

eT(r,f) +S(r.f),
which completes the proof of the lemma. |

LeEmMA 3. Let f and g be two nonconstant meromorphic functions, and let
a,, a,, a,, and a, be four distinct small functions with respect to f and g. If f
and g share a,, a, CM* and share a5, a, IM*, and if there exists a number
e €(0,1/4), such that

zv(r,

1 —
f_ag) - Ne(rf=ay =) < eT(r.f) +S(r. ), (3)

then f is a quasi-Mobius transformation of g.

Proof. Without loss of generality, we assume that a, =0, a, = %,
a; =1, and a, = a, where a is a small function with respect to f and g,
and a # 0, 1, o. Let

f 8 f-1 g—1
a

o h=oT &S

a—1"
Then f, and g, share 0, * CM* and share 1, 1/a IM*; furthermore, f,
and g, share —1/(a — 1), © CM*, and share 0, 1 IM*. Let

f(f-a) g'(g—a) filfi —1/a)  gi(g — 1/a)

P50 3:z-0 PR CD T a1

(4)
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and

AR 1/@1) (gt 1/(a- 1)
: L —1) 8:(8 — 1) '

(5)

Note f and g share 0, © CM* and share 1, a IM*. By (3), we can easily
get T(r, B) < &T(r, f) + S(r, f). If none of B, B,, B, is identically zero,
then

— 1
N(r, 7o a) <N(r,1/B) + S(r,f) < eT(r,f) +S(r,f). (06)
Thus we can get T(r, B,) < eT(r, f) + S(r, f). It follows that

N( !
r,f_

1) <N(r,1/B)) +S8(r,f) <&T(r,f) +S(r,f). (7)

By (6), (7), and the definition of 8,, we get T(r, B,) < 2&T(r, ) + S(r, ).
Thus

(1
N(r,?) <N(r,1/B,) + S(r,f) <2&T(r,f) + S(r,f). (8)

From (6), (7), (8), and the second fundamental theorem, we get T(r, f) <
4¢T(r, f) + S(r, f), which is impossible for & € (0,1/4). Hence one of S,
By, and B, must be identically zero. It follows that f and g share a CM*.
Therefore, by Theorem B, f is a quasi-Mébius transformation of g. ||

3. PROOF OF THE MAIN THEOREM

Without loss of generality, we assume that a, =0, a, = », a; =1,
a, = a, where a (£ 0,1,0) is a small function with respect to f and g;
otherwise, a quasi-Mdbius transformation will do. Since f and g share
three values IM*, by the second fundamental theorem, we can easily get
T(r,f) <3T(r,g) + S(r,f) and T(r,g) < 3T(r, f) + S(r, g). Hence
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S(r, f) =80, g) = 8&). If N(r,1/(f—1)=S80) or N(r,1/(f —a)) =

S(r), then f and g share at least three of a,, a,, a;, a, CM* and share

another one IM*. By Theorem B, f is a quasi-Mo6bius transformation of g.
In the following, we assume that

+S(r). (9)

_ 1
#S(r), N(r,f_a

_ 1
N(r, f—— 1

Furthermore, we assume that a is not constant; otherwise, by Theorem A,
f is a quasi-Mobius transformation of g. Let

o=l -% (10)

and

(f’(f— a) g'(g—a) )

S TV BT
(aof —a'f)(f—1) (ag'—a'g)(g—1)
X( af(f—a)y  ag(g—a) ) (11)
I g'
=((1—a)(]T1—g_—1 +ae

X

. 1 f/ —a g/ —a'

a f—a g—a

By the lemma on the logarithmic derivative, we have m(r, ¢) = S(r) and
m(r, ¢;) = S(r). Since f and g share 0, o CM* and share 1, a IM*, it is

easily seen from (10) and (11) that N(r, ¢) = S(r) and N(r, ¢,) = S(r).
Hence we have

1

T(r,e) =S(r),  T(r,¢) =S(r). (13)

If ¢ =0, then f/g is a nonzero constant, and thus f is a Mobius
transformation of g. If ¢, = 0, then it follows from (11) that f and g
share 1, a CM*. Thus by Theorem B f is also a quasi-Md&bius transforma-
tion of g.
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If lv(k,,)(r,f =1 =g)) = S(r) holds for all pairs (k, ) (max{k, I} > 1) of
positive integers, then by the proof of Lemma 2, we have

Mrig) - M= 1)
< ) N(k)l)(r,f=1=g)+S(r)
max{k,[}>1

1
ET(r,f) + S(r).

IA

By Lemma 3, f is a quasi-Mobius transformation of g.

Suppose that f is not any quasi-Mobius transformation of g. Then
0 #0, ¢, # 0. And there exists a pair (k,/) (max{k, [} > 1) of positive
integers such that

]v(k,l)(nf:l:g)qés(r)' (14)

Similarly, there exists a pair (k,,/,) (max{k,,/,} > 1) of positive integers
such that

Npyip(r.f=a=g) #5(r). (15)

If k>1 and /> 1, then ¢(z) =0 holds for all z€ S, ,(f=1=g).
Since ¢ # 0, we have N(k N f=1=g)< N(r,1/¢) = S(r), which con-
tradicts (14). Hence min{k, /} = 1. Similarly, we have min{k,/,} = 1

Let S, be the set of all zeros, 1-points, and poles of a(z) or ¢(z) or
@,(2). Let ¢ be the function defined in (2) and let z, € S, ,(f=1=g)\
S,- By a simple computation, we have

k—1)a'(z, x{k,l}a(z,) e(z,
oy - B D) b))

From this and (14), we deduce that

(k= 1)a' + max{k,l}aep

1—a

P ¢. (16)

Similarly, by considering the value of ¢ at the point z, € S(kl,ll)( f=a=
g)\ S, we can get
(I, —ky)a’ + max{k,, [ }a¢

1—a

U . (17)
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The above two equations yield (max{k, [} — max{k,\Do=U -k +1, —
k)a’' /a), which gives

(f/g)max{k,l)—ma"(kl’ll) = cal_k+ll_kla (18)

where c¢ is a nonzero constant. Since f is not any quasi-Mdbius transfor-
mation of g, and a is not constant, (18) implies max{k, [} — max{k,/,;} =0
and [ — k + 1, — k, = 0. Note that max{k,} > 1, minfk, [} = 1,
max{k,,/;} > 1, and min{k,,l;} =1. We get [, =k>1, k,=1=1 or
ki=1>11 =k=1.

Without loss of generality, we assume that /, = k > 1, k;, = = 1. Then
we have

Nu(r f=1=8) #S(r), Nyw(r.f=a=g)#S(r). (19)
Equations (16) and (17) become

(k—1)a' + kag

1—a

0 ®, (20)

where k > 1 is a integer. Moreover, we have ﬁ(kz,lz)(r,f =1=g)=50)
and ]\l(k3,13)(r,f =a=g)=8(r), where (k,,1,) # (k,1) and (ky,1;) #
(1, k) are pairs of positive integers.

Let z; € S, 1(f=1=¢g)\'S,. Then f'(z)) =0 and ¢(z,) = —g'(z)).
From (11) and by a simple computation, we get

e(z) = (1 - k)qo(zl)(qo(zl) + ”;((jf)) )

Note that N(k,l)(r,f =1 =g) # S(r). We obtain

’

¢1E(1—k)¢(¢+%)~ (21)
Let

-l - L5

R

and
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Then from (12) we have ¢, = h h,. Note that f and g share ° CM*. We
can see that the zeros and poles of A, which is not in S, are simple and
comes from the a-points and 1-points of f, respectively. Therefore, we
have

— 1 1 _ 1
N(r,f_l) sN(r,h—2 +S(r,f)£N(r,f_a +S(r, f),
and
_ 1 _ 1
N(r,f_a)sN(r,—1 +8(r,f) < (r,f_1 + S(r, f).
Hence
_ 1 _ 1
N(r’f—a) =N(r,f_1 + S(r, f). (22)

Let z, € S(f=0=g)\'S,. A simple computation shows that h3(z,) —
2a(zy) @(z)h((zy) + a*(zy)p,(z,) = 0.1f h? — 2aph, + a’p, = 0, then we
get T(r, h,) = S(r, ), and thus N(r,1/(f — 1)) = S(r, f). This contradicts
(9). Hence h} — 2aph, + a’p, # 0. Therefore,

N(r,%) <2T(r,h,) + S(r,f) szﬁ(r, +8(r.f)-

-1

From this, (22), and the second fundamental theorem, we get

+S(r,f). (23)

T(r,f) <41V(r,f_ 1

We define three auxiliary functions,
hi(g — 1) (1-K)(g—De
fi= _ _ ) fr= — ,
(A-k)(f-a)e ho(f — a)

It is easily seen that N(r, f,) + N(r,1/f,) = S(r) for i = 1,2, 3. By simple
computation, we get

hl(zl)(g(zl) - 1) =(1- k)(l - a(zl))QD(Zl)a
hy(z,)(f(z,) —a(z,)) = (1 = k)(a(z,) — D)e(z,),

f ":f-
8
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where z; € S, ((f=1=¢g)\S, and z, € S, ,(f=a =g)\ S,. Hence
we have f(z)) =f;(z;)) =1 and f,(z,) = fy(z,) = 1. Therefore, by (22)
and (23), we get

T(r,f) < 41\7(r, +8(r,f), i=1,2,3. (24)

fi—1

In terms of Lemma 7 in [7], there exist two pairs of integers (m,, n;) and
(m,, n,) such that f" = fi'* and f;*2 = f}"2. It follows that

((1 —k)zqoz)m]m2

b1

— E mlmzz miny—msny
= (ﬂ) (f3) - (25)

Since T(r, f3) # S(r), Eq. (25) implies mn, — m,n, = 0, and thus

c(1-k) > =g, (26)

where ¢ is constant and ¢ = 1. From this and (21), we get

!

(c(k—1)+1)¢+%=0. (27)

If f; has no zeros and poles, then the above equation leads to
a(f;)** =Y+l = ¢ ‘where c, is a constant. Therefore, a(z,) = c,. Note that
N(r,1/(f — 1)) # S(r). We get a = c,. This is impossible. Suppose that f,
has some zeros or poles. By considering the residues of ¢ = f}/f; and
a' /a, we see that c(k — 1) + 1 must be a rational number. Let c(k — 1) +
1 =p/q, where p and ¢ are integers. From the above equation, we get
a?(fy)? = c,, where ¢, is a constant. It follows that 7(r, f;) = S(r). This
contradicts (24) and completes the proof of the theorem.
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