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Abstract

This paper deals with two mixed nonlinear boundary value problems depending on a paramλ.
For each of them we prove the existence of at least three generalized solutions whenλ lies in an
exactly determined open interval. Usefulness of this information on the interval is then emph
by means of some consequences. Our main tool is a very recent three critical points theorem
in [Topol. Methods Nonlinear Anal. 22 (2003) 93–104].
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

There seems to be increasing interest in multiple solutions to boundary value problem
because of their applications in many fields.

Results on this topic are usually achieved by multiple fixed-point theorems (see the bo
by Agarwal et al. [1] and references therein), or by variational methods. In particul
the last years, a result of Ricceri (Theorem 1 of [8], see also Theorem 2.3 and Rem
of [6]) has been widely used.

Recently, the following three critical points theorem was established in [2].
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Theorem A (Theorem B of [2]).LetX be a reflexive real Banach space,Φ :X → R a con-
tinuously Gâteaux differentiable and sequentially weakly lower semicontinuous func
whose Gâteaux derivative admits a continuous inverse onX∗, Ψ :X → R a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume tha

(i) lim ‖x‖→+∞(Φ(x) + λΨ (x)) = +∞ for all λ ∈ [0,+∞[;
(ii) there isr ∈ R such that

inf
X

Φ < r

and

ϕ1(r) < ϕ2(r),

where

ϕ1(r) := inf
x∈Φ−1(]−∞,r[)

Ψ (x) − inf
Φ−1(]−∞,r[)w Ψ

r − Φ(x)
,

ϕ2(r) := inf
x∈Φ−1(]−∞,r[)

sup
y∈Φ−1([r,+∞[)

Ψ (x) − Ψ (y)

Φ(y) − Φ(x)
,

andΦ−1(]−∞, r[)w is the closure ofΦ−1(]−∞, r[) in the weak topology.

Then, for eachλ ∈ ] 1
ϕ2(r)

, 1
ϕ1(r)

[
the functionalΦ + λΨ has at least three critical point

in X.

However,ϕ1(r) in Theorem A could be 0. In this and similar cases, we agree to
1/0 as+∞.

The peculiarity of Theorem A, compared with Theorem 1 of [8] (see also Theorem
and Remark 2.2 of [6]), consists in the exact determination of the interval

] 1
ϕ2(r)

, 1
ϕ1(r)

[
,

which has several consequences.
Applications of Theorem A to multiplicityresults for Dirichlet and Neumann bounda

value problems have been given in [2–4].
The aim of this paper is to obtain further applications of Theorem A to the follow

two mixed problems:{−(|u′|p−2u′)′ = λf (t, u),

u(a) = u′(b) = 0,
(Pλ)

and {−(|u′|p−2u′)′ + |u|p−2u = λf (t, u),

u(a) = u′(b) = 0,
(P′

λ)

wheref : [a, b]× R → R is anL1-Carathéodory function,p > 1, andλ is a positive para
meter.

In Section 3, under suitable hypotheses,we prove that for each of the problems (Pλ) and
(P′

λ) there exist at least three solutions whenλ lies in an exactly determined open interv
(see Theorem 3.1 and Proposition 3.1).
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Next, in Section 4 we point out some consequences, which emphasize the useful
this precise estimate of the interval. Here,as a way of example, we present two of them

Theorem B (see Corollary 4.2).Let f :R → R be a positive andbounded continuou
function such that

8

1/2∫
0

f (ξ) dξ < 1<
1

3

1∫
0

f (ξ) dξ.

Then, the problem{−u′′ = f (u),

u(0) = u′(1) = 0,
(PA)

has at least three classical positive solutions.

Theorem C (see Corollary 4.9).Let f :R → R be a continuous function withf (0) = 0,
f (x) � 0 in a right-neighborhood of0, and such that, for someq ∈ ]0,p − 1[,
limx→+∞ f (x)

xq ∈ ]0,+∞[. Then, there exists a positive real numberλ̄ such that, for each
λ > λ̄, the problem{−(|u′|p−2u′)′ + |u|p−2u = λf (u),

u(a) = u′(b) = 0,
(PA′

λ)

has at least two nontrivial and nonnegative classical solutions.

Moreover, a comparison can be found in Remarks 4.1 and 4.3 which shows th
main result for the problem (Pλ) is essentially more general than the one for the prob
(P′

λ).
Other recent results on multiple solutionsto mixed boundary value problems can

found in [5,7,9].

2. Basic definitions

We recall that a functionf : [a, b] × R → R is saidL1-Carathéodory if

(a) t → f (t, x) is measurable for everyx ∈ R;
(b) x → f (t, x) is continuous for almost everyt ∈ [a, b];
(c) for everyρ > 0 there exists a functionlρ ∈ L1([a, b]) such that

sup
|x|�ρ

∣∣f (t, x)
∣∣ � lρ(t)

for almost everyt ∈ [a, b].

A function u : [a, b] → R is said a generalized solution to problem (Pλ) if u ∈
C1([a, b]), |u′|p−2u′ ∈ AC([a, b]),u(a) = u′(b) = 0, and−(|u′(t)|p−2u′(t))′ = λf (t, u(t))

for almost everyt ∈ [a, b].
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We say thatu is a weak solution to problem (Pλ) if u ∈ W1,p([a, b]), u(a) = 0 and

b∫
a

∣∣u′(t)
∣∣p−2

u′(t)v′(t) dt = λ

b∫
a

f
(
t, u(t)

)
v(t) dt

for everyv ∈ W1,p([a, b]), with v(a) = 0.
Analogously, a functionu : [a, b] → R is a generalized solution to problem (P′

λ)
if u ∈ C1([a, b]), |u′|p−2u′ ∈ AC([a, b]), u(a) = u′(b) = 0, and−(|u′(t)|p−2u′(t))′ +
|u(t)|p−2u(t) = λf (t, u(t)) for almost everyt ∈ [a, b], and it is a weak solution i
u ∈ W1,p([a, b]), u(a) = 0 and

b∫
a

∣∣u′(t)
∣∣p−2

u′(t)v′(t) dt +
b∫

a

∣∣u(t)
∣∣p−2

u(t)v(t) dt = λ

b∫
a

f
(
t, u(t)

)
v(t) dt

for everyv ∈ W1,p([a, b]), with v(a) = 0.
Standard methods show that generalized solutions to problem (Pλ) (respectively (P′λ))

coincides with weak ones whenf is anL1-Carathéodory function.
For other basic notations and definitions we refer to [10].

3. Main results

Theorem 3.1. Let f : [a, b] × R → R an L1-Carathéodory function, and putg(t, ξ) :=∫ ξ

0 f (t, x) dx for every(t, ξ) ∈ [a, b]× R. Assume that there exist three positive consta
c, d, s, with c < d ands < p, and a functionµ ∈ L1([a, b]) such that

(j)

∫ b

a
max|ξ |�c g(t, ξ) dt

cp

<
1

2p

[
(b − a)

(∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d g
(

b−a
2d

x + a, d
)
dx

)
dp+1

− 2
∫ b

a max|ξ |�c g(t, ξ) dt

dp

]
;

(jj) g(t, ξ) � µ(t)
(
1+ |ξ |s) for almost everyt ∈ [a, b] and for allξ ∈ R.

Then, setting

λ′ :=
1
p

( 2d
b−a

)p
1
d

[∫ d
0 g

( b−a
2d

x+a,x
)
dx+∫ 2d

d g
( b−a

2d
x+a,d

)
dx

]− 2
b−a

∫ b
a max|ξ |�c g(t,ξ) dt

and

λ′′ := cp

p(b − a)p−1
∫ b

a
max|ξ |�c g(t, ξ) dt

,

for eachλ ∈ ]λ′, λ′′[ the problem(Pλ) admits at least three generalized solutions.
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Proof. Let X be the reflexive Banach space{x ∈ W1,p([a, b]): x(a) = 0} with the norm
‖x‖ := (

∫ b

a
|x ′(t)|p dt)1/p which is equivalent to the usual one. For eachx ∈ X, put

Φ(x) := ‖x‖p/p andΨ (x) := − ∫ b

a g(t, x(t)) dt .
It is well known thatΨ is a Gâteaux differentiable functional whose Gâteaux deriva

at the pointx ∈ X is the functionalΨ ′(x) ∈ X∗, given by

Ψ ′(x)(v) = −
b∫

a

f
(
t, x(t)

)
v(t) dt

for everyv ∈ X, and thatΨ ′ :X → X∗ is a continuous and compact operator.
Moreover,Φ is a continuously Gâteaux differentiable and sequentially weakly lo

semicontinuous functional whose Gâteuax derivative at the pointx ∈ X is the functional
Φ ′(x) ∈ X∗, given by

Φ ′(x)(v) =
b∫

a

∣∣x ′(t)
∣∣p−2

x ′(t)v′(t) dt

for everyv ∈ X, and thatΦ ′ :X → X∗ admits a continuous inverse onX∗.
Since generalized solutions to problem (Pλ) coincides with weak ones, and these l

are exactly the critical points of the functionalΦ + λΨ , our end is to apply Theorem A t
Φ andΨ .

Hypothesis (i) of Theorem A follows in a simple way, by (jj) and∣∣x(t)
∣∣ � (b − a)(p−1)/p‖x‖

for all x ∈ X and for allt ∈ [a, b].
In order to prove (ii) of Theorem A, we claim that

ϕ1(r) �
∫ b

a
max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

r
(C1)

for eachr > 0, and

ϕ2(r) � p

∫ b

a g(t, y(t)) dt − ∫ b

a max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

‖y‖p
(C2)

for eachr > 0 and everyy ∈ X such that

1

p
‖y‖p � r (3.1)

and
b∫

a

g
(
t, y(t)

)
dt �

b∫
a

max
|ξ |�[pr(b−a)p−1]1/p

g(t, ξ) dt. (3.2)

In fact, for r > 0, and taking into account that the function identically 0 obviou
belongs toΦ−1(]−∞, r[), and thatΨ (0) = 0, we get

ϕ1(r) �
sup

Φ−1(]−∞,r[)w
∫ b

a
g(t, x(t)) dt

,

r
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ces
and, sinceΦ−1(]−∞, r[)w = Φ−1(]−∞, r]), we have

sup
Φ−1(]−∞,r[)w

∫ b

a g(t, x(t)) dt

r
= sup‖x‖p/p�r

∫ b

a g(t, x(t)) dt

r
;

thus, from|x(t)| � [pr(b − a)p−1]1/p, for everyx ∈ X such that‖x‖p/p � r and for each
t ∈ [a, b], we obtain

sup‖x‖p/p�r

∫ b

a
g(t, x(t)) dt

r
�

∫ b

a max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

r
.

So, (C1) is proved.
Moreover, for eachr > 0 and eachy ∈ X such that‖y‖p/p � r, we have

ϕ2(r) � p inf‖x‖p/p<r

∫ b

a g(t, y(t)) dt − ∫ b

a g(t, x(t)) dt

‖y‖p − ‖x‖p
,

thus, from|x(t)| � [pr(b − a)p−1]1/p, for everyx ∈ X such that‖x‖p/p < r and for each
t ∈ [a, b], we obtain

p inf‖x‖p/p<r

∫ b

a
g(t, y(t)) dt − ∫ b

a
g(t, x(t)) dt

‖y‖p − ‖x‖p

� p inf‖x‖p/p<r

∫ b

a g(t, y(t)) dt − ∫ b

a max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

‖y‖p − ‖x‖p
,

from which, being 0< ‖y‖p − ‖x‖p � ‖y‖p for everyx ∈ X such that‖x‖p/p < r, and
under further condition (3.2), we can write

p inf‖x‖p/p<r

∫ b

a g(t, y(t)) dt − ∫ b

a max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

‖y‖p − ‖x‖p

� p

∫ b

a g(t, y(t)) dt − ∫ b

a max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

‖y‖p
.

So, (C2) is also proved.
Now, in order to prove (ii) of Theorem A, taking into account (C1) and (C2), it suffi

to find r > 0 andy ∈ X, which verifies (3.1), and∫ b

a max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

r

< p

∫ b

a
g(t, y(t)) dt − ∫ b

a
max|ξ |�[pr(b−a)p−1]1/p g(t, ξ) dt

‖y‖p
. (3.3)

Notice that (3.2) is consequence of (3.3).
To this end, we define

y(t) :=
{

2d
b−a

(t − a) if t ∈ [
a, a+b

2

]
,

d if t ∈ [
a+b

2 , b
]
,

(3.4)

andr := cp

p−1 .

p(b−a)
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gen-
Clearly,y ∈ X and‖y‖p = dp2p−1

(b−a)p−1 . Hence, sincec < d , we have‖y‖p/p > r.
From (j), taking into account the values ofr and‖y‖p and that

b∫
a

g
(
t, y(t)

)
dt = b − a

2d

[ d∫
0

g

(
b − a

2d
x + a, x

)
dx +

2d∫
d

g

(
b − a

2d
x + a, d

)
dx

]
,

the inequality (3.3) follows easily.
Thus, the conclusion follows by Theorem A, by observing that

1

ϕ2(r)
�

1
p

( 2d
b−a

)p
1
d

[∫ d
0 g

( b−a
2d

x+a,x
)
dx+∫ 2d

d g
( b−a

2d
x+a,d

)
dx

]− 2
b−a

∫ b
a max|ξ |�c g(t,ξ) dt

and

1

ϕ1(r)
� cp

p(b − a)p−1
∫ b

a
max|ξ |�c g(t, ξ) dt

. �

Remark 3.1. In Theorem 3.1, hypothesis (j) is related to the functiony defined in (3.4).
Different functionsy would lead to several conditions, which are similar to (j); howe
hypothesis (j) seems to be the simplest expression for these types of conditions.

Remark 3.2. In Theorem 3.1 instead of hypothesis (j) we can use the following less
eral, but a bit simpler:

(j′)
∫ b

a
max|ξ |�c g(t, ξ) dt

cp

<
b − a

2p + 2

∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

dp+1 .

In fact, taking into account that 0< c < d , from (j′) we get

b − a

2p + 2

∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d g
(

b−a
2d

x + a, d
)
dx

dp+1

<
1

2p

[
(b − a)

(∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

)
dp+1

− 2
∫ b

a
max|ξ |�c g(t, ξ) dt

dp

]
,

thus, using again (j′), hypothesis (j) of Theorem 3.1 follows.
Moreover, whenf (and, consequently,g) does not depend ont , hypothesis (j′) becomes

the following very simple condition:

(j′′)
max|ξ |�c g(ξ)

cp
<

1

2p + 2

1
d

∫ d

0 g(x) dx + g(d)

dp
.
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Remark 3.3. If we assumef (t,0) = 0 for eacht ∈ [a, b], then putting

f ∗(t, x) :=
{

0 if t ∈ [a, b] andx � 0,

f (t, x) if t ∈ [a, b] andx > 0,

and considering the problem{−(|u′|p−2u′)′ = λf ∗(t, u),

u(a) = u′(b) = 0,
(P∗

λ)

we have that the generalized solutions to problem (P∗
λ) are nonnegative and, consequen

they are also solutions to problem (Pλ).
In fact, arguing by a contradiction, if we assume that a solutionu to (P∗

λ) is negative
at a point of[a, b], then there exists an interval]a′, b′[ ⊂ [a, b] such thatu|]a′,b′[ is neg-
ative, hence−(|u′(t)|p−2u′(t))′ = 0 for everyt ∈ ]a′, b′[, and, further,u(a′) = u(b′) = 0
or u(a′) = u′(b′) = 0 if b′ < b or b′ = b, respectively. Thusu(t) = 0 for everyt ∈ ]a′, b′[,
which is a contradiction.

Concerning the problem (P′λ), the following proposition can be proved in a very simi
way to that used to prove Theorem 3.1, using the usual norm

‖x‖ :=
( b∫

a

∣∣x(t)
∣∣p dt +

b∫
a

∣∣x ′(t)
∣∣p dt

)1/p

in X instead of that used in the proof of Theorem 3.1 (see also Remark 4.1 after C
lary 4.1).

Proposition 3.1. Letf : [a, b] × R → R anL1-Carathéodory function, and putg(t, ξ) :=∫ ξ

0 f (t, x) dx for every(t, ξ) ∈ [a, b]× R. Assume that there exist three positive consta
c, d, s, with c < d ands < p, and a functionµ ∈ L1([a, b]) such that

(k)

∫ b

a max|ξ |�c g(t, ξ) dt

cp

<
p + 1

(b − a)p + (p + 1)(b − a)p + 2p(p + 1)

×
[
(b − a)

(∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

)
dp+1

− 2
∫ b

a
max|ξ |�c g(t, ξ) dt

dp

]
;

(jj) g(t, ξ) � µ(t)
(
1+ |ξ |s) for almost everyt ∈ [a, b] and for allξ ∈ R.

Then, setting

λ′ :=
(b−a)p+(p+1)(b−a)p+2p(p+1)

p(p+1)(b−a)p
dp

1 [∫ d
g
( b−a x+a,x

)
dx+∫ 2d

g
( b−a x+a,d

)
dx

]− 2 ∫ b max g(t,ξ) dt
d 0 2d d 2d b−a a |ξ |�c
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less

In this
and

λ′′ := cp

p(b − a)p−1
∫ b

a
max|ξ |�c g(t, ξ) dt

,

for eachλ ∈ ]λ′, λ′′[ the problem(P′
λ) admits at least three generalized solutions.

Remark 3.4. In Proposition 3.1 instead of hypothesis (k) we can use the following
general, but a bit simpler:

(k′)
∫ b

a
max|ξ |�c g(t, ξ) dt

cp

<
(p + 1)(b − a)

(p + 2)(b − a)p + 2(p + 1)(2p−1 + 1)

×
∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

dp+1 .

In fact, taking into account that 0< c < d , from (k′) we get

(p + 1)(b − a)

(p + 2)(b − a)p + 2(p + 1)(2p−1 + 1)

×
∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d g
(

b−a
2d

x + a, d
)
dx

dp+1

<
p + 1

(b − a)p + (p + 1)(b − a)p + 2p(p + 1)

×
[

(b − a)
(∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

)
dp+1

−2
∫ b

a
max|ξ |�c g(t, ξ) dt

dp

]
,

thus, using again (k′), hypothesis (k) of Proposition 3.1 follows.
Moreover, whenf (and, consequently,g) does not depend ont , hypotheses (k′) be-

comes the following very simple condition:

(k′′)
max|ξ |�c g(ξ)

cp

<
p + 1

(p + 2)(b − a)p + 2(p + 1)(2p−1 + 1)

1
d

∫ d

0 g(x) dx + g(d)

dp
,

which allows a direct comparison betweenour Proposition 3.1 and Theorem 2.1 of [9].

4. Consequences

Theorem 3.1 gives an estimate of the interval of the parameterλ for which the prob-
lem (Pλ) has at least three solutions. This information has several consequences.
section we point out some of them.
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First of all, we state the following straightforward corollary of Theorem 3.1.

Corollary 4.1. Letλ > 0 be given, and letf andg be as in Theorem3.1. Assume that ther
exist three positive constantsc, d, s, with c < d ands < p, and a functionµ ∈ L1([a, b])
such that

(j∗)
∫ b

a
max|ξ |�c g(t, ξ) dt

cp
<

1

λp(b − a)p−1

<
1

2p

[
(b − a)

(∫ d

0 g
(

b−a
2d

x + a, x
)

dx + ∫ 2d

d g
(

b−a
2d

x + a, d
)

dx
)

dp+1

− 2
∫ b

a
max|ξ |�c g(t, ξ) dt

dp

]
;

(jj) g(t, ξ) � µ(t)
(
1+ |ξ |s) for almost everyt ∈ [a, b] and for allξ ∈ R.

Then, the problem(Pλ) admits at least three generalized solutions.

Remark 4.1. Proposition 3.1 can be viewed also as a consequence of Corollary 4
fact, under the hypotheses and givenλ′ andλ′′ as in Proposition 3.1, simple calculatio
show that Corollary 4.1 can be used for each fixedλ ∈ ]λ′, λ′′[ to obtain three generalize
solutions of the problem{

−(|u′|p−2u′)′ = λ
(
f (t, u) − |u|p−2u

λ

)
,

u(a) = u′(b) = 0,
(PEλ)

which, obviously for the fixedλ, is equivalent to problem (P′λ).

Next, accordingly with Remark 3.2, Theorem 3.1 leads to very easy propositions
autonomous problems, like the following

Corollary 4.2 (see Theorem B in the Introduction).Let f :R → R be a nonnegative an
bounded continuous function such that

8

1/2∫
0

f (ξ) dξ < 1<
1

3

1∫
0

f (ξ) dξ.

Then, the problem{−u′′ = f (u),

u(0) = u′(1) = 0,
(PA)

has at least three classical solutions.

Remark 4.2. Theorem B is an immediate consequence of Corollary 4.2.

Corollary 4.3. Letf :R → R be a continuous function withf (0) = 0 f (x) � 0 in a right-
neighborhood of0, and such that, for someq ∈ ]0,p−1[, limx→+∞ f (x)

q ∈ ]0,+∞[. Then,

x
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imple
non-
there exists a positive real numberλ̄ such that, for eachλ > λ̄, the problem{−(|u′|p−2u′)′ = λf (u),

u(a) = u′(b) = 0,
(PAλ)

has at least two nontrivial and nonnegative classical solutions.

Proof. In virtue of Remark 3.3, we putf (x) = 0 for x < 0. Clearly, there existsc > 0
such that max|ξ |�c g(ξ) = 0. Moreover, since limx→+∞ f (x)

xq ∈ ]0,+∞[, there existsd > c

such that
∫ d

0 g(ξ) dξ > 0 andg(d) > 0. Finally, there existsµ > 0 such thatg(ξ) � µ(1+
|ξ |1+q) for all ξ ∈ R. Therefore, we can use Theorem 3.1 to reach the conclusion.

However, we obtain only two nontrivial and nonnegative solutions becausef (0) = 0;
obviously they are classical solutions in virtue of the continuity off . �
Corollary 4.4. Let f :R → R be a continuous function withf (0) = 0, f (x) � 0 in a
left-neighborhood of0, and such that, for someq ∈ ]0,p − 1[, limx→−∞ f (x)

|x|q ∈ ]−∞,0[.
Then, there exists a positive real numberλ̄ such that, for eachλ > λ̄, the problem(PAλ)
has at least two nontrivial and nonpositive classical solutions.

Proof. It is enough to apply Corollary 4.3 to the functionf ∗(x) := −f (−x). �
Next we prove another application of Theorem 3.1, which shows that (under s

conditions) for sufficiently large intervals the mixed problem has two nontrivial and
negative generalized solutions.

Corollary 4.5. Let α ∈ L1([0,+∞[) be a function such thatinf α > 0 and letβ : R → R

be a nonnegative continuous function. Let us suppose that

β(d) > 0

for somed > 0,

lim
x→0+

β(x)

xp−1 = 0,

and

lim
x→+∞

β(x)

xq
∈ R

for someq ∈ ]0,p − 1[. Then, for everyλ > 0 and every

b > b̄ := 2d

(λp inf α
∫ d

0 β(x) dx)1/p
,

the problem{−(|u′|p−2u′)′ = λα(t)β(u),

u(0) = u′(b) = 0,
(PSλ)

admits at least two nontrivial and nonnegative generalized solutions.
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in the

ble
ns for

sup-

s.
Proof. In virtue of Remark 3.3, we putβ(x) = 0 for x < 0. Fix λ > 0 andb > b̄. Since

lim
x→0+

β(x)

xp−1
= 0,

we have

lim
x→0+

∫ x

0 β(ξ) dξ

xp
= 0,

thus, taking into account the hypotheses on the sign ofα andβ and thatβ(d) > 0, we can
choosec > 0 such thatc < d ,∫ c

0 β(ξ) dξ

cp

< min

{
b

2p + 2

∫ d

0 g
(

b
2d

x, x
)
dx + ∫ 2d

d
g
(

b
2d

x, d
)
dx

dp+1
∫ b

0 α(t) dt
,

1

λpbp−1
∫ b

0 α(t) dt

}

and

1
p

( 2d
b−a

)p
1
d

[∫ d

0 g
(

b
2d

x, x
)
dx + ∫ 2d

d
g
(

b
2d

x, d
)
dx

] − 2
b

∫ b

0 α(t) dt
∫ c

0 β(ξ) dξ
< λ.

Moreover, the existence of a functionµ ∈ L1([0, b]) such thatg(t, ξ) � µ(1+ |ξ |q+1),
for everyt ∈ [0, b] and for allξ ∈ R, follows easily from limx→+∞ β(x)

xq ∈ R.
Hence, taking into account the Remarks 3.2 and 3.3 and applying Theorem 3.1

interval[0, b], the conclusion follows sinceλ′ < λ < λ′′.
However, we obtain only two nontrivial and nonnegative solutions becauseβ(0) = 0.�
Finally, we give the following other application, in which the dependence on the varia

t is investigated in order to obtain two nontrivial and nonnegative generalized solutio
mixed problems.

Corollary 4.6. Let β :R → R be a nonnegative bounded continuous function. Let us
pose that

β(x̄) > 0

for somex̄ > 0, and

lim
x→0+

β(x)

xp−1 = 0.

Then, for everyλ > 0 and every nonnegativeα ∈ L1([a, b]), with

‖α|[a+(b−a)/4,b]‖1 >
22p+1x̄p+1

λp(b − a)p
∫ x̄

0 β(ξ) dξ
,

the problem(PSλ) admits at least two nontrivial and nonnegative generalized solution
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.1, the
Proof. In virtue of Remark 3.3, we putβ(x) = 0 for x < 0. Fix λ > 0 and putd := 2x̄.
Clearly

∫ d

0 β(ξ) dξ >
∫ d/2

0 β(ξ) dξ > 0. Letα ∈ L1([a, b]), with

‖α|[a+(b−a)/4,b]‖1 >
2pdp+1

λp(b − a)p
∫ d/2

0 β(ξ) dξ
.

Clearly‖α‖1 � ‖α|[a+(b−a)/4,b]‖1. Moreover, a simple calculation shows that

d∫
0

g

(
b − a

2d
x + a, x

)
dx +

2d∫
d

g

(
b − a

2d
x + a, d

)
dx

� ‖α|[a+(b−a)/4,b]‖1

d/2∫
0

β(ξ) dξ.

Now, since

lim
x→0+

β(x)

xp−1
= 0,

we get

lim
x→0+

max|ξ |�x

∫ x

0 β(ξ) dξ

xp
= 0.

From this, and taking into account that

lim
c→0+

1
p

( 2d
b−a

)p
1
d

[∫ d
0 g

( b−a
2d

x+a,x
)
dx+∫ 2d

d g
( b−a

2d
x+a,d

)
dx

]− 2
b−a

∫ b
a max|ξ |�c g(t,ξ) dt

=
1
p

( 2d
b−a

)p
1
d

[∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

]
� 2pdp+1

‖α|[a+(b−a)/4,b]‖1p(b − a)p
∫ d/2

0 β(ξ) dξ
< λ,

there existsc > 0, with c < d , verifying (j′) of Remark 3.2,

λ′ :=
1
p

( 2d
b−a

)p
1
d

[∫ d
0 g

( b−a
2d

x+a,x
)
dx+∫ 2d

d g
( b−a

2d
x+a,d

)
dx

]− 2
b−a

∫ b
a max|ξ |�c g(t,ξ) dt

< λ

and

λ′′ := cp

p(b − a)p−1
∫ b

a max|ξ |�c g(t, ξ) dt
> λ.

Moreover, (jj) of Theorem 3.1 follows easily from the boundedness ofβ .
Hence, taking into account the Remarks 3.2 and 3.3 and applying Theorem 3

conclusion follows.
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s con-
to

rol-

that

-
e

However, we obtain only two nontrivial and nonnegative solutions becauseβ(0) = 0.�
Although Proposition 3.1 can be deduced from Corollary 4.1 (see Remark 4.1), it

sequences (corresponding to Corollaries 4.1–4.6)are more transparent if related directly
Proposition 3.1 rather than to Theorem 3.1. We state them without proof.

Corollary 4.7. Let λ > 0 be given, and letf and g be as in Proposition3.1. Assume
that there exist three positive constantsc, d, s, with c < d ands < p, and a functionµ ∈
L1([a, b]) such that

(k∗)
∫ b

a
max|ξ |�c g(t, ξ) dt

cp
<

1

λp(b − a)p−1

<
p + 1

(b − a)p + (p + 1)(b − a)p + 2p(p + 1)

×
[
(b − a)

(∫ d

0 g
(

b−a
2d

x + a, x
)
dx + ∫ 2d

d
g
(

b−a
2d

x + a, d
)
dx

)
dp+1

− 2
∫ b

a
max|ξ |�c g(t, ξ) dt

dp

]
;

(jj) g(t, ξ) � µ(t)
(
1+ |ξ |s) for almost everyt ∈ [a, b] and for allξ ∈ R.

Then, the problem(P′
λ) admits at least three generalized solutions.

Remark 4.3. Unlike Remark 4.1, Corollary 4.1 cannot be proved making use of Co
lary 4.7 on the problem{

−(|u′|p−2u′)′ + |u|p−2u = λ
(
f (t, u) + |u|p−2u

λ

)
,

u(a) = u′(b) = 0.
(PE′

λ)

In fact, forf � 0, b − a � 1, andλ > 0, the first inequality in hypothesis (k∗) of Corol-
lary 4.7 can never be satisfied.

Corollary 4.8. Letf :R → R be a nonnegative and bounded continuous function such

8

1/2∫
0

f (ξ) dξ < 1<
3

11

1∫
0

f (ξ) dξ.

Then, the problem{−u′′ + u = f (u),

u(0) = u′(1) = 0,
(PA′)

has at least three classical solutions.

Corollary 4.9 (see Theorem C in the Introduction).Let f :R → R be a continuous func
tion with f (0) = 0, f (x) � 0 in a right-neighborhood of0, and such that, for som
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sup-
q ∈ ]0,p − 1[, limx→+∞ f (x)
xq ∈ ]0,+∞[. Then, there exists a positive real numberλ̄ such

that, for eachλ > λ̄, the problem{−(|u′|p−2u′)′ + |u|p−2u = λf (u),

u(a) = u′(b) = 0,
(PA′

λ)

has at least two nontrivial and nonnegative classical solutions.

Corollary 4.10. Let f :R → R be a continuous function withf (0) = 0, f (x) � 0 in a
left-neighborhood of0, and such that, for someq ∈ ]0,p − 1[, limx→−∞ f (x)

|x|q ∈ ]−∞,0[.
Then, there exists a positive real numberλ̄ such that, for eachλ > λ̄, the problem(PA′

λ)
has at least two nontrivial and nonpositive classical solutions.

Corollary 4.11. Let α ∈ L1([0,+∞[) be a function such thatinf α > 0 and letβ :R → R

be a nonnegative continuous function. Let us suppose that

β(d) > 0

for somed > 0,

lim
x→0+

β(x)

xp−1
= 0,

and

lim
x→+∞

β(x)

xq
∈ R

for someq ∈ ]0,p − 1[. Then, for every

λ > λ̄ := (p + 2)dp

p(p + 1) inf α
∫ d

0 β(ξ) dξ

and every

b > b̄ := 2d

((λ − λ̄)p inf α
∫ d

0 β(x) dx)1/p
,

the problem{−(|u′|p−2u′)′ + |u|p−2u = λα(t)β(u),

u(0) = u′(b) = 0,
(PS′

λ)

admits at least two nontrivial and nonnegative generalized solutions.

Corollary 4.12. Letβ :R → R be a nonnegative bounded continuous function. Let us
pose that

β(x̄) > 0

for somex̄ > 0, and

lim+
β(x)

p−1
= 0.
x→0 x
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s.

a-

e

al

l.

83.
Then, for everyλ > 0 and every nonnegativeα ∈ L1([a, b]), with

‖α|[a+(b−a)/4,b]‖1 >
[(b − a)p + (p + 1)(b − a)p + 2p(p + 1)](2x̄)p+1

λp(p + 1)(b − a)p
∫ x̄

0 β(ξ) dξ
,

the problem(PS′
λ) admits at least two nontrivial and nonnegative generalized solution
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