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Abstract

This paper deals with two mixed nonlinear boundary value problems depending on a pavameter
For each of them we prove the existence of at least three generalized solutions. liein an
exactly determined open interval. Usefulness of this information on the interval is then emphasized
by means of some consequences. Our main tool is a very recent three critical points theorem stated
in [Topol. Methods Nonlinear Anal. 22 (2003) 93-104].
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

There seems to be increasing interest uitiple solutions to boundary value problems,
because of their applications in many fields.

Results on this topic are usually achieved hyltiple fixed-point theorems (see the book
by Agarwal et al. [1] and references therein), or by variational methods. In particular, in
the last years, a result of Ricceri (Theorem 1 of [8], see also Theorem 2.3 and Remark 2.2
of [6]) has been widely used.

Recently, the following three critical points theorem was established in [2].
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Theorem A (Theorem B of [2])Let X be a reflexive real Banach spaee; X — R a con-
tinuously Gateaux differentiable and sequentially weakly lower semicontinuous functional
whose Gateaux derivative admits a continuous invers&tn? : X — R a continuously
Gateaux differentiable functional whose Gateaux derivative is compact. Assume that

@) lim llxl— 400 (P (x) + AW (x)) = +00 forall » € [0, +oo[;
(ii) thereisr € R such that

info <r
X
and
@1(r) < @2(r),
where
lI/(x) - inf%w (I/
p1(r) == inf @-1(]—00,r]) ,
xed~1(]—o0,r) r—o(x)
Ux)—w
@2(r) := inf sup ) —¥(»

xed=1(-00rD) yed-1((r ooy PV — P()’
and®—1(]—oo, r))¥ is the closure ofp ~1(]—oo, r[) in the weak topology.

Then, for each. € | =, -4 the functionald + 3 has at least three critical points

. 02(r)’ @
in X.

However,p1(r) in Theorem A could be 0. In this and similar cases, we agree to read
1/0 as+oo.

The peculiarity of Theorem A, compared with Theorem 1 of [8] (see also Theorem 2.3
and Remark 2.2 of [6]), consists in the exact determination of the int@%, ﬁ[
which has several consequences.

Applications of Theorem A to multiplicityesults for Dirichlet and Neumann boundary
value problems have been given in [2—-4].

The aim of this paper is to obtain further applications of Theorem A to the following
two mixed problems:

—(W'1P72uY = Af(t,u),
{ w(a)=u'(b) =0, (P2)
and
—(|u'1P=2u) + |u|P~2u = Af (t, u),
{ u(a) =u'(b) =0, (7)

wheref :[a, b] x R — R is anL!-Carathéodory functiorp > 1, anda is a positive para-
meter.

In Section 3, under suitable hypothesgs,prove that for each of the problemg jRnd
(P,) there exist at least three solutions whelies in an exactly determined open interval
(see Theorem 3.1 and Proposition 3.1).
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Next, in Section 4 we point out some consequences, which emphasize the usefulness of
this precise estimate of the interval. Hess,a way of example, we present two of them.

Theorem B (see Corollary 4.2)Let f:R — R be a positive andounded continuous
function such that

1/2 1

1
S/f(é‘)d$<1< :—S/f(é)déf
0 0

Then, the problem
—u" = f(u),
{ u0)=u'(1) =0, (PA)
has at least three classical positive solutions.

Theorem C (see Corollary 4.9)Let f:R — R be a continuous function witlf (0) = 0,
f(x) < 0 in a right-neighborhood of0, and such that, for somg < 10, p — 1,
lim 100 L& € 10, +-00[. Then, there exists a positive real numiesuch that, for each

A > A, the problem
= (1772 + |ulP2u = 0 f (u), (PA))
./ _ A
u(a) =u'(b) =0,
has at least two nontrivial and nonnegative classical solutions.

Moreover, a comparison can be found in Remarks 4.1 and 4.3 which shows that the
main result for the problem ¢ is essentially more general than the one for the problem
(P)).

Other recent results on multiple solutiotts mixed boundary value problems can be
foundin [5,7,9].

2. Basic definitions
We recall that a functiorf : [, b] x R — R is saidL!-Carathéodory if

(@) t — f(t,x) is measurable for every € R;
(b) x — f(z, x) is continuous for almost everye [a, b];
(c) for everyp > 0 there exists a functiofp € L([a, b]) such that

sup|f(t,x)| <1,
lx|<p

for almost every € [a, b].

A function u:[a,b] — R is said a generalized solution to problem,YHf u €
CY(la, b)), lu'|P~2u" € AC([a, b]),u(a) = u'(b) = 0, and—(ju’ () |P~2u' (1)) = Af (¢, u(t))
for almost every < [a, b].
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We say that: is a weak solution to problem (Pif u € W17 ([a, b]), u(a) = 0 and
b

b
f|u/(t)|”‘2u/(t)v/(t)dt=)\ff(t,u(t))v(t)dt
a a
for everyv € WLP([a, b]), with v(a) = 0.

Analogously, a functionu:[a,b] — R is a generalized solution to problem/{P
if ue Cl(la, b)), |u'|P~2u’ € AC([a,b]), u(a) = u'(b) =0, and —(|u’(1)|"~2u' (1)) +
lu(®)|?~2u(t) = Af(t,u(r)) for almost everyr € [a,b], and it is a weak solution if
ue WLP([a, b)), u(a) =0 and

b b b
/|u’(t)|p_2u/(t)v’(t)dt+/|u(t)|p_2u(t)v(t)dt=k/f(t,u(t))v(t)dt

for everyv € WLP([a, b]), with v(a) = 0.

Standard methods show that generalized solutions to problgjr(r@pectively (R))
coincides with weak ones whefiis an L1-Carathéodory function.

For other basic notations and definitions we refer to [10].

3. Main results

Theorem 3.1. Let f:[a, b] x R — R an L1-Carathéodory function, and put(z, &) :=
fcf f(t,x)dx for every(t, &) € [a, b] x R. Assume that there exist three positive constants
¢, d, s, withc < d ands < p, and a functionu € L([a, b]) such that

P maxg <. g(t, &) di

@

cP
: (b_a)(/gg(%x+a’x)dx+fd2dg(bﬁax+a,d)dx)
i dr+1
2, maxgce g, §)dt .
v ,

() g@,8& < /,L(t)(l-l— |$|S) for almost every € [a, b] and for all& € R.
Then, setting
(2%)"

a
4 xtad)dx]-52 [P maxe <. g(1.6) dt

Sl

A=

>
|

315 (bt xtax) dx+ [ g

N

and
Cp

)L// —
. b bl
p(b—a)P=1 [ maxg <. g(t, ) dt

for eachi € 11/, A”'[ the problem(P,) admits at least three generalized solutions.
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Proof. Let X be the reflexive Banach spagee WL7([a, b]): x(a) = 0} with the norm
x| == (fab Ix'()|? dt)¥P which is equivalent to the usual one. For eack X, put
®(x) = ||x[|”/p and¥ (x) := — [ g(1, x(1)) dt.

Itis well known that? is a Gateaux differentiable functional whose Gateaux derivative
at the pointx € X is the functional?’(x) € X*, given by

b
gl/’(x)(v)=—/f(t,x(t))u(t)dt

for everyv € X, and thaW’: X — X* is a continuous and compact operator.

Moreover,® is a continuously Gateaux differentiable and sequentially weakly lower
semicontinuous functional whose Gateuax derivative at the poink is the functional
®’(x) € X*, given by

b
@' (x)(v) =f\x’(r)|”‘2x’(t)u’(t) dt

for everyv € X, and that®’: X — X* admits a continuous inverse off.

Since generalized solutions to problem Roincides with weak ones, and these last
are exactly the critical points of the functioral+ AW, our end is to apply Theorem A to
@ andy.

Hypothesis (i) of Theorem A follows in a simple way, by (jj) and

()| < b —a)P~V/P|x|

forall x € X and for allr € [a, b].
In order to prove (ii) of Theorem A, we claim that

b
Jd M\ 1pr -ty 81 6) dI

p1(r) < r (C1)
for eachr > 0, and
L 8y @) di = [ M i 86 6) d -
@2(r) = p NG (C2)
for eachr > 0 and every € X such that
1
;Ilyll” zr (3.1)
and
b b
g(t,y()dr > max g(t,&)dt. (3.2)
€< [pr(b—a)P=11/p

In fact, for» > 0, and taking into account that the function identically O obviously
belongs to® ~1(]—o0, r[), and that¥ (0) = 0, we get
SUP; 15—y Ju 8. x(D) d1

r

p1(r) <
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and, sincep—1(]—oo, r)¥ = ® 1(]—o0, r]), we have

b
SUR; =T =0 [ gt x (1) dt SURr/p<r fabg(t,x(t))dt_

9

r r

thus, fromx ()| < [pr(b —a)?~11¥/P, for everyx € X such thai|x||” /p < r and for each
t €[a, b], we obtain

SURL 1 pr Sy 804 X(1) < Ju M@ <10yt (1. E) dt
r = r ’
So, (C1) is proved.
Moreover, for eachr > 0 and eacly € X such that|y||”/p > r, we have

o [Pea y@ydr— [P gt x (@) dr
> inf 4 4
ez V17 — x )17

3

thus, fromx ()| < [pr(b —a)?~11¥/P, for everyx € X such that|x||” /p < r and for each
t € [a, b], we obtain

1P g, y@ydi — [° g(t,x(1) dt
lxliP/p<r Iyl —llx|?

b b
>p inf [, g, y@)dt— [, MaXe | <[ prb—ayp-11/p (1, §) dt
=/ p<r Iy17 = flxll?

9

from which, being O< ||y||? — |lx||” < ||ly||? for everyx € X such that|x|”/p < r, and
under further condition (3.2), we can write

b b
[, g, y@®)dr — [, MaXe <[ prp—ayp-1v/r 8, §) dt

p i
Ixli?/p<r 7 = llxil?
b b
- Jo 8@, y®)dt — [ MaXe| < pr(p—ayp-rip 8(t. ) dt
> :
lyll?

So, (C2) is also proved.
Now, in order to prove (ii) of Theorem A, taking into account (C1) and (C2), it suffices
to findr > 0 andy € X, which verifies (3.1), and

b
Ja MBXe|<[pr(p-ayr-jr 81 ) d1
r

b b
- pfa g(t, y(1))dt — fa MaXg | <[ pr(b—a)p-11v/r (1, §) dt

(3.3)
yll?
Notice that (3.2) is consequence of (3.3).
To this end, we define
2d B a+b
2 (t—a) iftela, L2,
y(t) = bfa( ) . [ 2 ] (34)
d if 1 € [432, b],
andr := —<~

_cr
pb—a)p=1*



D. Averna, R. Salvati / J. Math. Anal. Appl. 298 (2004) 245-260 251

Clearly,y € X and| y||” = (;’fg;fl Hence, since < d, we havel|y||”/p > r.

From (j), taking into account the valuesoand| y||” and that

b d 2d

b—a b—a b—a
/g(t,y(t))dt: ¥ [/g( > x—i—a,x)dx—i—/g( > x+a,d)dxi|,
a 0 d

the inequality (3.3) follows easily.
Thus, the conclusion follows by Theorem A, by observing that
! . 7 (2%)"
@2(r) LS et atax)dat [ g (Bt xta.d)dx]— 52, [P maxg <. g(1.6) dr

and
1 cP

2 .
011 " p(b—a)r=t [ maxg <. g(1, §) dt

Remark 3.1. In Theorem 3.1, hypothesis (j) is related to the functjiodefined in (3.4).
Different functionsy would lead to several conditions, which are similar to (j); however,
hypothesis (j) seems to be the simplegtression for these types of conditions.

Remark 3.2. In Theorem 3.1 instead of hypothesis (j) we can use the following less gen-
eral, but a bit simpler:

i P maxg <. g(t, &) dt

cP
b—a fgg(%x+a,x)dx+fd2dg(%x+a,d)dx
2P 42 ar+1 .

In fact, taking into account that ¢ < d, from (j’) we get

b—a féig(bﬁax+a,X)dx+fdmg(%x+a,d)dx

2r+2 dp+l
170 -a)(f¢ g(b5tx +a.x)dx + [ g(50x +a.d) dx)
S dr+1
_ 2 [, maxe <. g(1, §) dr
dr ’

thus, using again(j, hypothesis (j) of Theorem 3.1 follows.
Moreover, wherny (and, consequently) does not depend anhypothesis () becomes
the following very simple condition:

maxg < g () _ 1 L 19 g(x)dx + g(d)
cP 2r 42 dr ’

"
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Remark 3.3. If we assumef (¢, 0) = O for eachr € [a, b], then putting

(%) = 0 if £ € [a, b] andx <0,
M= fa,x) ift €la, blandx > 0,

and considering the problem

— (WP = A, w),
{ u(a) =u'(b) =0, )

we have that the generalized solutions to problefn @e nonnegative and, consequently,
they are also solutions to problem, jP

In fact, arguing by a contradiction, if we assume that a solutida (P;) is negative
at a point offa, b], then there exists an intervil’, b'[ C [a, b] such thatu, ;| is neg-
ative, hence—-(|u/(1)|?~2u’(t)) = O for everyr € 1a’, b'[, and, furtheru(a’) = u(b') =0
oru(a’)=u'(b')=01if b’ < b orb’ = b, respectively. Thus(r) = 0 for everyr € la’, b'[,
which is a contradiction.

Concerning the problem ([, the following proposition can be proved in a very similar
way to that used to prove Theorem 3.1, using the usual norm

b b 1/p
llx|| := (/\x(t)\”dt+/|x’(t)\”dt>

in X instead of that used in the proof of Theorem 3.1 (see also Remark 4.1 after Corol-
lary 4.1).

Proposition 3.1. Let £ : [a, b] x R — R an L!-Carathéodory function, and pgt(z, &) :=
[g f(t,x)dx for every(t, &) € [a, b] x R. Assume that there exist three positive constants
¢, d, s, withc < d ands < p, and a functionu € L([a, b]) such that

S maXgj<. g(t, ) dt
cP

(k)
(b—a) +(p+ Db —ar +2(p+1)

5 [(b—a)(fgg(bﬁx—i-a,x)dx—i—dedg(bﬁx—i—a,d)dx)
ar+i

Zfab maXg|<c 87, §)dt
_ 1% ’
() g@.& <pu@®(L+£°) foralmostevery € [a, b] and for all€ € R.

Then, setting

(b—a)P +(p+1)(b—a)P+2P (p+1) ar
2= P(p+DH—a)P

L e (Bt xtax) dxt[7 g (bt x+a.d) dx]— 52 [ maxe <c g(t.6) d
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and

A cl

= b 3
p(b—a)P~1 [ maxe < g(1,§)dt
for eachi € 1)/, A”'[ the problem(P; ) admits at least three generalized solutions.

Remark 3.4. In Proposition 3.1 instead of hypothesis (k) we can use the following less
general, but a bit simpler:

fab maxg <. g, &) dt

(K) >
- (p+1H(—a)
(p+2)(b—a)’ +2(p+ (2,14 1)
5 fgg(bz;d“x +a,x)dx —i—dedg(b%x +a,d)dx
dp+l :
In fact, taking into account that@ ¢ < d, from (k') we get

(p+D®—a)
(p+2(b—a)P +2(p+1)(2r-1+1)
5 fgg(bz;d“x+a,x)dx+fd2dg(b%x+a,d)dx
g+t
< pt1
G-—a)+(p+Db-aP+2?(p+1)

x[(b—@(/é’g(”z;d"”aw)dx+f§dg(”z;d“x4ravd)dx)

dp+l

_ zfab maXe < g(t, &) dt
dar ’
thus, using again (k hypothesis (k) of Proposition 3.1 follows.

Moreover, whenf (and, consequently) does not depend on hypotheses (k be-
comes the following very simple condition:

maXe | <c
K X 1<c 8(8)
cP
- p+1 18 edx +g()
(p+2)(b—a)P +2(p+1)(2r-1+1) dr ’
which allows a direct comparison betwesur Proposition 3.1 and Theorem 2.1 of [9].

4. Conseguences

Theorem 3.1 gives an estimate of the interval of the parameter which the prob-
lem (R.) has at least three solutions. This information has several consequences. In this
section we point out some of them.
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First of all, we state the following straightforward corollary of Theorem 3.1.

Corollary4.1. LetA > 0 be given, and lef andg be as in TheorerB.1 Assume that there
exist three positive constantsd, s, with ¢ < d ands < p, and a functionu € LY([a, b))
such that

- fmaxg <o gt dt 1
cP Ap(b —a)p~1
1 (b—a)(fgg(bﬁ”x—i-a,x) dx—i—dedg(%x_ka,d) dx)
= E dp+l

2 [ maxg|<c g(t.£)dt .
_ I ’
() g@.& <pu@®(L+|£°) foralmostevery € [a, b] and for all€ € R.

Then, the problertP,) admits at least three generalized solutions.

Remark 4.1. Proposition 3.1 can be viewed also as a consequence of Corollary 4.1. In
fact, under the hypotheses and givérand)” as in Proposition 3.1, simple calculations
show that Corollary 4.1 can be used for each fixedl])’, A”[ to obtain three generalized
solutions of the problem

-2

_(|I/l/|p_21/£/)/ =)»(f([, Ll) - \ul”)L u)’ (PEA)
u(a) =u'(b) =0,

which, obviously for the fixed, is equivalent to problem (.

Next, accordingly with Remark 3.2, Theone3.1 leads to very easy propositions for
autonomous problems, like the following

Coroallary 4.2 (see Theorem B in the Introductiorbet f : R — R be a nonnegative and
bounded continuous function such that

1/2 1

1
80/f(é)d%‘<l<§0/f(é)dé.

Then, the problem

—u" = (),
{ u(0) =u'(1) =0, (PA)

has at least three classical solutions.
Remark 4.2. Theorem B is an immediate consequence of Corollary 4.2.

Corollary 4.3. Let f :R — R be a continuous function witfi(0) = 0 f(x) < 0in aright-
neighborhood 00, and such that, for somge 10, p —1[, liMy— 00 L& € 10, +o0[. Then,

x4
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there exists a positive real numbesuch that, for each > %, the problem

—(lu'1P~2u") = 7 f (u),
{ u(a)=u'(b) =0, (PA)

has at least two nontrivial and nonnegative classical solutions.

Proof. In virtue of Remark 3.3, we puf(x) = 0 for x < 0. Clearly, there exists > 0

such that ma <. g(£) = 0. Moreover, since i, 400 L& €10, +oc[, there existgl > ¢

such thatféi g(&)d& > 0 andg(d) > 0. Finally, there existg > 0 such thag (&) < u(1+
|E|119) for all £ € R. Therefore, we can use Theorem 3.1 to reach the conclusion.

However, we obtain only two nontrial and nonnegative solutions becaya®) = 0;
obviously they are classical solutions in virtue of the continuity’of O

Corollary 4.4. Let f:R — R be a continuous function witlf(0) =0, f(x) > 0in a
left-neighborhood 06, and such that, for somge 10, p — 1[, lim— _o fl;(l’f,) €1]—00,0[.
Then, there exists a positive real numiesuch that, for eachh > 1, the problem(PA;)
has at least two nontrivial and nonptige classical solutions.

Proof. Itis enough to apply Corollary 4.3 to the functighfi(x) := — f(—x). O

Next we prove another application of Theorem 3.1, which shows that (under simple
conditions) for sufficiently large intervals the mixed problem has two nontrivial and non-
negative generalized solutions.

Corollary 4.5. Leta € L1([0, +00[) be a function such thanfo > 0 and letg : R — R
be a nonnegative continuous function. Let us suppose that
Bd) >0
for somed > 0,
im P& _

x—0+ xP~1

07

and
lim @ eR
x—>+o0o x4
for someg € 10, p — 1[. Then, for every. > 0 and every
- 2d

b>b:= - v ,
(wpinfa [§ B(x)dx)Y/p

the problem

—(lW'1P72u") = ra (1) B(w),
{ u(0) =u'(b) =0, (PS)

admits at least two nontrivial and nonnegative generalized solutions.
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Proof. In virtue of Remark 3.3, we pyi(x) = 0 forx < 0. Fix A > 0 andb > b. Since
B(x)

lim 1

x—0t xP~

=0,

we have
lim Jo B&)d&
x—0t xP

thus, taking into account the hypotheses on the signafids and thats(d) > 0, we can
choose: > 0 such that < d,

=0,

fo B&)dg
cP
<min{ /0 g(Zx, x)dx+fd g(Zx,d)dx 1 }
20 +2 dr+L 2 a(r) dt “apbPL Y a(r)di
and
(22"

<A

[fo (de x)dx+[ (de,d)dx]—g b“(f)dt Jo BG)d§

Moreover, the existence of a functipne L1([0, b]) such thatg (¢, &) < u(1+ |£]7TD),
for everyr € [0, b] and for all¢ € R, follows easily from lim_, ;o £ € R.

Hence, taking into account the Remarks 3.2 and 3.3 and applying Theorem 3.1 in the
interval[0, b], the conclusion follows since < A < A”.

However, we obtain only two nontrigl and nonnegative solutions becaygé) =
O

Finally, we give the following other applitian, in which the dependence on the variable
t is investigated in order to obtain two nontrivial and nonnegative generalized solutions for
mixed problems.

Corollary 4.6. Let 8: R — R be a nonnegative bounded continuous function. Let us sup-
pose that

B(x)>0
for somex > 0, and
B(x)

=0.
x>0+ xP~1

Then, for every. > 0 and every nonnegativee L([a, b]), with
22p+lip+l
pb—ayr [5 BE)ds’
the problem(PS,) admits at least two nontrivial and nonnegative generalized solutions.

et [+ b—a)/4.p1ll1 >
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Proof. In virtue of Remark 3.3, we pyt(x) =0 for x < 0. Fix A > 0 and putd := 2x.
Clearly [ B(€)d& > [J/?B(€)d& > 0. Leta € L([a, b]), with

or gp+l
wpb—ayr 2 BE)ds

Clearly |loe[l1 > llot|fa+b—a)/4,51ll1. Moreover, a simple calculation shows that

d 2d
/ b-a d +/ b=a tad)d
X X
g 2d X a, X g 2d a, X
0 d

dj2

> ||Ol\[a+(b7a)/4,b]||1/,B(g)d§~
0

lletjja+@p—ay/ap1lls >

Now, since
im 2% _o
x—>0t xP~1
we get
ma ¥ d
im el Jo B dé o
x—0t xP

From this, and taking into account that
lim 25%)"
=0 GG szt xram)duet [ g(bpt xta.d) dx] =52 [ maxe < g(1.8)di
12y
_ p\b—a
= d b 2d (b
illo 8(%tx +a.x)dx + [ g% x +a.d) dx]
2rqr+t
< a3 <A
letia+@p—ay/apllapd —a)? |5~ B(E) d§

there existg > 0, with ¢ < d, verifying (') of Remark 3.2,

1/..2d \p
3 e 5 (523)
218 g (bt xtax)dx+ [ g (bt xta.d) dx]—52; [} maxg <. g(1.6) dr
and
Cp
A > A.

T pb— )Pt [P maxg <. g(1,§) di

Moreover, (jj) of Theorem 3.1 follows easily from the boundednegs. of
Hence, taking into account the Remarks 3.2 and 3.3 and applying Theorem 3.1, the

conclusion follows.
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However, we obtain only two nontrigl and nonnegative solutions becagg6) = 0.
O

Although Proposition 3.1 can be deduced from Corollary 4.1 (see Remark 4.1), its con-
sequences (corresponding to Corollaries 4.1-&&more transparent if related directly to
Proposition 3.1 rather than to Theor8.1. We state them without proof.

Corollary 4.7. Let » > 0 be given, and letf and g be as in Propositior8.1. Assume
that there exist three positive constanigl, s, with ¢ < d ands < p, and a functionu €
LY([a, b)) such that

Sy maxe < g(1,8) dr - 1
cP rp(b —a)p~1
b—a)+(p+Db—a)yy +2°(p+1)
[T TRUR VIR G SETYE
ar+t

(k")

9

dr
() g, & <u@(1+1£°) foralmostevery € [a,b] and for all§ € R.

_ zfabma&sgcg(t,s)dt}

Then, the probler(P, ) admits at least three generalized solutions.

Remark 4.3. Unlike Remark 4.1, Corollary 4.1 cannot be proved making use of Corol-
lary 4.7 on the problem

{_(lu’lpzu’>’+|u|"2u=k(f(t,u)+%2“)7 (PE)
u(a) =u'(b) =0.

Infact, for f > 0,b —a > 1, andi > 0, the first inequality in hypothesisi{kof Corol-
lary 4.7 can never be satisfied.

Corollary 4.8. Let f : R — R be a nonnegative and bounded continuous function such that
1/2

1
3
80/f(é)d$<l<1—10/f(é)dé.

Then, the problem

_u//+l't:f(u)s A
{M(O) =u'(1)=0, (PA)

has at least three classical solutions.

Corollary 4.9 (see Theorem C in the Introductiotlet f: R — R be a continuous func-
tion with f(0) =0, f(x) < 0 in a right-neighborhood oD, and such that, for some
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g €10, p—1[, My 400 L& €10, +oo[. Then, there exists a positive real numhesuch

x4

that, for eachh > 1, the problem
= (1772 + |ulP~2u = f (u), (PA))
_ _ A
u(a) =u'(b) =0,
has at least two nontrivial and nonnegative classical solutions.

Corollary 4.10. Let f:R — R be a continuous function witlf(0) =0, f(x) > 0in a
left-neighborhood 08, and such that, for somge 10, p — 1[, lim— _o fl;(l’f,) €1]—00,0[.
Then, there exists a positive real numiesuch that, for eachh > 1, the problem(PA; )

has at least two nontrivial and nonptige classical solutions.

Corollary 4.11. Leta € L1([0, +o0[) be a function such thanfa > 0 and let:R — R
be a nonnegative continuous function. Let us suppose that

B(d) >0
for somed > 0,
im 2% _o
x—0t+ xP~1
and
lim @ eR
x—>+o0o x4
for someg € 10, p — 1[. Then, for every
_ p
A> A= (p. + Z)dd
p(p+Dinfa [J B(§)dE
and every
b > l; = — de )
(A =n)pinfa [ B(x)dx)1/P
the problem
—(lu|P72u"Y + |u|P%u = 2 () B(u),
{M(O) =u'(b) =0, (PS)

admits at least two nontrivial and nonnegative generalized solutions.

Corollary 4.12. Let 8: R — R be a nonnegative bounded continuous function. Let us sup-
pose that

B(x)>0
for somex > 0, and
iim 2% _

x—0t xP~1

0.
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Then, for every. > 0 and every nonnegativee L([a, b]), with
[(b—a)” + (p+D(b—a)f +2°(p + D]25)rtt
wp(p+ Db —a)? [5 BE)de
the problem(PS ) admits at least two nontrivial and nonnegative generalized solutions.

lletja+pb—a)/ap1lla >
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