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Abstract

A multiparameter generalization of the Bailey pair is defined in such a way as to include as s
cases all Bailey pairs considered by W.N. Bailey in his paper [Identities of the Rogers–Ram
type, Proc. London Math. Soc. (2) 50 (1949) 421–435]. This leads to the derivation of a num
elegant new Rogers–Ramanujan type identities.
 2004 Elsevier Inc. All rights reserved.

Keywords: Rogers–Ramanujan identities; Bailey pairs;q-series identities; Basic hypergeometric series

1. Introduction

1.1. Overview

Recall the famous Rogers–Ramanujan identities:

Theorem 1.1 (The Rogers–Ramanujan identities).

∞∑
n=0

qn2

(q;q)n
= (q2, q3, q5;q5)∞

(q;q)∞
(1.1)
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∞∑

n=0

qn2+n

(q;q)n
= (q, q4, q5;q5)∞

(q;q)∞
, (1.2)

where

(a;q)m =
m−1∏
j=0

(1− aqj ),

(a;q)∞ =
∞∏

j=0

(1− aqj ),

and

(a1, a2, . . . , ar ;q)s = (a1;q)s(a2;q)s . . . (ar ;q)s.

(Although the results in this paper may be considered purely from the point of vie
formal power series, they also yield identities of analytic functions provided|q| < 1.)

The Rogers–Ramanujan identities are due to L.J. Rogers [18], and were redisc
independently by S. Ramanujan [16] and I. Schur [20]. Rogers [18,19] (and later o
discovered many series-product identities similar in form to the Rogers–Ramanujan
ties, and as such are referred to as “identities of the Rogers–Ramanujan type.” A num
Rogers–Ramanujan type identities were recorded by Ramanujan in his Lost Notebo
Chapter 11]. During World War II, W.N. Bailey undertook a thorough study of Rog
work connected with Rogers–Ramanujan type identities, and through the understan
gained, was able to simplify and generalize Rogers’ ideas in a pair of papers [8,9].
process, Bailey and Freeman Dyson (who served as referee for Bailey’s two pape
p. 14]) discovered a number of new Rogers–Ramanujan type identities.

Bailey and his student L.J. Slater [23,24] only considered identities of single-fold s
and infinite products. Bailey comments in passing [9, §4, p. 4] that “the most ge
formulae for basic series (apart from those already given) are too involved to be o
great interest” and as such, rejected multisums from consideration. However, G.E. An
reversed this prejudice against multisum Rogers–Ramanujan type identities by pre
very elegant examples of same in [1,3]. Since the appearance of those papers, many
have presented multisum Rogers–Ramanujan type identities, with a particular emph
infinite families of results, as in Andrews’ discovery of the “Bailey chain” [4, p. 28 ff], [
I will not be presenting such infinite families here as, in light of [3], it is a routine exer
to imbed any Rogers–Ramanujan type identity in such an infinite family.

There is much current interest in new Bailey pairs and innovations with Bailey c
(cf. [5,10,11,15,30,32]). We shall show in this paper that some very appealing Ro
Ramanujan type identities are still to be found that are actually derivable from Ba
original ideas (combined in some cases withq-hypergeometric transformations due
Verma and Jain [28,29]). For example,

∑ q2n2+3r2+4nr

= (q4, q5, q9;q9)∞
2 2

, (1.3)

n,r�0

(−q;q)n+r (−q;q)n+2r (q;q)n(q;q)r (q ;q )∞
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n,r�0

qn2+3r2+4nr (−q;−q)2n+2r

(q2;q2)2n+2r (q2;q2)r (q2;q2)n
= (q6, q8, q14;q14)∞(q2;q4)∞

(q;q)∞
, (1.4)

∑
n,r�0

q3n2+6nr+6r2
(q;q)3r

(q3;q3)2r (q3;q3)r (q3;q3)n
= (q7, q8, q15;q15)∞

(q3;q3)∞
, (1.5)

∑
n,r�0

q2n2+3r2+4nr

(−q;q)2n+2r (q;q2)r (q;q)r (q2;q2)n
= (q14, q16, q30;q30)∞

(q2;q2)∞
, (1.6)

∑
n,r�0

qn2+2nr+3r2
(−q;q2)n+r

(q2;q2)n(q2;q2)r (q2;q4)r
= (q16, q20, q36;q36)∞(q2;q4)∞

(q;q)∞
, (1.7)

∑
n,r�0

qn2+2r2

(q;q2)n(q2;q2)r (q2, q4)r (q;q)n−2r

= (q28, q32, q60;q60)∞
(q;q)∞

. (1.8)

Furthermore, we note that the double sum identities I present here do not arise as
“one level up” in the standard Bailey chain from well-known single-sum identities.

After reviewing the necessary background material in Section 1.2, I define the “sta
multiparameter Bailey pair,” (SMPBP) in Section 2 and demonstrate that all of the B
pairs presented by Bailey in [8,9] may be viewed as special cases of the SMPBP.

In Section 3, I derive new Bailey pairs as special cases of the SMPBP, and fina
Section 4, I present a collection of new Rogers–Ramanujan type identities which ar
sequences of the Bailey pairs from Section 3. In Section 5, I conclude by relatin
paper’s results to Slater’s list [24] and suggesting a possible direction of further rese

1.2. Background

In an effort to understand the mechanism which allowed Rogers to discover the Ro
Ramanujan identities and other identities of similar type, Bailey discovered that the u
lying engine was quite simple indeed. This engine was named the “Bailey transfor
Slater [25, §2.3].

Theorem 1.2 (The Bailey transform).If

βn =
n∑

r=0

αrun−rvn+r

and

γn =
∞∑

r=n

δrur−nvr+n,

then
∞∑

αnγn =
∞∑

βnδn.
n=0 n=0
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Bailey remarks [9, p. 1] that “the proof is almost trivial” and indeed the proof me
involves reversing the order of summation in a double series.

Curiously, Bailey never uses the Bailey transform in this general form. He immed
specializesun = 1/(q;q)n, vn = 1/(aq;q)n, and

δn = (ρ1;q)n(ρ2;q)n(q
−N ;q)nq

n

(ρ1ρ2q−Na−1;q)n
.

This, in turn, forces

γn = (aq/ρ1;q)N(aq/ρ2;q)N(−1)n(ρ1;q)n(ρ2;q)n(q
−N ;q)n(aq/ρ1ρ2)

nqnN−(n
2)

(aq;q)N(aq/ρ1ρ2;q)N(aq/ρ1;q)n(aq/ρ2;q)n(aqN+1;q)n
.

Modern authors normally refer to theα andβ appearing in the Bailey transform und
the aforementioned specializations ofu, v, andδ as a “Bailey pair.”

Definition 1.3. A pair of sequences(αn(a, q),βn(a, q)) is called aBailey pair if for n � 0,

βn(a, q) =
n∑

r=0

αr(a, q)

(q;q)n−r (aq;q)n+r

. (1.9)

In [8,9], Bailey proved the fundamental result now known as “Bailey’s lemma”
also [4, Chapter 3]), which is actually just a consequence of the Bailey transform:

Theorem 1.4 (Bailey’s lemma).If (αr(a, q),βj (a, q)) form a Bailey pair, then

1

(
aq
ρ1

;q)n(
aq
ρ2

;q)n

∑
j�0

(ρ1;q)j (ρ2;q)j (
aq

ρ1ρ2
;q)n−j

(q;q)n−j

(
aq

ρ1ρ2

)j

βj (a, q)

=
n∑

r=0

(ρ1;q)r (ρ2;q)r

(
aq
ρ1

;q)r(
aq
ρ2

;q)r(q;q)n−r (aq;q)n+r

(
aq

ρ1ρ2

)r

αr (a, q). (1.10)

2. The standard multiparameter Bailey pair

Since the sequenceβn is completely determined for anyαn by (1.9), all we need to do
is define the standard multiparameter Bailey pair via theαn as

α(d,e,k)
n (a, b, q)

:=
{

a(k−d+1)r/eq(k−d+1)dr2/e(a1/eq2d/e;q2d/e)r (a
1/e;qd/e)r

br/e(a1/eb−1/eqd/e;qd/e)r (a1/e;q2d/e)r (qd/e;qd/e)r
, if n = dr,

0, otherwise,
(2.1)

and the correspondingβ(d,e,k)
n (a, b, q) will be determined by (1.9). Of course, theform in

whichβ
(d,e,k)
n is presented depends on whichq-hypergeometric transformation or summ

tion formula is employed. The mathematical interest lies in the fact that elegant Ro
Ramanujan type identities will arise for many choices ofd , e, andk, as we shall see i

Section 4.
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,
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fac-
Remark 2.1. An easy calculation reveals that

lim
b→0

α(d,e,k)
n (a, b, q) = lim

b→∞α(d,e,k−1)
n (a, b, q). (2.2)

Remark 2.2. In all derivations of Rogers–Ramanujan type identities, Bailey letsb → 0 or
b → ∞. In light of Remark 2.1, it will be sufficient to letb → 0 from this point forward.
Also, it will be convenient to replacea by ae andq by qe throughout. Thus, in practice
rather than (2.1), we will instead only need to consider the somewhat more manage

α(d,e,k)
n (ae,0, qe)

:=
{

(−1)r a(k−d)r q
(dk−d2+ d

2 )r2− d
2 r

(aq2d ;q2d )r (a;qd )r
(a;q2d )r (qd ;qd )r

, if n = dr,

0, otherwise.
(2.3)

We now proceed to find the correspondingβn for the SMPBP:

β(d,e,k)
n (ae,0, qe)

=
n∑

s=0

α
(d,e,k)
s (ae,0, qe)

(qe;qe)n−s(aeqe;qe)n+s

αd,k,m(ae,0, qe)

= 1

(qe;qe)n(aeqe;qe)n

n∑
s=0

(−1)sqens− e
2s2+ e

2s(q−en;qe)s

(aeqe(n+1);qe)s
α(d,e,k)

s (ae,0, qe)

= 1

(qe;qe)n(aeqe;qe)n

�n/d�∑
r=0

(−1)drqendr− ed2
2 r2+ ed

2 r (q−en;qe)dr

(aeqe(n+1);qe)dr

× α
(d,e,k)
dr (ae,0, qe)

= 1

(qe;qe)n(aeqe;qe)n

�n/d�∑
r=0

(a, qd
√

a,−qd
√

a;qd)r (q
−en;qe)dr

(qd,
√

a,−√
a;qd)r (aeqe(n+1);qe)dr

× (−1)(d+1)ra(k−d)rq(2k−2d−ed+1) d
2 r2+(e−1) d

2 r+endr .

Note that

(q−en;qe)dr =
d−1∏
i=0

(q−en+ei;qde)r , (2.4)

and that each factor in the right-hand side of (2.4) can be factored into a product ofe factors

(q−en+ei;qde)r =
e∏

j=1

(
ξ

j
e q−n+i;qd

)
r
,

whereξe is a primitive eth root of unity, and that the complementary denominator
tor (aeqe(n+1);qe)dr can be split and factored analogously into a product ofed rising

q-factorials.
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Furthermore,q(2k−2d−ed+1) d
2 r2

can be written as a limiting case of a product of|2k −
ed − 2d + 1| risingq-factorials. For example, supposing thatk = 5, e = 1, d = 2, one can
write q5r2

as a limit asτ → 0 of the product of|2k − 2d − ed + 1| = 5 risingq factorials:

(−1)rq5r2 = lim
τ→0

τ5r (q/τ ;q2)5
r .

Thusβ
(d,e,k)
n (ae,0, qe) can be seen to be a product of((qe;qe)n(a

eqe;qe)n)
−1 and a lim-

iting case of a very well poisedt+1φt , where

t = ed + |2k − ed − 2d + 1| + 2,

and the basic hypergeometric seriesp+1φp is defined by

p+1φp

[
a1, a2, . . . , ap+1
b1, b2, . . . , bp

;q, z

]
=

∞∑
r=0

(a1, a2, . . . , ap+1;q)r

(q, b1, b2, . . . , bp;q)r
zr .

It will also be convenient to use the standard abbreviation

p+1Wp(a;a3, a4, . . . , ap+1;q; z)

:= p+1φp

[
a, qa

1
2 ,−qa

1
2 , a3, a4, . . . , ap+1

a
1
2 ,−a

1
2 ,

aq
a3

,
aq
a4

, . . . ,
aq

ap+1

;q, z

]
.

3. Consequences of the SMPBP

3.1. Results of Rogers, Bailey, Dyson, and Slater

Bailey presented five Bailey pairs in total; he lists them as (i)–(v) in [9, pp. 5–6]. T
Bailey pairs arise as the following specializations of the SMPBP:

• (d, e, k) = (1,1,2) with b → 0 is equivalent to Bailey’s (i),
• (d, e, k) = (1,2,2) is equivalent to (ii),
• (d, e, k) = (1,3,2) with b → 0 is equivalent to (iii),
• (d, e, k) = (2,1,2) is equivalent to (iv), and
• (d, e, k) = (3,1,4) with b → 0 is equivalent to (v).

Bailey appears to have limited himself to these cases since these are the on
whereβ

(d,e,k)
n (ae,0, qe) is representable as a finite product, and thus its insertion int

left-hand side of (1.10) will result in asingle-fold sum.
The point I wish to emphasize here is that sinceβ

(d,e,k)
n (ae,0, qe) is a finite product

times a very well poised basic hypergeometric series, as long as one is willing to co
multisums, it is a priori plausible that elegant Rogers–Ramanujan type identities m
derivable forany triple (d, e, k) of positive integers, as long as one has in hand an ap
priateq-hypergeometric transformation formula.

Certain specializations of(d, e, k) yield classical Bailey pairs. The following table sum

marizes the best known classical results which follow from the SMPBP. The letter–number
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(d, e, k) Bailey pairs RR type identities

(1,1,1) H17 Euler’s pentagonal number theorem (1)
(1,1,2) B1, B3 Rogers–Ramanujan (18, 14); Göllnitz–Gordon (36, 34); Lebesgue (8
(1,2,2) G1–G3 Rogers–Selberg (31–33); Rogers’ mod 5 (19, 15)
(1,3,2) Bailey’s mod 9 identities (41–43)
(2,1,2) C5, C7 Rogers’ mod 10 identities (46, 44)
(2,1,3) C1–C4 Rogers’ mod 14 identities (59–61); Rogers’ mod 20 (79)
(3,1,4) J1–J6 Dyson’s mod 27 identities (90–93); Slater (71–78, 107–116)

codes in the “Bailey pair” column refer to the codes used by Slater in her two paper
24]. The reason that a single specialization of(d, e, k) may correspond to more than o
of Slater’s Bailey pairs is that she chose to specializea before performing the require
q-hypergeometric summation or transformation, and thus listed what corresponds
a = 1, q, q2, etc., and linear combinations thereof, as different Bailey pairs. By subs
ing the Bailey pairs into various limiting cases of Bailey’s lemma, a variety of clas
identities result. The parenthetical numbers in the third column refer to the numb
Slater’s list [24].

Remark 3.1. In addition to the classical Rogers–Ramanujan type identities menti
above, certain identities discovered more recently can also be derived from the S
In particular, the Verma–Jain mod 17 identities [28, (3.1)–(3.8), pp. 247–248] arise
(d, e, k) = (1,6,3), the Verma-Jain mod 19 identities [28, (3.9)–(3.17), pp. 248–250] f
(1,6,4), the Verma–Jain mod 22 identities [28, (3.18)–(3.22), pp. 250–251] from(2,1,5),
an identity of Ole Warnaar related to the modulus 11 [31, Theorem 1.3;k = 4, p. 246] from
(2,2,3), a mod 13 identity of George Andrews [3, (5.8);k = 1, p. 280] from(2,2,4), and
finally Dennis Stanton’s mod 11 identity [27, (6.4), p. 65] from(1,2,4).

3.2. New Bailey pairs

Remark 3.2. In [21], I presented a number of Rogers–Ramanujan type identities that
from what may now be considered theb = 0, e = 1 case of the SMPBP. The interest
reader is invited to consult [21] for additional examples.

We now consider specializations of(d, e, k) in

β(d,e,k)
n (ae,0, qe) =

n∑
s=0

α
(d,e,k)
s (ae,0, qe)

(qe;qe)n−s(aeqe;qe)n+s

, (3.1)

which lead to new identities.
The most crucial step in each case will be the transformation of the very well p

series via one of the following known formulas:

Transformation 1 (Watson’sq-analog of Whipple’s theorem, [33], [13, Eq. (III.18
p. 360]). (

−n a2qn+2)

8W7 a;b, c, d, e, q ;q,

bcde
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,

= (aq, aq/de;q)n

(aq/d, aq/e;q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
;q, q

]
(3.2)

is used to establish (3.8), (3.10), (3.11), and (3.15).

Transformation 2 (The first Verma–Jain10φ9 transformation, [28, (1.3), p. 232], [13
(3.10.4), p. 97]).

10W9

(
a;b, x,−x, y,−y, q−n,−q−n;q,−a3q2n+3

bx2y2

)

= (a2q2, a2q2/x2y2;q2)n

(a2q2/x2, a2q2/y2;q2)n
5φ4

[
q−2n, x2, y2,−aq/b,−aq2/b

x2y2q−2n/a2, a2q2/b2,−aq,−aq2 ;q2, q2
]

(3.3)

is used to establish (3.13), (3.15), (3.17), and (3.18).

Transformation 3 (The second Verma–Jain10φ9 transformation, [28, (1.4), p. 232]).

10W9

(
a;b, x, xq, y, yq, q1−n, q−n;q; a3q2n+3

bx2y2

)

= (aq, aq/xy;q)n

(aq/x, aq/y;q)n
5φ4

[
x, y,

√
aq/b,−√

aq/b, q−n

√
aq,−√

aq, aq/b, xyq−n/a
;q, q

]
(3.4)

is used to establish (3.19), (3.20), (3.23), and (3.26).

Transformation 4 (The first Verma–Jain12φ11 transformation, [28, (1.4), p. 232]).

12W11

(
a;x,ωx,ω2x, y,ωy,ω2y, q−n,ωq−n,ω2q−n;q;−a4q3n+4

x3y3

)

=
(a3q3,

a3q3

x3y3 ;q3)n

(
a3q3

x3 ,
a3q3

y3 ;q3)n
6φ5

[
q−3n, x3, y3, aq, aq2, aq3

(aq)
3
2 ,−(aq)

3
2 , a

3
2 q3,−a

3
2 q3,

x3y3q−3n

a3

;q3, q3

]
,

(3.5)

whereω = exp(2πi/3), is used to establish (3.12).

Transformation 5 (The second Verma–Jain12φ11 transformation, [28, (1.5), p. 232]).

12W11

(
a;x, xq, xq2, y, yq, yq2, q2−n, q1−n, q−n;q,

a4q3n+3

x3y3

)

= (aq, aq/xy;q)n

(aq/x, aq/y;q)n
6φ5

[
3
√

a,ω 3
√

a,ω2 3
√

a, x, y, q−n√
a,−√

a,
√

aq,−√
aq, xyq−n/a

;q, q

]
(3.6)

is used to establish (3.24) and (3.25).
Finally,
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,
Transformation 6 (Transformation of a very well poised8φ7, [13, Eq. (3.4.7), reversed
p. 76]).

8W7

(
a;y 1

2 ,−y
1
2 , (yq)

1
2 ,−(yq)

1
2 , x;q; a2q

y2x

)

=
(aq,

a2q

y2 ;q)∞

(
aq
y

,
a2q
y

;q)∞
2φ1

[
y,

xy
a

aq
x

;q,
a2q

y2x

]
(3.7)

is used to establish (3.21) and (3.22).

Let (d, e, k) = (1,2,3). Then

β(1,2,3)
n (a2,0, q2)

=
n∑

r=0

α
(1,2,3)
r (a2,0, q2)

(q2;q2)n−r (a2q2;q2)n+r

= 1

(q2;q2)n(a2q2;q2)n

n∑
r=0

(−1)rq2nr−r2+r (q−2n;q2)r

(a2q2(n+1);q2)r
α(1,2,3)

r (a2,0, q2)

= 1

(q2;q2)n(a2q2;q2)n

n∑
r=0

(a, q
√

a,−q
√

a, q−n,−q−n;q)ra
2rq2nr+ 3

2r2+ r
2

(q,
√

a,−√
a, aqn+1,−aqn+1;q)r

= 1

(q2;q2)n(a2q2;q2)n

× lim
τ→0

8φ7

[
a, q

√
a,−q

√
a, q−n,−q−n, q/τ,1/τ, q/τ√

a,−√
a, aqn+1,−aqn+1, τa, τaq, τa

;q,−a2τ3q2n

]

= lim
τ→0

(aq;q)n(τ
2a;q)n

(τa;q)n(τaq;q)n(q2;q2)n(a2q2;q2)n

× 4φ3

[ −τaqn, q/τ,1/τ, q−n

−aqn+1, τa, q1−naτ2 ;q, q

] (
by (3.2)

)

= 1

(−q;q)n

∑
r�0

arqr2

(q;q)r(q;q)n−r (−aq;q)n+r

.

Thus, we have established

β(1,2,3)
n (a2,0, q2) = 1

(−q;q)n

∑
r�0

arqr2

(q;q)r (q;q)n−r (−aq;q)n+r

. (3.8)

Via analogous calculations, one can establish each of the following:

β(1,2,4)
n (a2,0, q2) =

∑ a2rq2r2

2 2 2 2
, (3.9)
r�0
(−aq;q)2r (q ;q )r (q ;q )n−r
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β(1,3,1)
n (a3,0, q3) = (−1)na−nq−(n+1

2 )(q;q)n

(q3;q3)n(aq;q)2n

×
∑
r�0

(−1)rq(r+1
2 )−nr (aq;q)n+r (aq;q)2n+r

(a3q3;q3)n+r (q;q)r (q;q)n−r

, (3.10)

β(1,3,3)
n (a3,0, q3) = (aq;q)n

(aq;q)2n(q3;q3)n

∑
r�0

arqr2
(aq;q)2n+r (aq;q)n+r

(a3q3;q3)n+r (q;q)r(q;q)n−r

, (3.11)

β(1,3,5)
n (a3,0, q3) =

∑
r�0

a3rq3r2
(aq;q)3r

(a3q3;q3)2r (q3;q3)r (q3;q3)n−r

, (3.12)

β(1,4,1)
n (a4,0, q4) = (−1)nq2n2

(−a2q2;q2)2n

∑
r�0

q3r2−4nr

(q2;q2)r (−aq;q)2r , (q4;q4)n−r

, (3.13)

β(1,4,2)
n (a4,0, q4) = inqn2

(iq;q)n(q;q)n

(q4;q4)n(iaq;q)2
2n

×
∑
r�0

(−i)rqr2−2nr (iaq;q)2n+r

(q;q)r(−iaq;q)n+r (−aq;q)n+r (q;q)n−r (iq;q)n−r

(3.14)

(where here and throughout,i = √−1 ),

β(1,4,3)
n (a4,0, q4) = (iq;q)n(q;q)n

(q4;q4)n(iaq;q)2
2n

×
∑
r�0

arqr2
(iaq;q)2n+r

(q;q)r(−iaq;q)n+r (−aq;q)n+r (q;q)n−r (iq;q)n−r

,

(3.15)

β(1,4,4)
n (a4,0, q4) = 1

(−a2q2;q2)2n

∑
r�0

a2rq2r2

(q2;q2)r (−aq;q)2r , (q4;q4)n−r

, (3.16)

β(1,6,3)
n (a6,0, q6) = 1

(a6q6;q6)2n

∑
r�0

(−1)ra2rq3r2
(a2q2;q2)3n−r

(q2;q2)r (−aq;q)2r (q6;q6)n−r

, (3.17)

β(1,6,4)
n (a6,0, q6) = 1

(a6q6;q6)2n

∑
r�0

a2rq2r2
(a2q2;q2)3n−r

(q2;q2)r (−aq;q)2r (q6;q6)n−r

, (3.18)

β(2,1,5)
n (a,0, q) =

∑ arqr2

2
, (3.19)
r�0
(q;q)r(aq;q )r (q;q)n−r
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, p. 6],
β(2,2,2)
n (a2,0, q2) = (−1)nqn2

(−aq;q)2n

∑
r�0

(−1)rq
3
2r2− 1

2r−2nr

(aq;q2)r (q;q)r(q2;q2)n−r

, (3.20)

β(2,2,3)
n (a2,0, q2) = (aq2;q2)n

(a2q2;q2)2n

∑
r�0

arq2nr

(q2;q2)r (q2;q2)n−r

, (3.21)

β(2,2,4)
n (a2,0, q2) = (aq2;q2)n

(a2q2;q2)2n

∑
r�0

arq2r2

(q2;q2)r (q2;q2)n−r

, (3.22)

β(2,2,5)
n (a2,0, q2) = 1

(−aq;q)2n

∑
r�0

arqr2

(q;q)r (aq;q2)r (q2;q2)n−r

, (3.23)

β(3,2,7)
n (a2,0, q2) = 1

(−aq;q)2n

∑
r�0

arqr2
(a;q3)r

(a;q)2r (q;q)r(q2;q2)n−r

, (3.24)

β(3,3,7)
n (a3,0, q3) = 1

(a3q3;q3)2n

∑
r�0

arq3n2+r (a;q3)r (aq;q)3n−r

(q;q)r(a;q)2r (q3;q3)n−r

, (3.25)

β(4,1,7)
n (a,0, q) = 1

(aq;q2)n

∑
r�0

arq2r2

(q2;q2)r (aq2;q4)r (q;q)n−2r

. (3.26)

4. A list of Rogers–Ramanujan–Bailey type identities

For easy reference, we restate the Bailey lemma with the SMPBP inserted:

Theorem 4.1 (Bailey’s lemma).

1

(
aeqe

ρe
1

;qe)N(
aeqe

ρe
2

;qe)N

×
∑
j�0

(ρe
1;qe)j (ρ

e
2;qe)j ((

aq
ρ1ρ2

)e;qe)N−j

(qe;qe)N−j

(
aq

ρ1ρ2

)ej

β
(d,e,k)
j (ae, be, qe)

=
�N/d�∑
r=0

(ρe
1;qe)dr (ρ

e
2;qe)dr

((
aq
ρ1

)e;qe)dr ((
aq
ρ2

)e;qe)dr (qe;qe)N−dr (aeqe;qe)N+dr

(
aq

ρ1ρ2

)der

× α
(d,e,k)
dr (ae, be, qe). (4.1)

Note that the rather general identities presented by Bailey as Eqs. (6.1)–(6.4) in [9
from which all of the other identities in [8,9] can be derived, are simply cases(d, e, k) =

(1,2,2), (1,3,2), (2,1,2), and(3,1,4), respectively, of (4.1).
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new.
rackets.
after

n
p. 15]

strate

s

I have compiled a list of Rogers–Ramanujan type identities which I believe to be
Each is a direct consequence of (4.1), with parameters specialized as indicated in b
Note that the final form of the sum side for many of the identities was obtained only
reversing the order of summation and replacingn by n + r . Of course, in order to obtai
each infinite product representation, Jacobi’s triple product identity [13, Eq. (1.6.1),
is applied to the right-hand side aftera is specialized.

This list is by no means exhaustive; I have merely chosen some examples to illu
the power of the SMPBP.

Remark 4.2. The identity which arises from inserting a given(α
(d,e,k)
n (a, q),β

(d,e,k
n (a, q))

into (4.1) in the case whereρ1, ρ2,N → ∞, anda = 1 is just one of a set ofd(e − 1) + k

identities. The other identities can be found via a system ofq-difference equations. Thi
phenomenon is explored in [22].

∑
n,r�0

qn2+2nr+2r2
(−q;q2)n+r

(−q;q)n+r (−q;q)n+2r (q;q)n(q;q)r
= (q3, q4, q7;q7)∞(−q;q2)∞

(q2;q2)∞
(4.2)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,2,3)),

∑
n,r�0

(−1)nq
5
2n2− 1

2n+4nr+2r2
(q;q)n+r (q;q)n+2r (q;q)2n+3r

(q3;q3)n+r (q3;q3)n+2r (q;q)n(q;q)r(q;q)2n+2r

= (q3, q4, q7;q7)∞
(q3;q3)∞

(4.3)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,3,1)),

∑
n,r�0

(−1)nq2n2−n+2nr+r2
(−q3;q6)n+r (q

2;q2)n+r (q
2;q2)n+2r (q

2;q2)2n+3r

(q6;q6)n+r (q6;q6)n+2r (q2;q2)n(q2;q2)r (q2;q2)2n+2r

= (q3, q5, q8;q8)∞(−q3;q6)∞
(q6;q6)∞

(4.4)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,3,1)),

∑
n,r�0

q2n2+2n+4nr+3r2+3r

(−q;q)n+r (−q;q)n+2r+1(q;q)n(q;q)r
= (q, q8, q9;q9)∞

(q2;q2)∞
(4.5)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (1,2,3)),

∑
n,r�0

q2n2+4nr+3r2

(−q;q)n+r (−q;q)n+2r (q;q)n(q;q)r
= (q4, q5, q9;q9)∞

(q2;q2)∞
(4.6)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,2,3)),

∑ qn2+2nr+3r2
(−q;q2)n+r

2 2 2 2
= (q4, q5, q9;q9)∞(−q;q2)∞

2 2
(4.7)
n,r�0
(−q;q)2r (q ;q )n(q ;q )r (q ;q )∞
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.3
(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,2,4)),

∑
n,r�0

(−1)n+rq6n2+8nr+5r2+4n+4r

(−q2;q2)2n+2r+1(q2;q2)r (−q;q)2r+1(q4;q4)n
= (q, q8, q9;q9)∞

(q4;q4)∞
(4.8)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (1,4,1)),

∑
n,r�0

(−1)n+rq6n2+8nr+5r2

(−q2;q2)2n+2r (q2;q2)r (−q;q)2r (q4;q4)n
= (q4, q5, q9;q9)∞

(q4;q4)∞
(4.9)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,4,1)),

∑
n,r�0

(−1)nq2n2+2nr+ 3
2r2− r

2 (−q;q2)n+r

(−q;q)2n+2r (q;q)r(q;q2)r (q2;q2)n

= (q4, q6, q10;q10)∞(−q;q2)∞
(q2;q2)∞

(4.10)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (2,2,2)),

∑
n,r�0

(−1)n+rq8n2+8nr+6r2
(−q4;q8)n+r

(−q4;q4)2n+2r (q4;q4)r (−q2;q2)2r (q8;q8)n

= (q4, q6, q10;q10)∞(−q4;q8)∞
(q8;q8)∞

(4.11)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,4,1)),

∑
n,r�0

qn2+2r2+3nr+2n+3r (q;q)n+r+1

(q;q)2n+2r+2(q;q)r(q;q)n
= (q, q10, q11;q11)∞

(q;q)∞
(4.12)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (2,2,3)),

∑
n,r�0

qn2+2r2+3nr (q;q)n+r

(q;q)2n+2r (q;q)r (q;q)n
= (q5, q6, q11;q11)∞

(q;q)∞
(4.13)

(N,ρ1, ρ2 → ∞, a = 1,b → 0, (d, e, k) = (2,2,3), due to S.O. Warnaar [31, Theorem 1
with k = 4, p. 247]),

∑
n,r�0

q2n2+2n+4nr+4r2+4r

(−q;q)2r+1(q2;q2)n(q2;q2)r
= (q, q10, q11;q11)∞

(q2;q2)∞
(4.14)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (1,2,4)),

∑
n,r�0

q3n2+6nr+4r2+3n+4r (q;q)n+r (q;q)2n+3r+1(q;q)n+2r+1

(q3;q3)n+r (q3;q3)n+2r+1(q;q)n(q;q)r(q;q)2n+2r+1

(q, q10, q11;q11)∞
=
(q3;q3)∞

(4.15)
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x-

)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (1,3,3)),

∑
n,r�0

q3n2+6nr+4r2
(q;q)n+r (q;q)2n+3r (q;q)n+2r

(q3;q3)n+r (q3;q3)n+2r (q;q)n(q;q)r(q;q)2n+2r

= (q5, q6, q11;q11)∞
(q3;q3)∞

(4.16)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,3,3)),

∑
n,r�0

inq5n2+8nr+4r2
(iq;q)n+r (q;q)n+r (iq;q)2n+3r

(q4;q4)n+r (iq;q)2
2n+2r (q;q)r(−iq;q)n+2r (−q;q)n+2r (q;q)n(iq;q)n

= (q5, q6, q11;q11)∞
(q4;q4)∞

(4.17)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,4,2)). Note: This is a different series e
pansion of the infinite product considered by Andrews [2, (1.10), p. 332].

∑
n,r�0

q2n2+4nr+4r2
(−q2;q4)n+r

(−q2;q2)2n+2r (q2;q2)r (−q;q)2r (q4;q4)n

= (q5, q6, q11;q11)∞(−q2;q4)∞
(q4;q4)∞

(4.18)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,4,4)),

∑
n,r�0

(−1)rq3n2+6nr+6r2
(−q3;q6)n+r (q

2;q2)3n+2r

(q6;q6)2n+2r (q2;q2)r (−q;q)2r (q6;q6)n

= (q5, q6, q11;q11)∞(−q3;q6)∞
(q6;q6)∞

(4.19)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,6,3)),

∑
n,r�0

qn2+2r2+2nr+2n+3r (q;q)n+r+1

(q;q)2n+2r+2(q;q)r(q;q)n
= (q, q12, q13;q13)∞

(q;q)∞
(4.20)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (2,2,4)),

∑
n,r�0

qn2+2r2+2nr (q;q)n+r

(q;q)2n+2r (q;q)r (q;q)n
= (q6, q7, q13;q13)∞

(q;q)∞
(4.21)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (2,2,4), due to G.E. Andrews [3, Eq. (5.8

with k = 1, p. 280]),
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∑
n,r�0

q4n2+8nr+5r2
(iq;q)n+r (q;q)n+r (iq;q)2n+3r

(q4;q4)n+r (iq;q)2
2n+2r (q;q)r(−iq;q)n+2r (−q;q)n+2r (q;q)n(iq;q)n

= (q6, q7, q13;q13)∞
(q4;q4)∞

(4.22)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,4,3)),

∑
n,r�0

q3n2+6nr+5r2
(−q3;q6)n+r (q

2;q2)3n+2r

(q6;q6)2n+2r (q2;q2)r (−q;q)2r (q6;q6)n

= (q6, q7, q13;q13)∞(−q3;q6)∞
(q6;q6)∞

(4.23)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,6,4)),

∑
n,r�0

qn2+3r2+4nr (−q;q2)n+r (q
2;q2)n+r

(q2;q2)2n+2r (q2;q2)r (q2;q2)n
= (q6, q8, q14;q14)∞(−q;q2)∞

(q2;q2)∞
(4.24)

(N,ρ1 → ∞, a = 1, ρ2 = −√
q, b → 0, (d, e, k) = (2,2,3)),∑

n,r�0

inq6n2+8nr+4r2
(−q4;q8)n+r (iq

2;q2)n+r (q
2;q2)n+r (iq

2;q2)2n+3r

(q8;q8)n+r (iq2;q2)2
2n+2r (q

2;q2)r (−iq2;q2)n+2r (−q2;q2)n+2r (q
2;q2)n(iq2;q2)n

= (q6, q8, q14;q14)∞(−q4;q8)∞
(q8;q8)∞

(4.25)

(N,ρ1,→ ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,4,2)),

∑
n,r�0

q3n2+6nr+6r2+3n+6r (q;q)3r+1

(q3;q3)2r+1(q3;q3)r (q3;q3)n
= (q, q14, q15;q15)∞

(q3;q3)∞
(4.26)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (1,3,5)),

∑
n,r�0

q3n2+6nr+6r2
(q;q)3r

(q3;q3)2r (q3;q3)r (q3;q3)n
= (q7, q8, q15;q15)∞

(q3;q3)∞
(4.27)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,3,5)),

∑
n,r�0

q4n2+8nr+6r2+4n+6r

(−q2;q2)2n+2r+1(q2;q2)r (−q;q)2r+1(q4;q4)n

= (q, q14, q15;q15)∞
(q4;q4)∞

(4.28)

(N,ρ1, ρ2 → ∞, a = q, b → 0, (d, e, k) = (1,4,4)),

∑ q4n2+8nr+6r2

2 2 2 2 4 4
= (q7, q8, q15;q15)∞

4 4
(4.29)
n,r�0
(−q ;q )2n+2r (q ;q )r (−q;q)2r (q ;q )n (q ;q )∞
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(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (1,4,4)),

∑
n,r�0

q3n2+6nr+5r2
(−q3;q6)n+r (q

2;q2)n+r (q
2;q2)2n+3r (q

2;q2)n+2r

(q6;q6)n+r (q6;q6)n+2r (q2;q2)n(q2;q2)r (q2;q2)2n+2r

= (q7, q9, q16;q16)∞(−q3;q6)∞
(q6;q6)∞

(4.30)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,3,3)),

∑
n,r�0

(−1)nq3n2+4n+4nr+ 5
2r2+ 7

2r

(−q;q)2n+2r+2(q;q)r(q;q2)r+1(q2;q2)n
= (q2, q16, q18;q18)∞

(q2;q2)∞
(4.31)

(N,ρ1, ρ2 → ∞, a = q2, b → 0, (d, e, k) = (2,2,2)),

∑
n,r�0

(−1)nq3n2+4nr+ 5
2r2− r

2

(−q;q)2n+2r (q;q)r(q;q2)r (q2;q2)n
= (q8, q10, q18;q18)∞

(q2;q2)∞
(4.32)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (2,2,2)),∑
n,r�0

q4n2+8nr+6r2
(−q4;q8)n+r (iq

2;q2)n+r (q
2;q2)n+r (iq

2;q2)2n+3r

(q8;q8)n+r (iq2;q2)2
2n+2r (q

2;q2)r (−iq2;q2)n+2r (−q2;q2)n+2r (q
2;q2)n(iq2;q2)n

= (q8, q10, q18;q18)∞(−q4;q8)∞
(q8;q8)∞

(4.33)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,4,3)),

∑
n,r�0

qn2+2nr+3r2
(−q;q2)n+r (q

2;q2)n+r

(q2;q2)2n+2r (q2;q2)r (q2;q2)n

= (q8, q10, q18;q18)∞(−q;q2)∞
(q2;q2)∞

(4.34)

(N,ρ1,→ ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (2,2,4)),

∑
n,r�0

q
1
2n2+ 1

2n+nr+ 3
2r2+ 1

2r (−1;q)n+r

(q;q)n(q;q)r (q;q2)r
= (q9, q9, q18;q18)∞(−q;q)∞

(q;q)∞
(4.35)

(N,ρ1 → ∞, ρ2 = −1, a = 1, b → 0, (d, e, k) = (2,1,5)),

∑
n,r�0

qn2+2r2+2nr (−q;q2)n+r

(−q;q)2n+2r (q;q2)r (q;q)r (q;q)n

= (q10, q12, q22;q22)∞(−q;q2)∞
(q2;q2)∞

(4.36)

√

(N,ρ1 → ∞, ρ2 = − q, a = 1, b → 0, (d, e, k) = (2,2,5)),



A.V. Sills / J. Math. Anal. Appl. 308 (2005) 669–688 685
∑
n,r�0

q3n2+6nr+9r2
(−q3;q6)n+r (q

2;q2)3r

(q6;q6)2r (q6;q6)r (q6;q6)n

= (q11, q13, q24;q24)∞(−q3;q6)∞
(q6;q6)∞

(4.37)

(N,ρ1,→ ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (1,3,5)),

∑
n,r�0

q2n2+3r2+4nr+4n+6r

(−q;q)2n+2r+2(q;q2)r+1(q;q)r(q2;q2)n
= (q2, q28, q30;q30)∞

(q2;q2)∞
(4.38)

(N,ρ1, ρ2 → ∞, a = q2, b → 0, (d, e, k) = (2,2,5)),

∑
n,r�0

q2n2+3r2+4nr

(−q;q)2n+2r (q;q2)r (q;q)r (q2;q2)n
= (q14, q16, q30;q30)∞

(q2;q2)∞
(4.39)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (2,2,5)),

∑
n,r�0

qn2+2nr+3r2
(−q;q2)n+r

(q2;q2)n(q2;q2)r (q2;q4)r
= (q16, q20, q36;q36)∞(−q;q2)∞

(q2;q2)∞
(4.40)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (2,1,5)),

∑
n,r�0

qn(n+1)/2+2r2
(−1;q)n

(q;q2)n(q2;q2)r (q2, q4)r (q;q)n−2r

= (q22, q22, q44;q44)∞(−q;q)∞
(q;q)∞

(4.41)

(N,ρ1 → ∞, ρ2 = −1, a = 1, b → 0, (d, e, k) = (4,1,7)),

∑
n,r�0

qn2+2r2+4n+4r

(q;q2)n+2(q2;q2)r (q2, q4)r+1(q;q)n−2r

= (q4, q56, q60;q60)∞
(q;q)∞

(4.42)

(N,ρ1, ρ2 → ∞, a = q4, b → 0, (d, e, k) = (4,1,7)),

∑
n,r�0

qn2+2r2

(q;q2)n(q2;q2)r (q2, q4)r (q;q)n−2r

= (q28, q32, q60;q60)∞
(q;q)∞

(4.43)

(N,ρ1, ρ2 → ∞, a = 1, b → 0, (d, e, k) = (4,1,7)),

∑
n,r�0

q2n2+4nr+3r2+6n+9r (q3;q3)r

(−q;q)2n+2r+3(q;q)2r+2(q;q)r(q2;q2)n
= (q3, q60, q63;q63)∞

(q2;q2)∞
(4.44)

(N,ρ1, ρ2 → ∞, a = q3, b → 0, (d, e, k) = (3,2,7)),

∑ q3n2+4r2+6nr+9n+12r (q3;q3)r (q;q)3n+2r+3
3 3 3 3

= (q3, q78, q81;q81)∞
3 3

(4.45)

n,r�0

(q ;q )2n+2r+3(q;q)r (q;q)2r+2(q ;q )n (q ;q )∞
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(N,ρ1, ρ2 → ∞, a = q3, b → 0, (d, e, k) = (3,3,7)),

∑
n,r�0

qn2+4r2
(−q;q2)n

(q2;q4)n(q4;q4)r (q4;q8)r (q2;q2)n−2r

= (q40, q48, q88;q88)∞(−q;q2)∞
(q2;q2)∞

(4.46)

(N,ρ1 → ∞, ρ2 = −√
q, a = 1, b → 0, (d, e, k) = (4,1,7)).

5. Conclusion

As remarked earlier, after discovering his lemma and transform, Bailey conside
total of five Bailey pairs, and together with Dyson, derived quite a few identities
them [8,9]. Soon after Bailey completed his work on Rogers–Ramanujan type iden
Slater, by her own count, found 94 Bailey pairs, leading to 130 identities (although b
these totals are admittedly somewhat inflated as redundancies exist in both).

For about a quarter century following the work of Bailey and Slater, a handful of m
ematicians did work related to the Rogers–Ramanujan identities, notably Henry
George Andrews, David Bressoud, Leonard Carlitz, and Basil Gordon. Then around
an explosion of interest in Rogers–Ramanujan occurred in the mathematics and p
communities as connections were found with Lie algebras (thanks to Jim Lepowsky,
Milne, and Robert Wilson) and statistical mechanics (through the efforts of Rodney
ter, Alex Berkovich, Barry McCoy, Anne Schilling, Ole Warnaar and others). A bit late
the computer revolution in mathematics began, important contributions related to Ro
Ramanujan were made by Peter Paule, Axel Riese, Herb Wilf, Doron Zeilberger and o
Some of these practitioners have improved and extended Bailey’s lemma. For examp
drews [3] showed how the Bailey lemma is self-replicating, leading to the so-called “B
chain.” Andrews et al. [7] found an “A2 Bailey lemma.” Andrews and Berkovich [5,6] e
tend the Bailey chain to a “Bailey tree.” Further innovations and extensions of the B
chain are given by Berkovich and Warnaar [10]; Bressoud et al. [11]; Jeremy Lovejoy
and Warnaar [32]. Ismail and Stanton obtained Rogers–Ramanujan type identities v
asic integration [14]. In [26], V. Spiridonov found an elliptic analog of the Bailey ch
And the list goes on and on. For additional references, see the end notes of Chap
the new edition of Gasper and Rahman [13].

The inspiration for this current paper comes from a desire to “return to the basics”
gain an understanding of Bailey’s contributions via a unification of his work. Accordin
I refer to (3.1) as thestandard multiparameter Bailey pair because so many of the clas
Rogers–Ramanujan type identities are direct consequences of it. As noted earlier, a
tities in Bailey’s papers [8,9] may be derived from the SMPBP. A rough count indic
that at least 40 percent of Slater’s list [24] may be derivable from the SMPBP. Howe
seems plausible that other multiparameter Bailey pairs, analogous to the SMPBP in
way, could be defined, perhaps accounting for the rest of (or at least large portio
the rest of) Slater’s list, and incidentally revealing many new identities of the Rog

Ramanujan type. This clearly warrants further investigation.
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