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Abstract

We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction—diffusion systems. A com-
putable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model
and a three-species model for the spatial spread of rabies among foxes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear reaction—diffusion systems are well suited to model a wide range of physical, chemical and biological
pattern formation processes (see, for instance, [23,25,35]). The study of the stability—instability of a given basic
solution is very important to understand the real world (Anderson [1], Straughan [34]).

Let us consider the perturbation equations of a given constant solution U to a reaction—diffusion system

U =DAU +LU + N(U,, ..., Uy). (1)

with initial condition
U(0) = Uy ()

and suitable boundary conditions (usually zero Dirichlet or Neumann boundary conditions). The perturbation
U(x,t)= (U, Us,...,U)T, with x € 2 CR™ and ¢ > 0, is an element of a Hilbert space H, and Uy € H. Here
we assume H = L>(£2), where £2 is the space-domain of motion, 2 = (0,;) x (0,12) x --- x (0,1,). D = D;;j and
L=L;;,i,j=1,2,...,n, are constant matrices (depending on some physical parameters), A is the m-dimensional
Laplacian and N = (N, ..., N,,)T represents the nonlinearities (in some problems N;,i = 1,2, ..., n, are polynomial
in U;j and D;; = §;; D}, with positive D}, see [23,31]). Here we suppose that the initial value problem (1)—(2), with
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suitable boundary conditions, is well posed and the solutions exist globally at least for small initial data and do not
discuss the question of global existence.

A fair amount of attention has been given to the application of Lyapunov methods to reaction—diffusion systems
(see, for example, [3,6,13,14]). In [4,36] the stability—instability problem of a constant solution of (1) (with Neumann
boundary conditions) is examined with the study of the stability properties of L and the stability of the principal
submatrices of L and L — D, where D is a diagonal matrix. A nonlinear stability analysis for reaction—diffusion
systems has also been given in [7,18,30], by introducing particular Lyapunov functions.

Here we shall consider the case of weakly coupled parabolic systems, i.e. systems with D;; = §;; D;; this case
usually happens in the applications. However, cross diffusion is important in certain biological situations (see [23]).
A stability analysis of an epidemic model with cross diffusion is studied in [22] with an optimal Lyapunov function.

In order to study the stability—instability problem of U the main classical methods are:

(a) the method of the linearized instability: this method provides a critical parameter R, for a given parameter R,
above which U is unstable;

(b) the Lyapunov method (with a Lyapunov function E): this method provides a critical nonlinear Lyapunov para-
meter R below which the basic solution U is nonlinearly stable (see [23,34]).

In general, we have Rg < R.. If, in particular, Rg = R, one obtains necessary and sufficient conditions of linear and
nonlinear (conditional or global) stability and we say that the Lyapunov function E is optimal. This, for instance,
happens if the linear operator is symmetric or symmetrizable in the scalar product of the Hilbert space (see [5,10]).

We note that in the case of ordinary differential systems a linearization principle holds, the well-known Hartman—
Grobman theorem, while for partial differential systems it has to prove case by case. It also holds for reaction—diffusion
systems (see, for example, [14, pp. 98—100], [31] and references therein). It gives stability conditions up to the linear
criticality but usually it does not give a computable radius of attractivity for initial data which is important in the
applications.

In many physical problems, in PDEs case, the “classical energy” Eo(t) = |U||>/2 is used as a good Lyapunov
function to control the stability (see, for instance, [8,23,34]). In these cases one generally obtains Rg, < R, in par-
ticular, Rg, = R, if the linear operator A is symmetric [10,34]. If A has a skewsymmetric part, then Rg, < R, and
new Lyapunov functions, different from the classical energy E(, must be introduced, usually in a heuristically way, to
improve the nonlinear critical stability thresholds (see [20,26,27,32,33]).

The aim of this paper is to obtain necessary and sufficient nonlinear stability conditions for basic solutions to
reaction—diffusion systems with a computable radius of attraction for initial data and make some applications. To
this end, we give a general analytical procedure to construct an optimal Lyapunov function, by means of a change of
dependent variables, connected with a projection on eigenfunctions of the Laplacian, to control linear and nonlinear
stability. We apply this method to study nonlinear stability of constant solutions of two interesting applications in
chemical-physics and in epidemiology: the well-known Brusselator model of an autocatalytic chemical reaction stud-
ied by Prigogine and Lefever [28] and a three-species model for the spatial spread and control of rabies among foxes
(see [1,23,24]). We remark that the present method gives sharp nonlinear stability conditions with a computable radius
of attraction of initial data which is finite for all values of R less than R, and it depends on the basic motion and the
“physical” parameters of the system. This differs from the linearization principle where no estimation of the attracting
radius for the initial data in terms of the “physical” parameters is given (see, for example [14, Chapter 5, Section 5.1,
pp- 98—100]). This method obviously is also valid in ODEs. In this case, it is equivalent to other well-known classical
methods to define an optimal Lyapunov function (see, for instance, [2,11,12]).

In Section 2 we give the general procedure to define optimal Lyapunov functions in reaction—diffusion systems. In
Section 3 we apply the general procedure to the well-known Brusselator system and to a biological case of a three-
species (SIR) model for the spatial spread and control of rabies among foxes. Our main conclusions and remarks are
drawn in Section 4.

2. A general procedure

System (1) can be written as an evolution equation in a Hilbert space H:

U=AU+NU), (3)
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where A = DA + L is an operator with suitable properties depending on the boundary conditions. We may assume
that N is a nonlinear operator, sufficiently smooth, vanishing at 0 so that U =0 is a solution of (D).

We note that if U does not depend on the spatial variables, then A =0, H =R, and we obtain the usual ODEs
system. In this case, our approach is reduced, in a natural way, to the canonical reduction method based on the classical
eigenvalues—eigenvectors problem. Indeed, by means of a change of dependent variables, we obtain new canonical
fields V = Q~'U and a new (topologically equivalent) system

V=BV +N(V),

where B = Q7' AQ is a similar matrix to A (it is in a diagonal or a general Jordan form), N(V)=Q0"IN(QV). We
recall that a transformation matrix Q is a non singular matrix of eigenvectors and generalized eigenvectors (in the case
of a multiple eigenvalue with different geometric and algebraic multiplicity) of A, and Q! is its inverse. In the case of
simple eigenvalues, Q is given by an n by n array such that the jth column is the jth eigenvector corresponding to the
Jjth eigenvalue. If the jth eigenvalue is complex, the jth column and the (j 4 1)th column in the eigenvectors array
are the real and imaginary parts corresponding to the jth eigenvalue. As it is well known, similar operators define
ordinary differential equations that have the same dynamical properties (see [2,11,12]). We thus define the optimal
Lyapunov function

1
E::E[V12+V22+-~~+V,3],

which gives the critical linear and (at least local) nonlinear stability thresholds; we also obtain a computable radius of
attraction of initial data. In particular cases we may obtain global stability.

In the PDEs case, we generalize the previous approach by introducing a change of dependent variables, connected
with a projection on eigenfunctions of the Laplacian. Thus, we build as optimal Lyapunov function (at least for the
linear problem) the classical energy of the new canonical fields:

E() = 2v )2
=SIVIE,

where (,) and || - || are the usual scalar product and norm in a Hilbert space H (usually H = L%(£2)). For particular
nonlinearities and dimensions of the space domain, sometimes, in order to control the nonlinearities, we have to add
to %H V||? a complementary term. Now we define

1 -
E(t)= §||V||2+bE2(l),

where b > 0 and E;(¢) controls the nonlinearities (see [34]).
Let us consider the reaction—diffusion system

Uit = Dix AU, + Liy Uy + N; (Uy, ..., Uy), 4

with initial condition (2) and Dirichlet boundary conditions

Ui(x,t)=0, V(x,1)€0d8 x (0,400), (®)]
or Neumann boundary conditions, with zero average in £2,
oU;(x,1)
T:O, V(x,t) €082 x (0,400), (U;j)= | Ui(x,1)d2 =0. (6)
n
2

System (4) can be written in the form (3) as the initial value problem in H,

U=AU+N(U), U(0) = Uy, (7
Uye H,A=DA+L,D=D;j=§;jDj, Dj >0, L =L;; where L;; are real numbers.
We assume:

(i) A is a densely defined closed operator with compact resolvent;
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(ii) the bilinear form associated with A is defined and bounded on a space H, which is compactly embedded in H
(for instance, if A is the closure in L;(§2) of DA + L restricted to Cg(.Q), then H, = WOI’Z(.Q));
(iii) N is a nonlinear operator, N : D(N) € 'H — H, with N(0) = 0 and N satisfies a condition of type

|(NU, )| < KollU|*IVU|? (8)

(with K¢ and « positive numbers).
In these hypotheses, we have (see [9,16])

Theorem 2.1. The spectrum of A consists entirely of an (at most) denumerable number of eigenvalues {0y}, eN with
finite (algebraic and geometric) multiplicities and, moreover, such eigenvalues can cluster only at infinity.

The eigenvalues can be ordered in the following way:
Re(o1) =2 Re(o2) = --- = Re(o,) = -+ -.

We recall some well-known stability definitions.
Definition 2.1. The zero solution of (7) is said to be linearly stable if Re(o7) < 0.

Definition 2.2. The zero solution of (7) is said to be nonlinearly stable if

Ve>038(e)>0: [[Upll <8(e) = [UW®W|<e VE=0.

Definition 2.3. The zero solution of (7) is said to be asymptotically nonlinearly stable if it is nonlinearly stable and
there exists y € (0, oo] such that

Wl <y = lim [U()]=0.
—00

If y = oo the zero solution is said to be unconditionally (or globally) nonlinearly stable.

The operator A is in general non-symmetric, although it allows a decomposition into two parts A; and A such
that

(a) A=A+ Az, D(A2) 2 D(A1) = D(A),
(b) A is symmetric with compact resolvent,
(c) A, is skewsymmetric in H and bounded in H*.

Thus the spectrum of A satisfies the same type of property as that given above for the spectrum of A. But now the
eigenvalues {A,} are real and A| > --- > X, > - - -. The linear stability is reduced to studying the sign of s = Re(o7).
In general s will depend on the basic motion through a dimensionless parameter R, such as reproduction number,
Reynolds or Rayleigh numbers (and also on some other parameters). The value R, of R at which linear instability
sets in is the least value of R for which Re(o7) = 0. It is called critical value (of linear instability).

For the problem (7) an energy equation holds (remember that A, is skewsymmetric):

d |U|?
dt 2

We assume that (A{U,U) = RI(U) — ||VU||2, where I (U) is a quadratic form in U, in our hypotheses there exists
a positive constant ¢ (Poincaré’s or Wirtinger’s constant) such that c||U I> < [IVU||>. From (9), we have

=AU, U)+(NU, U)=A1U, U)+(NU,U). ©)]

2
d U] g(RI(U)

R
—1IVUI?+(NU,U) <[ — =1 )|IVU||?> + (NU, U), 10
) VU )II I+ ( ) (RE )II I° + ( ) (10)

where
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1 I1(U
_ =max¥ (11)
R s |VU|?

and S is the space of the kinematically admissible fields. (Rg is the critical value of energy-nonlinear stability.)
From (10), because of the Poincaré’s inequality and (8), we have

<2c(—h + Ko2*?E“1?)E,
where h =1 — %. By assuming R < Rg and E(0) < (%)2/“, where a = 2ch and b = 211*/2¢ K, integrating last
differential inequality, we obtain the exponential decay

E(Q)e™ %
bE(0)%/2 _ :
(1 - T(l —e aal/Z))Z/a

E(@) < (12)

Thus, we have:

Theorem 2.2. If R < Rg and E(0) < (%)2/“, with Rg given by (11), with a =2ch and b = 21+e/2¢ K\ then the zero
solution of (7) is conditionally asymptotically stable according to (12).

We note that, from the above arguments, it follows that while the linear stability problem reduced to studying the
eigenvalue problem associated with all of A, nonlinear stability according to the standard energy method involves the
eigenvalues of the symmetric part of A only (see [34]). Moreover, whenever Ay = 0, the two eigenvalue problems
coincide and we have necessary and sufficient stability conditions (Rg = R.). From a physical point of view, a skew-
symmetric linear operator L, can represent a stabilizing effect (see [9,34]) that gets lost if we use the classical energy,
in fact, now (AU, U) =0.

One reason to introduce a new optimal Lyapunov function (equivalent to the energy norm || - ||) is exactly to recover
this stabilizing effect. However, we note that the present method contains the symmetrization case as a particular case.

Now we have to recall the well-known linearization principle [14,17,29]:

Theorem 2.3. I[fRe(c1) < 0, then there exist positive constants A', B' and yo such that ||U || < A'|Uolle™B"" whenever
IUoll < o

This result, though remarkable from a theoretical point of view, should not be considered completely satisfactory
because, in particular, the constant yg (which gives an attracting radius for the initial data) cannot be computed
numerically and we do not know, in practice, how small the perturbations must initially be in order to have stability
(see [9,15]).

The other reason to introduce a new optimal Lyapunov function is to obtain a computable and finite radius of
attraction for the initial data.

Now we give the main steps to construct an optimal Lyapunov function for the reaction—diffusion system (4):

(1) First we linearize
Uit = Dix AUk + Lix Ui
and denote by &, (p positive integer) the generic eigenvalue of the Laplacian with boundary conditions (5) or (6),
Ep=CT with 172 =172 £ 152 4 - 41,2, We define
Ag=—ED+L,
where & is the principal eigenvalue of the operator DA + L (i.e., the eigenvalue corresponding to the critical
linearized instability parameter), and compute the eigenvalues of Ag.
(2) We introduce a transformation matrix Q of eigenvectors (and/or generalized eigenvectors) of the matrix Ag and
its inverse Q‘l.

(3) We define the new field variables V = Q~'U and write the new (nonlinear) reaction—diffusion system equivalent
to (4) (see also [23, p. 53])

Vii = Fix AV + G Vi + Ni(V), V(0) = Vo, (13)
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where

F=07'DQ, G=07'LQ.
and

NWV)=07'N(QV).

We introduce the Lyapunov function
1 2
ORI 140]

for the new linearized system and study the (linear) stability of the zero solution.
We write the balance equation for the Lyapunov function E(¢),

E\(t)=(GV,V)— (FVV,VV)
and we assume that the quadratic form (FVV,VV) is positive definite. Then, we study the maximum problem

GV,V

M = max ¥, (14)
S (FVV,VV)

where S is the space of the admissible functions (for example, in the case of zero Dirichlet boundary conditions,

it is the Sobolev space Wol’z(.Q) — {0}). M is obtained by solving the equation

where
o {Z(Gi/’ — M(p)§,Fij) ifi =], o
N Gij+Gji —M(p)§p(Fij + Fji) ifi# ],

and maximizing the generic eigenvalue M (p) with respect to the integer p.
We consider the nonlinear system (13) and define the new Lyapunov function

E(t)=E () +bEx(t), b>0,

with a suitable E; which controls the nonlinearities, and write the energy equation of E(¢) (in some problems,
and for particular space dimensions, we can choose b =0 and the optimal Lyapunov function E(f) coincides
with E1(1)).

Finally, we show that the condition M < 1 is the nonlinear stability condition, and M = 1 gives the critical
Lyapunov number Rg which coincides with R.. If the nonlinear term N satisfies a condition of type (8), we
obtain the coincidence of the linear and nonlinear stability boundaries with a computable value for the radius of
attraction of the initial data.

s easy to see that:

Theorem 2.4. The systems (7) and (13) are topologically equivalent.

3.

Applications

Here we apply the previous method to two well-known systems, the Brusselator and a three-species (SIR) model for

the spatial spread and control of rabies among foxes. The linear stability—instability of this systems is well documented
in the literature (see [23,25,28]). By using the present method, we obtain sharp nonlinear stability conditions with a
computable finite radius of attraction for the initial data.
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3.1. The Brusselator system

The Brusselator model, introduced by Prigogine and coauthors (see Nicolis and Prigogine [25], Prigogine and
Lefever [28]), is a well-known example of an autocatalytic chemical reaction.
Let a, b be fixed concentrations of two chemical products and let

(X=a, Y=0b/a)
be a constant solution of the Brusselator system

{Xt:a—(b+1)X+X2Y+D1AX,
Y; =bX — X?Y + D)AY,

where D and D; are the (positive) diffusion coefficients.
The perturbation equations to this solution are given by

{u,:bu—u+a2v+DlAu+n1(u,v), (17)

vy = —bu — a’v+ D) Av +ny(u,v),
in £2 x (0, 00), where ny(u, v) = —ns(u, v) = 2u? + 2auv + uv and 2 = (0,1;) or 2 = (0,1;) x (0, ). Here we

a
consider one-dimensional and bi-dimensional bounded domains. The system (17) is in the form (1) with U = (u, v)7.
To the system (17) we add the initial condition u(x, 0) = ug(x), v(x,0) = vp(x) (small enough to guarantee the
global existence), the Neumann boundary conditions % = g—z = 0, with the average conditions (#) =0, (v) =0, or
the Dirichlet boundary conditions, # = v = 0 on the boundary.
If we consider the classical energy

Eo) = [ + < oy
= — u —||V ’
L) b
and use the Poincaré’s inequality & ||u 12 < IVu||?, we have
; 2 at 2 2 a’ 2
Eo=(b—Dlull —?Ilvll — D1||Vul| —;D2||Vv|| + N(u,v)

2 at 2 a? 2
< (b —1-=&ED]ul —;Ilvll —;Dzllvl)ll +Nu,v),

where § =& = ’;—22 is the first eigenvalue of the Laplacian with the aforesaid boundary conditions, / 2= N 24 Iy 2)

(orl~2= 11_2 in the one-dimensional case) and N (u, v) = (ny, u) + (ny, v). If

b<bg,:=1+ED, (18)

we have linear stability. It can be proved that we have also (conditional) nonlinear stability if we use a Lyapunov
function Egy + E with suitable E.

Now we apply the general procedure. First we study the linear stability and compute the eigenvalues of the lin-
earized problem. It is easy to see that the condition

a’(14&,Dy)
snDZ

is necessary and sufficient for (linear) stability (see [25]).
Here we consider separately the cases of complex and distinct real eigenvalues. The coincidence of real eigenvalues
is very exceptional and will not consider here (nevertheless our method is still valid).

b<bc=minmin<1+§nD1 + ,14a® + &,(Dy +D2)>
n

3.1.1. Complex eigenvalues
In the case of complex eigenvalues (Hopf instability) and for one-dimensional and bi-dimensional spaces, we have

b < 1+a®> + &,(Dy + D»).
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The minimum with respect to n of the right-hand side is achieved always for n = n = 1, hence & = &;. The critical
linear stability number is given by

be=1+a*>+&(Dy + Dy). (19)

From (19), we see that a2 has always a stabilizing effect. This effect is lost if we use the energy Ej (see (18)).
We introduce the matrix

(b 1-ED a? )
£ —b —az—éjDz ’

The eigenvalues of the matrix Ag are given by 5»1,2 =v +iw, where
v=c-[b—1—(Di+ Dyt —d’], o’ =|Ag| %

Here |A¢| denotes the determinant of the matrix Ag, and we have assumed that @ > 0. A matrix of vectors Q and its
inverse are given by

@+EDy+v) o . 0 >
Q=< —b 0)’ Q :<l @4EDyty |

wb
From the expression of the matrix Q! we have the new canonical fields V = (¢, )7, given by

b= v
=7
1 24 ED
1/,=_<u+a+§72+vv>’
w b

and, by means of some algebra, we obtain the new system (equivalent to (17))

¢ = (v +ED2)p + ¥ + DaAG + Ni(§, V),

(v + D1E)(v + DyE) — a?
Y =

- ¢+(u+éDl>w+%(Dl — D2)A¢ + D1 AY + Na(, ),

where

a=a*+EDy+v,
2

y o 2 w? 2 o 2.3 2 2.2
N1(¢,1//)=<——2aa>¢ +71ﬂ +2w<5—a>¢w—a¢ — 2009 Y — w0 PY~,

a
_ b—o -
Na(p, ¥) = — M (@, ).

We write the energy equation for Eq(¢):
E\ =T - D1 + M, (20)

where

2 D D 2
I = 0+ EDDIBIP + v+ E D)y P+ LW T DO F Dob) —am

w
_a(D; - Dy)

Dy (Vo, V) + D2[IVeI* + D1l VY |17,

w
N = (N, ¥). 9) + (N2, ¥), ¥). 1)

For simplicity, we consider the case of Dirichlet boundary conditions (all the results hold also for Neumann b.c.
with zero average in §2). Following the general procedure, step (5) in Section 2, we obtain the equation for the
maximum
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It is obtained by solving (15) and (16), where now

Gii=v+§&D, Gp=w, Fi11 = D3, Fi, =0,

v+ D v+ D —a?
G21=( 1%’)(0) 28) a, Gy =v+E&Dy,

o
= Z(Dl — D), Fy» =D;.

We also assume that the positive-definite condition of D holds
2

o 2
E(D] — D)) —4D 1D, < 0.
We easily find
n 2v
E[D1 + Dy + P22l + o)

From the energy equation (20), we obtain the estimate

M=1

E\ < (M —1)D; + M.

469

(22)

In the particular cases (in one-dimensional space): D1 = Dj; D) =8 x 1073, Dy=4x103,a=2,1=1;
DI =8x103, D, =16x1073,a=2,1=0.11, we can easily verify that M < 1 < v < 0. This is equivalent to

b < b..
Now we estimate the nonlinear terms.
Case (ap). In the one-dimensional case, we choose E(t) = E|(t).
From the definitions of E and D;, we easily have the inequalities

2 1/2 12
ol < V2E'2, llpxll < [ ] D\,
* D+ D, — |D1;D2| /a2+w2 1

D+ Dy — —lDl;D2| Vol + w?
2

Dy > [ ](u«uu2 + 19:1)

(also i satisfies the first two inequalities). Moreover, by the Poincaré inequality, we obtain

213Dy
72(Dy 4+ Dy — @\/oﬂ To?)

l2
1 2 2
E < 27Tz(lldbcll + 19 l”) <
From (21) and (22), we have

E\ < (M = DDy + (Ni($,¥), ¢) + (Na(g, ¥), ¥),
where
2

2
(N1 ¥). ¢) = (“; - Zaa) (02 ¢) + %(I/ﬂ, #) + Zw(% - a)(¢2, v)
2
020)]+ 12 0)] 420 = |2 )

2
o
— —2ax
a

N

and

O[Z
a

— —2ax
#2alo (6, v)| + |07, 92)] |

b—«
w

2
60))+ 2102, 0)] +20]

(N2(¢v I//)7 ¢) <

+2lalo|(¢”, v))|

(6%, )| +a?|(¢%. ¢°)
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Since in 1 dimension W01’2(O, 1) c C%0,1;), we have

max | f| < <Vl fll. (23)
From this inequality and from the Poincaré inequality, we easily obtain
l «/_ l 1\/_
1,02 < ool (¥, 92| < a1,
f
(6. v2) | < ——I¥= Pl I, \(w>¢3)|<lln¢xnnwxnn¢n%
|(¢2,¢2)|\\hn¢uﬂ Il (e, )] <hllga el 112
Collecting all these inequalities, we have
E<D|[M—-1+CE"*+BE], (24)
where
)i / b— 2 2
C= ! (' (x| ><a——2aa2+w—+2a)——a>,
w a a a

b— 2
31=2k011(2|a|w(1+' “'>+|b—a|<“—+1>>,
w w

and
‘ 2
0= .
D] +D2— \DI;DZ\ /a2+w2
If
M <1
and
\/C%—4B1(M— 1) — Ci\2
EO = < 2By )
we have

E1(0) <Di[M — 1+ CLE0)"/* + BIE(0)],
and by a recursive argument (see [34]) we obtain the exponential decay

2

E() < E(O)exp{%

[M—1+CEO)+ B1E(0)]t}.
1%0

Case (a). In the bi-dimensional case, the estimates leading to (24) are based on inequality (23) which does not
hold in two dimensions. Now we use the energy

E=E| +bE,,

with the complementary energy E; introduced by Straughan [34],

1
&=Z@mmﬂmﬁw%

where ¢ = ¢2, n = ¥? and A1, A, are positive parameters to be chosen. Proceeding as in [34], we can prove that the
energy equation for E5 is given by

Ez =T, — Dy + N>,
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where

T =M+ DaE)IC 1P + da(v + D) Inll> + 2w (o, ¥) — 217

D Do£) — a D, —D
+)\2(\}—|— lf)(l)(:‘ 2§) —a (n¢,w)+12¥(nw’ Ag),

3 _ b—a_
Dy = Z[)»1D2||Vé’||2 +)»2D1||V7)||2], No = A (¢, 11y) +A2(nw, - nl)_

By using classical embedding theorems in the Sobolev spaces, and the Poincaré’s inequality, with some calculations
(details of such calculations, in another context, may be found in [34, p. 36]), we can obtain the inequality

Ny +Tr + N> < HyDEV/?, (25)

where Hj is a positive computable constant depending on the parameters a, b, D1, D, 1 — M, Iy, I>, and A1, A>
(the last ones can be chosen to obtaining the best radius of attractivity for the initial data),

D3;=(1—-M)D; + Ds. (26)

Because of the Poincaré’s inequality, we have D3 > 272(1 — M)SE, where § = min(D;, D). From (25) and (26) we
obtain

E <2721 - M)E[1 - H(E®)'"?].
By assuming
M <1,
i.e., b < b, and
E0) < H2,
we easily find nonlinear stability according to the exponential decay

E(t) < E(0)exp|—27%5(1 — M)(1 — HE(0)"/?)t}.

3.1.2. Real eigenvalues
Now we consider the case of distinct real eigenvalues.
It is proved (see [25,28]) that the critical linear instability value b, is given by

a*(l +snDl)>
%-nDZ .

By increasing b, the Turing instability sets in for b = b, which corresponds to the integer n. nearest to the minimum
(e, by,) of the critical curve. In one-dimensional case, one obtains

IJa Dy 2
= b,=11 — .
H (D1 D)4 . < +V D2a>

For example, for the values D} = 1.6 x 1073, Dy =8 x 1073, @ =2,1 =1, considered in [25, §7.4], one finds:
ne =8, b, =3.6022, u =7.5260, and b,, = 3.5888.

If we use the classical energy Eo, also here the stabilizing effect of a? is lost. As before, the eigenvalues of the
matrix

A._<b—1—éD1 a? )
A —b —a>—¢Dy)’

where now & =§,, are

AE=v4 v2 — A

b, = min(l + &, D1+
n



472 S. Lombardo et al. / J. Math. Anal. Appl. 342 (2008) 461-476

A matrix of eigenvectors Q (depending on two parameters ¢ and c») and its inverse are obtained as before and we
have the new system (13). The nonlinear terms are obtained (and controlled) as before. By solving the maximum
equation, we find that M < 1 is equivalent to b < b,. For example, by choosing D; = 1.6 x 1073, D, =8 x 1073,
a =2,1=1 (values given in [25]) it can be proved that the constant ¢ and ¢ can be chosen in such a way that the
quadratic form (FVV, VV) is positive definite. We have M =1 if and only if b = b,.

3.2. Three-species (SIR) model for the spatial spread and control of rabies among foxes
Let us consider the three-component reaction—diffusion system (system (13.73) of Murray [23])

S; =(a—b)< N)S—,BRS+D]AS,

1— =
K

N
I;=BRS—ol — [b+(a —b)E]1+DlA1,

N
Ri=ol— |:b+(a—b)E}R—aR+DAR,

N=S+4+1+R,

in £2 x (0, 400), with £2 = (0, L) x (0, L), L > 0. The populations densities (fox/km?) S, I, R, represent suscepti-
ble foxes, infected, but noninfectious, foxes and rabid (infectious) foxes, respectively. N is the total population. The
positive parameters a, b, «, 8, o, K, D1, D are: the average birth rate, the average intrinsic death rate, the average
rabies death rate (1/« is the average duration of clinical disease), the disease transmission coefficient, the average
infected — infectious per capita rate (1/o is the average incubation time), the carrying capacity, the diffusion coeffi-
cient of susceptibles and infected, the diffusion coefficient of infectious individuals. (For the basic model assumptions
and biological meanings, see [1,23,24,37].)
We adimensionalize the system by means of the transformation

t* « | D1

S=sK, I =¢gKk, R=rkK, N =nKk, t=—, X=X [—,

Kp Kp
—b b b D
Eza_’ M:i’ §=—. d:&, 9= =
KB KB KB KB Dy

On dropping the asterisks for notational simplicity, we have
sy =€(l —n)s —rs + As,
g =rs — (L+38+en)q + Aq,
re=puq — (d+en)r +VAr,
n=s-+gq-+r.

The perturbation u = (u(x, 1), v(X, t), w(X, )7 to the constant solution (s, q, T =@1,0,07, is governed by the
system

U =—cu—e€v—(e+ 1w+ Au — [eu2 +euv + (e + l)uw],
v=—(u+sd+e)v+w+ Av — [e(uv+v2+vw) —uw],
wy=puv—d+e)w+JAw — [e(u +v+ w)w],
where now we have 2 = (0, f,) x (0, I:), with L = L,/ I[{)—’?. To this system we add the Dirichlet or Neumann boundary
conditions, respectively,
u(0,y)=u(L,y) =u(x,0) =u(x, L) =0,
u, (0, y) =uy(L, y) =uy(x,0) =uy(x, L) =0. ()

In order to study the linear and nonlinear stability of the aforesaid solution, we first consider the linear system
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U =—cu—ev—(e+ 1w+ Au,

vy=—(u+ds+e)v+w+ Av, (28)

wy=puv—(d+e)w+FAw.
Because of the boundary conditions, we may introduce an exponential time dependence in u so that u =
uge sin %x sin % y, n € Nt in the case (27) and u = uge* cos %x cos % v, n € N, for Neumann boundary condi-
tions. We obtain the real eigenvalues

Mi:_v+a;ﬁﬁniJ<v+a;ﬁﬁn

2
) — Wy, A3 =—€—§,,

wherev=2¢e+u+86+d, o,=€+pn+8+§&)(e+d+9§)—pn, and§, = 2";72 is an eigenvalue of the spatial
eigenvalue problem Au+ §,u=0.
We have instability whenever A = A > 0, that is

(e+u+86+&)(e+d+vE) <.

From this inequality, we can obtain a necessary condition for the existence of unstable modes for Neumann boundary
conditions (onset of epidemic wave, see [23]),

7

O<d<—— —
€e+pn+46

)

and, for Dirichlet boundary conditions,

_r
et+u+dé+4&

If 1 — (e +d + v&) < 0, we have linear stability for any @ and §. If 1 — (e +d + 9&) > 0, we obtain linear stability
whenever © < ., with the critical value given by

0<d< — e — 0§

_(e+8+8)(e+d+08)
T I—(e+d+08)
where & = & for Dirichlet b.c. and & = 0 for Neumann b.c.
We note that the linearized system (28) has two equations uncoupled from the other. Moreover, the sub-system of

Egs. (28);—_3 is symmetrizable (see [34]), and we can find optimal Lyapunov parameters in the classical energy to
obtaining the coincidence of linear and nonlinear stability regions. In fact, if we used the energy

3

1
m=5@ww+mwﬂ+wwy

where a is a positive parameter to be chosen with a variational and optimization method, we could obtain the critical
nonlinear energy stability parameter w g, which coincides with .. Instead here we use our procedure and observe
that our method is more general than the best coupling parameters method (i.e. the classical energy with optimal
Lyapunov parameters) and contains the results of the symmetrization method as a particular case. For this, in the
present example, we apply the canonical reduction method in the case of Dirichlet boundary conditions. The more
realistic case of Neumann boundary conditions will be studied in a forthcoming paper.

We fix &, = &] in the expression of the eigenvalues and compute the transformation matrix Q and its inverse Q'
we obtain the transformed system

Vii=GuVi+GunVa+ Fi1AVi 4+ Fi2AVa + Ny,
Vor = Go1 Vi + G Vo + Fo1 AV + FypAVa + No,
Vit =G31V1I +G32Vo — €V3 + F31AV + F3o AV, + AVz + N3,

where G;;, F;;j and N; are easily computed.
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Fig. 1. On the left we report the maximum M of the solutions of Eq. (15), near the critical instability parameters /¢, as a function of the integer n.
On the right we report the maximum M, evaluated for n = 1, as a function of © and we observe two different, stability (S) and instability (I),
regions.

For the new Lyapunov function E(¢) = % | V|?, we have the identity

E=G|IVilI> + (G2 + Ga)(V1, Va) + G| Vall? — Fil [V Vi |I?
— (Fi2 4 F2))(VV, VVy) — Fxp|[VVa|? + G31(V1, V3) + G32(Va, V3)
— €llV3l* = F51(VV1, VV3) — Fa(VV,, VV3) — [ VV3|12 + (N (V), V).

By solving the maximum problem as in (14)—(16), it can be proved that if 4 < u., we have nonlinear stability. The
nonlinear terms can be controlled as in the Brusselator model, and the constants ¢; can be chosen in an optimal way
to obtaining a computable radius of attraction for the initial data.

Following the general theory, here we consider as set of input physical parameters (see [23]), the values:
a=1year ', b=0.5year !, & =0.2 day~', g = 80 km? year~! fox~!, o = 0.036 day~!, D = 200 km? year~!,
D; =0.5D, K =2 foxkm™2, L = 79.06 km and we obtain as stability—instability critical parameter the value
e A 0.00719.

In Fig. 1 we report the solution of the maximum problem given by (14)—(16). In particular, on the left of Fig. 1 we
report the maximum M of the solutions of equation det(7;;) = 0, evaluated near the critical instability parameter /.,
as a function of the integer n. The numerical results show that for all n > 1 the maximum M is less than or equal to 1
and in particular, only in correspondence of the critical value u., M =1 forn = 1.

On the right of Fig. 1 we report the numerical results of stability—instability regimes for the physical system
as function of the parameter w. In fact, Fig. 1 shows the maximum M, evaluated for n = 1, as a function of the
W parameter, and we can observe two different regions in which we have stability regime (S) for u < . (M < 1) and
instability regime (I) for . > p. (M > 1).

We now observe that the nonlinear term (N (V), V) is the sum of cubic terms of the type /, o fghdS$2. By using the

3
Holder and Poincaré inequalities, and the well-known inequalities || |2 < ﬁgﬁ IV AN, 1 flla2 < 12181 11, we

easily find a known positive constant C; such that the inequality

Ei(t) <26[(M — 1)+ C1E\*)E

holds. From this, by assuming that £ (0) < (I_C];/I )2 , we obtain the exponential decay (12) where now a = 2(1 — M)é§,
1

o=1and b =2£C.

4. Concluding remarks

We have studied the nonlinear stability of constant solutions to some reaction—diffusion systems by defining an
optimal Lyapunov function which gives sharp stability thresholds, and have applied the general method to two well-
known and interesting problems. These examples of the procedure are helpful in understanding its implementation to
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other cases. The method is valid also in the ODEs case and it is equivalent to classical methods (see, for example,
[2,11,12]).

We stress that it is important—both for theoretical and applicative problems—to have a procedure to construct
a Lyapunov function to yield an optimal stability threshold in PDEs systems. Sometimes the classical energy Ej
gives optimal results for instance in the symmetric or symmetrizable case (see e.g. [10,32,33]). However, there are
instances where ad hoc functions have been devised to yield sharp results, see e.g. [20,26,27,34]. The present method
contains the symmetrizable case a particular case. We also note that the procedure is independent of the dimension n
of the systems. Moreover, the critical stability value Rg and the maximum M given by Eqgs. (14)—(16) can be easily
found by a computer algebra system or numerical programs especially for large dimension. We obtain also a known
(computable and finite) radius of attraction of initial data which depends explicitly on the parameters of the system
(this differs from the linearization principle). The method is sufficiently general to be applied also to other partial
differential systems (for example in fluid dynamics and flows in porous media), and some preliminary results have
been obtained in [19,21].

We note that there are still many open problems, for instance:

(i) to find optimal Lyapunov functions in the reaction—diffusion systems with the linear operator A depending ex-
plicitly on the spatial variables x and possibly depending on VU,

(ii) to find optimal Lyapunov functions in the reaction—diffusion systems with general boundary conditions (in the
linear and nonlinear case).

Some of these issues will be the main topics of further research.
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