Available online at www.sciencedirect.com

ScienceDirect

Fowurnal of
MATHEMATICAL

ANALYSIS AND
APPLICATIONS

ELSEVIER J. Math. Anal. Appl. 344 (2008) 340-352
www.elsevier.com/locate/jmaa

An iterative method for finding common solutions of equilibrium
and fixed point problems

Vittorio Colao , Giuseppe Marino #, Hong-Kun Xu **

& Dipartimento di Matematica, Universita della Calabria, 87036 Arcavacata di Rende (CS), Italy
b Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

Received 19 October 2007
Available online 29 February 2008
Submitted by T.D. Benavides

Abstract

We introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem and of the set
of fixed points of a finite family of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed
iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a real Hilbert space and A a bounded linear operator on H. Assume that A is strongly positive with
coefficient y; that is, there is a constant y > 0 with the property

(Ax,x) > 7llx|I* V¥xeH.

Let T be a nonexpansive mapping on H (i.e. |Tx — Ty| < ||lx — y|| for x, y € H). We denote by Fix(T) the set of
fixed points of 7. Namely, Fix(T') = {x € H: Tx = x}. Itis well known that Fix(T) is always closed convex, and also
nonempty provided 7 has a bounded trajectory (cf. [10]).

Finding an optimal point in the intersection F of the fixed points set of a finite family of nonexpansive mappings
is a problem of interest in various branches of sciences; see [2,3,6,7,9,25] and also see [23] for solving the variational
problems defined on the set of common fixed points of finitely many nonexpansive mappings.

Let {T; }ZN= | be a finite family of nonexpansive mappings. Assume throughout the rest of this paper that

N
F = \Fix(T;) # 0.

i=1
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Forn > N, T, is understood as T}, moq ;y With the mod function taking values in {1, 2, ..., N}.
Let u be a fixed element of H. In [21], Xu proved that the sequence {x,} generated by the algorithm
X1 = — €11 A) Typ1xn + €n1u (D
converges strongly to the solution of the quadratic minimization problem
1
min —(Ax, x) — (x, u)
xeF
under suitable hypotheses on {¢,} and under the additional hypothesis,
F=Fx(T'T,---Ty) =Fix(TyT,---Ty_1) =--- =Fix(ToT5 - - - Ty T1). 2)

In [24], Yao modified the algorithm (1) without the assumption (2) by combining (1) with the viscosity approximation
method of Moudafi [14] (see also Xu [22] and the recent work [12]). Also following Atsushiba and Takahashi [1],
Yao defined the mappings

Un,l = )\'n,lTl + (1 - )\n,l)L

Un2=xn2T2Un 1t + (1 = Ap 2)1,

Un N—1 =2, N-1 IN-1Un n—2 + (1 = Ay N1,

Wi =Un N = NINUs -1+ (1 — Ay N1 (3)
and introduced the iterative scheme

Xnt1 = €nV.f () + Bxn + ((1 = B — €2 A) Wyxy, C))
where f : H — H is an a-contraction (i.e. | f(x) — f(¥)|| < «||x — y|| for all x, y € H). Under suitable hypotheses
on the sequences {1, ;} lN: | and €, and under the further assumption

Il —All<T—eay,

he tried to prove that the sequence generated by the explicit scheme (4) strongly converges to the unique solution x*
of the variational inequality

(A—yfx*,x —x*)>20, x€eF, Q)

which is the optimality condition for the minimization problem

1
in—(Ax,x)—h
min 2( x,x) —h(x)
where £ is a potential function for y f (i.e. h'(x) = y f (x) for x € H).

Unfortunately, there is a gap in his proof due to the fact that for a double sequence {v, i}, ken of real numbers, the
change of the order of the iterated limits

limlimsup v, x = limsuplimv, x
k n n k

is not always true even if, for each k, the lim, v, ; exists and is independent of k (this is however true if the lim, v, &
exists and is attained uniformly in k). The same imperfect occurred in [1], where the technique used in [24] was
initially introduced.

In our main result we shall use a different approach to get the convergence of a scheme which is more general
than (4).

On the other hand, let C be a nonempty closed convex subset of H. Let G : C x C — R be a bifunction. The
equilibrium problem for G is to determine its equilibrium points, i.e. the set

EP(G):={xeC: G(x,y) >0VyeC}. (6)

Many problems in applied sciences reduce into finding some element of EP(G), see [4,8].
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Given any r > 0. It is shown [8] that under suitable hypotheses on G (to be stated precisely in Section 2), the
mapping S, : H — C defined by

1
Sy (x) = {zeC: G(z,y)+;(y—z,z—x)>0VyeC}

is single-valued and firmly nonexpansive and satisfies Fix(S,) = EP(G).

Using this result, S. Takahashi and W. Takahashi [20] very recently introduced a viscosity approximation method
for finding a common element of EP(G) and Fix(S), where § is a nonexpansive mapping.

Starting with an arbitrary element x| in H, they defined the sequences {u,} and {x,} recursively by

G(up,y) + i(y —Up,Up—Xxp) 20 VyeH,
- )
Xn1 =€ f(xXn) + (I — €,)Suy.
They proved that under certain appropriate conditions over €, and r,, the sequences {x,} and {u,} both converge
strongly to z = Prix(s)nEP(G) f (2). (Here Pk denotes the nearest point projection from H onto a closed convex
subset K of H.)
Moreover, it is shown in [13] that the sequence {x,} defined by the scheme
Xpp1 =€V f(xn) + U —€,A)Sx, )

converges strongly to z = Prixs)({ — A+ yf)(2).
By combining the schemes (7) and (8), Plubtieng and Punpaeng [15] proposed the following algorithm

G(unay)"'i(y_”n»un_xn)}o’ VyeH,
- ©)
Xnt+1 =€nVf (xXn) + (I — €,A)Sup.
They proved that if the sequences {€,} and {r,} of parameters satisfy appropriate conditions, then the sequences {x,,}
and {u, } both converge to the unique solution z of the variational inequality

((A—yf)z,x—2) =0 Vx €Fix(S) NEP(G), (10)

which is the optimality condition for the minimization problem
1
min —(Ax,x) — h(x)
x€Fix(S)NEP(G) 2
where 4 is a potential function for y f.
Note that the result in [13] is a particular case of this, corresponding to the choice G(x, y) =0 (so that u,, = x;).
In this paper we combine the scheme (4) for a finite family of nonexpansive mappings with the method (9) for the
equilibrium problem and propose the following explicit scheme

1
Gup,y)+—(y —up,up —x,) 20 VyeH,
n (11D

Xn+1 =€y f(xn) + Bxy + ((1 - B)I — enA)Wnu,,.

We prove under weaker hypotheses that both sequences {x,} and {u,} converge strongly to a point x* € F which is
an equilibrium point for G and is the unique solution of the variational inequality

((A—yf)x*,x —x*)>0 Vxe FNEPG). (12)
This result covers all previous schemes (1), (4), (7), (8) and (9).

2. Preliminaries

Let C be a closed convex subset of H. Recall that the (nearest point) projection Pc from H onto C assigns to each
x € H the unique point Pcx € C satisfying the property

[x — Pcx|| =min|lx — y]|.
yeC

The following characterizes the projection Pc.
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Lemma 2.1. (See [19].) Given x € H and y € C. Then Pcx =y if and only if there holds the inequality
(x—y,y—2)20 VzeC.
Lemma 2.2. (See [16].) Let {x,} and {z,,} be bounded sequences in a Banach space X and let {B,} be a sequence
in [0, 1] with 0 < liminf,,_, o B, and limsup,,_, ., B, < 1. Suppose
Xnt1 = Bpxn + (1 = Bp)zn
for all integers n > 0 and

limsup(l|zp+1 — znll = Xp41 — xall) <O.
n—oo

Then lim,, 00 [l Xp — zall = 0.

Lemma 2.3. (See [21].) Assume {a,} is a sequence of nonnegative numbers such that
ans1 < (1 —yw)a, +8,, n=0,

where {y,} is a sequence in (0, 1) and 5, is a sequence in R such that

(1) 302 ¥n = 09;
(2) imsup,,_, oo 8n/¥n <0 0r Y o2, |8n] < 00.

Then lim,_ 5 a; = 0.

Lemma 2.4. (See [13].) Let A be a strongly positive linear bounded operator on a Hilbert space H with coefficient y
and 0 < p < |A|I~". Then |1 — pAll < 1 - py

Lemma 2.5. (See [8].) Let C be a nonempty closed convex subset of H and G : C x C — R satisfy

(Al) G(x,x)=0forall x € C;
(A2) G is monotone, i.e. G(x,y)+G(y,x) <0forall x,y € C,
(A3) forallx,y,z€C,

liminf G (rz + (1= 0x, ) <G(x, y);
(A4) forall x € C, y — G(x,y) is convex and lower semicontinuous.
ForxeCandr >0, set S, : H— C to be
Sy(x) := {ze C:G(z,y)+ %(y —z,z—x) =0, Yy GC}.
Then S, is well defined and the following hold:

(1) S, is single-valued,
(2) S, is firmly nonexpansive, i.e.

I1S,x — Syl < (Spx — Spy, x — ),
forallx,y e H;

(3) Fix(S;) =EP(G);
4) EP(G) is closed and convex.

Definition 2.6. Let C be a nonempty convex subset of a Banach space. Let {T; }{V: | be a finite family of nonexpansive
mappings of C into itself and let A1, ..., Ay be real numbers such that 0 < A; < 1 foreveryi =1,2,..., N. We define
a mapping W of C into itself as follows:
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Uy=mT + A=A,
Uy =ThU + (-1,

Unv-1:=Ay1Tn1Un2+ A =Ay_1I,
W:=Uny=ANTyUn_1+ (1 —Apn)I. (13)

Such a mapping W is called the W-mapping generated by T, ..., Ty and Ay, ..., AN.

The concept of W-mappings was introduced in [17,18]. It is now one of the main tools in studying convergence
of iterative methods for approaching a common fixed of nonlinear mappings; more recent progresses can be found in
[1,5,11,24] and the references cited therein.

Lemma 2.7. (See [1].) Let C be a nonempty closed convex set of a strictly convex Banach space. Let Ty, ..., Ty be
nonexpansive mappings of C into itself such that ﬂlNzl Fix(T;) # 0 and let A1, ..., AN be real numbers such that
O<iti<lforeveryi=1,....N —1and 0 <Ay < 1. Let W be the W-mapping of C into itself generated by
Ti,...,Ty and Ay, ..., hy. Then Fix(W) = (L, Fix(T}).

Lemma 2.8. Let C be a nonempty convex subset of a Banach space. Let {Ti},N: | be a finite family of nonexpansive
mappings of C into itself and {Kn,,-}fvzl be sequences in [0, 1] such that ., ; — X; (i =1, ..., N). Moreover for every
n €N, let W and W), be the W -mappings generated by T, ..., Ty and Ay, ..., Ay and Ty, ..., Tn and X, 1, ..., An N
respectively. Then for every x € C, it follows that

lim ||W,x — Wx| =0.
n

Proof. Let x € C and Uy and U, ; be generated by 71, ..., Ty and Ay,...,Ay and T1,...,Tn and X, 1,..., Ay N
respectively, as in Definition 2.6. We have

1Un.1x = Urx|| = | An 1 Tix 4 (1 = Ay D)x — M T1x — (1= A)x| = [An1 Tix — Apax — M Tix + A x|
= A1 — M1 T1x — x]|.
Letke{2,..., N}, then
1Unix — Uxll = | Ak TeUnk—15 + (1 = Mg i)x = 2 Tk Up—1x — (1= 2)x |
= Ak Tk Unk—1% — Ay kX — AT Ug—1x + Agx ||
S A k1 TeUn g—1x — T Ug—1x || + [An ke — Ml TeUk—1x || + [An ke — Al llx ]|
<NUpg—1x = Ug—1x [l + [An g = 2 (I Tk Ur—1x || + [1x ).

Hence,

N
IWx — Wil = [Unvx — Unxl <Y 1k = Al (1T U1l + [1x1) + A = 2l Tix = x|
k=2

Since for every k € {1, ..., N}, lim, |, x — x| = O, the result follows. O
The following lemma is an immediate consequence of the inner product on H.

Lemma 2.9. For all x,y € H, there holds the inequality

lx + Y12 < X +2(y, x + y).
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3. Main result

345

Theorem 3.1. Let H be a Hilbert space, C a closed convex nonempty subset of H, {Ti};\]: | a finite family of nonex-
pansive mappings from H into itself, G : C x C — R a bifunction, A a strongly positive bounded linear operator with
coefficient y and f an a-contraction on H for some 0 < a < 1. Moreover, let {€,} be a sequence in (0, 1), {)\,,,i}fv:1 a
sequence in [a, bl with 0 <a < b < 1, {r,} a sequence in (0, 00) and y and B two real numbers such that 0 < < 1

and 0 <y <y /a. Assume

(1) the bifunction G satisfies
(A1) G(x,x)=0forall x € C;
(A2) G is monotone, i.e. G(x,y)+G(y,x) <0forallx,y e C,
(A3) forallx,y,z €C,

lim G(rz+ (1 —0)x,y) < G(x,y);
t—0

(A4) forall x e C, y— G(x,y) is convex and lower semicontinuous;

(B1) FNEP(G) # 0;
(ii) the sequence {€,} satisfies

(C1) lim, €, =0; and

(C2) Y02 €n=00;
(iii) the sequence {r,} satisfies

(D1) liminf, r, > 0; and

(D2) lim,, 1y, /141 = 1 (this is weaker than the condition lim, |r,4+1 — | = 0);
(iv) the finite family of sequences {)L,,,,‘}ZNZ | satisfies

(E1) lim, |Ay; — Ap—1.;)| =0foreveryie{l,...,N}.

For every n € N, let W, be the W-mapping generated by Ty, ...,Ty and Ay 1, ...

sequences generated by x| € H and Vn > 1

1
Guy,y) + r_(y_“nvun —x,) 20 VyeH,

n

Xn41 =€V f (xn) + Bxn + ((1 -8B - GnA)Wn”n

sAnN- If {xn} and {u,} are the

(14)

then both {x,} and {u,} converge strongly to x* € F, where x* is an equilibrium point for G and is the unique solution

of variational inequality (12), i.e.,

x* = Prrep) (1 — (A —yf))x*.

Proof. By Lemma 2.5, it follows that for every n € N, there exists a nonexpansive mapping S,, : H — H, such that
uy = Sy, x, and EP(G) = Fix(S,,). Whenever needed, we shall equivalently write scheme (14) as

Xng1 = €V (n) + Bxn + (1 = B) — €4 A) Wy Sy, X

15)

Moreover, since €, — 0, we shall assume that €, < (1 — 8)||A|| "' and 1 — €, (y — ay) > 0.

Observe that, if ||u|| = 1, then
(=B —enA)u,u)= (1 = B) — ex{Au,u) > (1 = B — &l Al]) = 0.
By Lemma 2.4, we have
| =B —eA| <1-B—e7.

We shall divide the proof into several steps.

Step 1. The sequence {x,} is bounded.
Proof of Step 1. Let v € EP(G) N F and set

vf) — Av|/(7 —ap)}.

M = max{|lx; — v,

(16)
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We shall use induction to prove

X0 —vll <M (17)
for all n > 1. Clearly |Jx; — v|| < M. Assume (17) holds for some n > 1. Then noting (15) and the fact that v =
W, S, v =S, v, we derive that

11 = vl = [ [(1 = B — €x AJ(Wo Sy, %0 — WSy, v) + €ny [ f (xn) — f(0)]

+en(yf () — Av) + By — ) |
<[1 =@ —ap)]lx — vl +e @ —ap)|yf@) — Av| /7 —ay)

lyf() = Av] /7 —ap)} <M.
Step 2. Let {w, } be a bounded sequence in H. Then

< max{ |l — vll,

W1 Sy 0 = W1 S, =0. (18)
Proof of Step 2. Since {w,} is bounded, we know that

L= sup{llwall + 115, wall} < co.
Now,

Wit Sy, wn — Wit Sy, wa ll < IS,y wn — S, wall.

By the definition of S,, (see Lemma 2.5) we have

G(Sr,H_] Wy, y) + (y — Sr,,_H Wp, Sr,H_] w, —wy) =20 VyeC,

n+1
and
1
G(Srnwn’ »+—(- Sr,lwny Sr,,wn —wy) 20 VyeC.
T'n

In particular,

G(Sr,,_H Wn, Sr,l wy) +

(S, Wn — Spy iy Wiy Spy g Wn — wy) 20
'n+1

and
1
G(Sy, wn, Sy, Wn) + r—(S,nJrl Wy, — Sy, Wy, Sy, Wy — Wwp) = 0.
n

Summing up the last two inequalities and using (A2), we obtain

1
Tn+1
It then follows that

1
(Sr,, Wy — Sr,,_H Wp, Sr,,_H Wy — Wy) + r_<Sr,,+| Wy — Sr,, Wn, Sr,l w, — wy) 2 0.
n

>0. 19)

S s SryiWn — Wy Sy Wy — Wy
ryWn — r)H»lwn’ -
Tn+1 T'n

We derive from (19) that

I'n
S (Srnﬂ Wy, — Wy)

0< <Srn+1 Wy — Sr,, Wy, Sr,, Wy — Wy —
Yn+1

I'n
= <Sr,,+1wn - Sr,, Wp, Sr,, Wy — SrnH wy + Sr,,Hwn — Wp — —r (Sr,,“ Wy — wn)>
n+1

’
= <Sr,,+1wn - Sr,, Wp, (Sr,, Wy — Sr,,Hwn) + (1 - = )(SrnH Wy — wn)>
n41
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which implies that
2 "n
”Srnﬂwn - Sr,l wy||© < |1 - r— ||Sr,,+1wn - Sr,, wn”(”SrnHwn“ + ”wn”)
n+1

This implies that

I'n

”Srnﬂ Wp — Sr,, wp|| < L|1— . (20)
Tn+1
Therefore, (18) is a consequence of (20) and condition (D2).
Step 3. Let {w, } be a bounded sequence in H. Then
lim ||Wy 1w, — Wywy| =0. (21)
n—oo

Proof of Step 3. Let j € {0,..., N — 2} and set

N
M= sup{ﬂwnn + I Tywy | +Z||T,»Un,,-1wn||} < o0

neN =2

It follows from (3) that
NUn+1,8—jwn — Un n—jwnll

= | At N=j TN=jUns1.N—jm1wn + (1 = At N— ) Wi — A N— TN—j U, N— jm 1w — (1 = A N— Wi |

N

Mt t, NI TN jUn i n—j—1wp — Ty jUp N—j 1wy

F 1At N—j — A N TN jUn N—j—1wnll + A1, N—j — An,n—j I wrll
< NUns1,8—j—1wn — Un n—j—1wall + (lwall + 1 TN = Un, N— j— 1w ) [Ans1,N—=j — An,N—j]
SNUn+1,N—j—1Wn — Up N—j—1wall + M|Aptr1,N—j — An,N—jl.

Thus, repeatedly using the above recursive inequalities, we deduce

||Wn+lwn — Waw, | = ”Un+l‘an - Un,an”
N
<MY harrg = Mgl + Dasrn = A (lwall + 1 Trw, )
j=2

N
<MY gt = jl- (22)
j=1
Now by condition (E1) and using (22), we obtain (21) and Step 3 is proven.

Step 4. lim,,_, ¢ || Xn+1 — xn || =0.
Proof of Step 4. Define a sequence {z,} by z, = (x,+1 — Bx,)/(1 — B) so that
Xpg1 = Bxp + (1 — B)zp.
We now compute
1
lent1 = 2nll= 15 | Genra = Bxns1) = (et — Baxn) |
1
=1-3 | [€n+1f 1) = € f )]+ [(1 = B — €1t A]Wo 1Sy, 4 X1
- [(1 - B - 6nA] WnSr,,xn ||
1
€nt1 f (Xnt1) — enf(xn)] - 1-8 (6n+1AW11+ISr,,+]xn+1 - EnAWnSrnxn)
. (23)

_ 14
=
+ Wit Sr,,+1xn+1 - W, Sr,,xn
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Since {x,} is bounded and by (23), we have, for some big enough constant K > 0,

lzns1 — zall < ||Wn+lsrn+|xn+1 - WnSrnxn” + K(€pq1+€n)
< ||Wn+lSr,,+|xn+1 - Wn+15r,,+1xn Il =+ | Wn+lsr,,+|xn - WnSrnxn” + K (€41 +€,)
< lxpg1 — xall + ||Wn+1Sr,,+|xn - Wn+lsr,lxn|| + I Wagrun — Wouy || + K (€441 + €4)

where u, = S;, x,. Now since €, — 0 and by Steps 2 and 3, we immediately conclude from (24) that

limsup(|lzn+l = znll = Ixn41 — xn ”)
n—00

< limsup(”WnJrISrnﬂxn = Wi 1Sr, Xn | + (| W run — Woun || + K (€p41 + 6n)) <0.

n—oo

Apply Lemma 2.2 to get lim,, ||x,41 — X, || = (1 — B) lim,, ||x,, — z,|| =0.

Step 5. lim,, [|lx,, — Wyu, | =0, where u,, = S, xp.
Proof of Step 5. Indeed we have
X0 — Wattn | < lxn — X1 | + [[Xn41 — Wattn |
= [0 = gt |+ e[y Cin) = AWatn] + Bt — Wotan) |
<Motn = X+ € (v | £ ) | + 1AWaun 1) + Bl — Wit
It follows from Step 4 that

1
10 — Watn | < m(nxn — Xptll (v ] £ ) | + 1AW 1)) — 0.

Step 6. lim,, [|x,, — S, x, | = 0.
Proof of Step 6. Let v e F NEP(G). Since S,, is firmly nonexpansive, we obtain

v = Sy, 2017 = 115, v = S, xall?
< <Srnxn - Sr,,v’ Xp—v) = <Srnxn —V,X; — V)
1
= 5(||Sr,,xn — )7 + %0 — vlI* = 1% — Srxull?).
It follows that
1S5, xn — VI < llxn — V1% = 12X — S, 2xa [
Set y, =y f(xp) — AW,S,, x, and let A > O be a constant such that

A > sup{llynll, llxe — vll}.
n,k

Using Lemma 2.9 and noting that || - I% is convex, we derive, using (25)

lent = vl2 = [[(1 = BY WSy 30 — ) + B — 0)] + en[¥f () — AW S, 3] |
<[ (1 = BYWa Sy 30 — ) + BCin — )| + 260 (v X1 — v)
<A = BIWaSr, xn — v]I* + Bllxa — v + 227,
< (A= BISy,x0 — v + Bllxn — vl|* + 227,
= (1= B)(Ilxn — vII* = %0 — Sr,%ull*) + Bllxa — v]I* + 2276,
=[x — vlI* = (1 = B)llxn — Sy, xull* + 2276,

(24)

(25)
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It follows that

1
In = Syl < g (b = I = s = v +20%,)
— l 2 2
= —1 — ﬂ (”xn —XIH-IH +2(xn — Xp41,Xn+1 — U> +2X En)
1
ST173 (20— X1 1% 4 21260 — X ||+ 22%€, )
—0

by Step 4 and condition (C1).

Step 7. The weak w-limit set of (x,), wy (x,), is a subset of F N EP(G).
Proof of Step 7. Let z € wy,(x,) and let {x,,, } be a subsequence of {x,} weakly converging to z. We need to show that
z€ FNEP(G).

At first, note that by (A2) and given y € C we have

1
—{(y —up,up — xn) 2 G(y, up).
T'n
In particular,
u — X,
<y —Un,y,» M> = G(y, Mnm)« (26)
Nm

By condition (A4), G(y, -) is lower semicontinuous and convex, and thus weakly semicontinuous. Step 6 and condi-
tion (D1) imply that (u,,, — Xu,,)/"n,, — 0 in norm. Therefore, letting m — oo in (26) yields

Gy, < lim G(y,um) <0, yeH.
Replacing y with y, :=ty + (1 — )z with ¢ € [0, 1] and using (A1) and (A4), we obtain
0=G0ry) <tG(yr,y) + (A =0G (1, 2) <tG(yr, y)-
Hence
G(ty+(1—0z,9) >0, t€(0,1], yeH.
Letting  — 0T and using assumption (A3), we conclude
G(z,y) 20, yeH.

Therefore, z € EP(G).
It remains to prove that z € F. To see this, we observe that we may assume (by passing to a further subsequence if
necessary)

Anpk = A €(0,1) (k=1,2,...N).
Let W be the W-mapping generated by 71, ..., Ty and Aq, ..., Ax. Then by Lemma 2.8, we have, for every x € H,
Wy, x — Wx. 27

Moreover, from Lemma 2.7 it follows that F = Fix(W). Assume that z ¢ F; then z # Wz. Since z € EP(G) =
Fix(S;,), by Step 5, (27) and using Opial’s property of a Hilbert space, we have

liminf |x,, — z|| < liminf|x, — Wz]|
m m
< hnrlnlnf(”'xnm - an Srnm'xnm ” + ”an Srnm 'xnm - an Sran“ + ” anz - WZ”)
< liminf ||x,,, — z||.
m

This is a contradiction. Therefore, z must belong to F.
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Step 8. Let x* be the unique solution of the variational inequality (12). That is,
((A—yf)x*,x —x*)>0, xeFNEPG). 28)
Then

limsup((yf — A)x*, x, —x*) <O0. (29)

Proof of Step 8. Let {x,, } be a subsequence of {x,} such that

lil?q((yf — A)x*, xy, — x*)=limsup((y f — A)x*, x, — x¥). (30)

Without loss of generality, we can assume that (x,, ) weakly converges to some z in C. By Step 7, z € F N EP(G).
Thus combining (30) and (28), we get

limsup((y f — A)x™, x, —x*)=((yf — A)x*, z = x*) <0

as required.

Step 9. The sequences {x, } and {u,} converge strongly to x*.
Proof of Step 9. By the definition (14) (or equivalently, (15)) of {x,} and using Lemmas 2.4 and 2.9, we have (note
Up = Sy, xn)

Jnr =37 = [[((1 = B — en ) (Watn — x*) + B — x*)] + e (£ (xn) — Ax*)[*

(A= BT = €nA) (Wiytty — x*) + B(xn — x*) | > + 2€n(y f (6a) — Ax*, x, 11 — x*)
(1= B)I — €, A) 2
= 1— _—_—
jo-n
+26ny(f(xn) - f(x*)s Xn+1 _x*>+2€n(yf(X*) - AX*» Xn+1 _x*)
(1 =B — €, A)
(1-P)
+ 2eny |y — x*|| - ||xnsr — x| + 2y £ (x*) — Ax*, xpqq — x¥)
< (1 =B — e, Al?
1-8
ey =P o =37 ) + 2enfvf (%) = Ax*, gy = 2]
< <((1 —B) — Ven)?
1-B
+ 26en(y f (x*) — Ax™*, xpq1 — x7)

(Wnu,, — x*) + ﬁ(xn —x*)

2
<(1-p) + Bxn — x|

(Wnun — x*)

[Wottn ="+ B en x|

+5+ eora) oo =P+ envalinn -

rler
1-8
+ 26,1<yf(x*) — Ax*, xpq1 — x*).

= (1 — QY —ay)e, + )”xn — x*”z +aye, ||x,,+1 —x”‘”2

It follows that

2 y —
||xn+l_x*||2<<l— (y o5)/)€n>||xn_x>s<”2

1 —aye,
=2
en *\ * ok 7/ 6}’! ok 2
—aye, |:2(yf(x) AXT, Xpp1 — X >+—1—ﬁnxn X || i| 31D
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Set
B w112 . 2(y —ay)en
=o' =S
—aye,
=2
. Ve 2
- m[ﬂyf(x*) —Ax" =) T }

Then we can rewrite (31) as
anr1 < (1 —yp)ay +9,. (32)
It is easily verified from conditions (C1) and (C2), and Step 8 that

n—o00

o0
Yn = 0, Z)/nzoO, limsupd,/y, <O0.
=1

Therefore we can apply Lemma 2.3 to (32) to conclude that a, — 0. Namely, x, — x* in norm.
Finally, noticing

n =51 = 1500 = S 2™ < 0 =27

we also conclude that u,, — x* innorm. O

Remark. If we take N = 1, 71 = S and B = 0, then we obtain the result of Theorem 3.3 in [15], without the hypothesis

00
Z l€n+1 — €| < 00.
=1

Moreover, if we set G = 0 in Theorem 3.1, we arrive at [24, Theorem 1] without the assumption

Il —All<T—ay.
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