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Abstract

We introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem and of the set
of fixed points of a finite family of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed
iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a real Hilbert space and A a bounded linear operator on H . Assume that A is strongly positive with
coefficient γ ; that is, there is a constant γ > 0 with the property

〈Ax,x〉 � γ ‖x‖2 ∀x ∈ H.

Let T be a nonexpansive mapping on H (i.e. ‖T x − Ty‖ � ‖x − y‖ for x, y ∈ H ). We denote by Fix(T ) the set of
fixed points of T . Namely, Fix(T ) = {x ∈ H : T x = x}. It is well known that Fix(T ) is always closed convex, and also
nonempty provided T has a bounded trajectory (cf. [10]).

Finding an optimal point in the intersection F of the fixed points set of a finite family of nonexpansive mappings
is a problem of interest in various branches of sciences; see [2,3,6,7,9,25] and also see [23] for solving the variational
problems defined on the set of common fixed points of finitely many nonexpansive mappings.

Let {Ti}Ni=1 be a finite family of nonexpansive mappings. Assume throughout the rest of this paper that

F :=
N⋂

i=1

Fix(Ti) �= ∅.
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For n > N , Tn is understood as Tn mod N with the mod function taking values in {1,2, . . . ,N}.
Let u be a fixed element of H. In [21], Xu proved that the sequence {xn} generated by the algorithm

xn+1 = (I − εn+1A)Tn+1xn + εn+1u (1)

converges strongly to the solution of the quadratic minimization problem

min
x∈F

1

2
〈Ax,x〉 − 〈x,u〉

under suitable hypotheses on {εn} and under the additional hypothesis,

F = Fix(T1T2 · · ·TN) = Fix(TNT1 · · ·TN−1) = · · · = Fix(T2T3 · · ·TNT1). (2)

In [24], Yao modified the algorithm (1) without the assumption (2) by combining (1) with the viscosity approximation
method of Moudafi [14] (see also Xu [22] and the recent work [12]). Also following Atsushiba and Takahashi [1],
Yao defined the mappings

Un,1 := λn,1T1 + (1 − λn,1)I,

Un,2 := λn,2T2Un,1 + (1 − λn,2)I,

...

Un,N−1 := λn,N−1TN−1Un,N−2 + (1 − λn,N−1)I,

Wn ≡ Un,N := λn,NTNUn,N−1 + (1 − λn,N )I (3)

and introduced the iterative scheme

xn+1 := εnγf (xn) + βxn + (
(1 − β)I − εnA

)
Wnxn, (4)

where f : H → H is an α-contraction (i.e. ‖f (x) − f (y)‖ � α‖x − y‖ for all x, y ∈ H ). Under suitable hypotheses
on the sequences {λn,i}Ni=1 and εn and under the further assumption

‖I − A‖ � 1 − αγ,

he tried to prove that the sequence generated by the explicit scheme (4) strongly converges to the unique solution x∗
of the variational inequality〈

(A − γf )x∗, x − x∗〉 � 0, x ∈ F, (5)

which is the optimality condition for the minimization problem

min
x∈F

1

2
〈Ax,x〉 − h(x)

where h is a potential function for γf (i.e. h′(x) = γf (x) for x ∈ H ).
Unfortunately, there is a gap in his proof due to the fact that for a double sequence {νn,k}n,k∈N of real numbers, the

change of the order of the iterated limits

lim
k

lim sup
n

νn,k = lim sup
n

lim
k

νn,k

is not always true even if, for each k, the limn νn,k exists and is independent of k (this is however true if the limn νn,k

exists and is attained uniformly in k). The same imperfect occurred in [1], where the technique used in [24] was
initially introduced.

In our main result we shall use a different approach to get the convergence of a scheme which is more general
than (4).

On the other hand, let C be a nonempty closed convex subset of H . Let G : C × C → R be a bifunction. The
equilibrium problem for G is to determine its equilibrium points, i.e. the set

EP(G) := {
x ∈ C: G(x,y) � 0 ∀y ∈ C

}
. (6)

Many problems in applied sciences reduce into finding some element of EP(G), see [4,8].
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Given any r > 0. It is shown [8] that under suitable hypotheses on G (to be stated precisely in Section 2), the
mapping Sr : H → C defined by

Sr(x) :=
{
z ∈ C: G(z, y) + 1

r
〈y − z, z − x〉 � 0 ∀y ∈ C

}
is single-valued and firmly nonexpansive and satisfies Fix(Sr) = EP(G).

Using this result, S. Takahashi and W. Takahashi [20] very recently introduced a viscosity approximation method
for finding a common element of EP(G) and Fix(S), where S is a nonexpansive mapping.

Starting with an arbitrary element x1 in H, they defined the sequences {un} and {xn} recursively by⎧⎨
⎩G(un, y) + 1

rn
〈y − un,un − xn〉 � 0 ∀y ∈ H,

xn+1 = εnf (xn) + (I − εn)Sun.

(7)

They proved that under certain appropriate conditions over εn and rn, the sequences {xn} and {un} both converge
strongly to z = PFix(S)∩EP(G)f (z). (Here PK denotes the nearest point projection from H onto a closed convex
subset K of H .)

Moreover, it is shown in [13] that the sequence {xn} defined by the scheme

xn+1 = εnγf (xn) + (I − εnA)Sxn (8)

converges strongly to z = PFix(S)(I − A + γf )(z).
By combining the schemes (7) and (8), Plubtieng and Punpaeng [15] proposed the following algorithm⎧⎨

⎩G(un, y) + 1

rn
〈y − un,un − xn〉 � 0, ∀y ∈ H,

xn+1 = εnγf (xn) + (I − εnA)Sun.

(9)

They proved that if the sequences {εn} and {rn} of parameters satisfy appropriate conditions, then the sequences {xn}
and {un} both converge to the unique solution z of the variational inequality〈

(A − γf )z, x − z
〉
� 0 ∀x ∈ Fix(S) ∩ EP(G), (10)

which is the optimality condition for the minimization problem

min
x∈Fix(S)∩EP(G)

1

2
〈Ax,x〉 − h(x)

where h is a potential function for γf .
Note that the result in [13] is a particular case of this, corresponding to the choice G(x,y) = 0 (so that un = xn).
In this paper we combine the scheme (4) for a finite family of nonexpansive mappings with the method (9) for the

equilibrium problem and propose the following explicit scheme⎧⎨
⎩G(un, y) + 1

rn
〈y − un,un − xn〉 � 0 ∀y ∈ H,

xn+1 = εnγf (xn) + βxn + (
(1 − β)I − εnA

)
Wnun.

(11)

We prove under weaker hypotheses that both sequences {xn} and {un} converge strongly to a point x∗ ∈ F which is
an equilibrium point for G and is the unique solution of the variational inequality〈

(A − γf )x∗, x − x∗〉 � 0 ∀x ∈ F ∩ EP(G). (12)

This result covers all previous schemes (1), (4), (7), (8) and (9).

2. Preliminaries

Let C be a closed convex subset of H . Recall that the (nearest point) projection PC from H onto C assigns to each
x ∈ H the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = min
y∈C

‖x − y‖.
The following characterizes the projection PC .
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Lemma 2.1. (See [19].) Given x ∈ H and y ∈ C. Then PCx = y if and only if there holds the inequality

〈x − y, y − z〉 � 0 ∀z ∈ C.

Lemma 2.2. (See [16].) Let {xn} and {zn} be bounded sequences in a Banach space X and let {βn} be a sequence
in [0,1] with 0 < lim infn→∞ βn and lim supn→∞ βn < 1. Suppose

xn+1 = βnxn + (1 − βn)zn

for all integers n � 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖
)
� 0.

Then limn→∞ ‖xn − zn‖ = 0.

Lemma 2.3. (See [21].) Assume {an} is a sequence of nonnegative numbers such that

an+1 � (1 − γn)an + δn, n � 0,

where {γn} is a sequence in (0,1) and δn is a sequence in R such that

(1)
∑∞

n=1 γn = ∞;
(2) lim supn→∞ δn/γn � 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.4. (See [13].) Let A be a strongly positive linear bounded operator on a Hilbert space H with coefficient γ

and 0 < ρ � ‖A‖−1. Then ‖I − ρA‖ � 1 − ργ.

Lemma 2.5. (See [8].) Let C be a nonempty closed convex subset of H and G : C × C → R satisfy

(A1) G(x,x) = 0 for all x ∈ C;
(A2) G is monotone, i.e. G(x,y) + G(y,x) � 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim inf
t→0

G
(
tz + (1 − t)x, y

)
� G(x,y);

(A4) for all x ∈ C, y �→ G(x,y) is convex and lower semicontinuous.

For x ∈ C and r > 0, set Sr : H → C to be

Sr(x) :=
{
z ∈ C: G(z, y) + 1

r
〈y − z, z − x〉 � 0, ∀y ∈ C

}
.

Then Sr is well defined and the following hold:

(1) Sr is single-valued;
(2) Sr is firmly nonexpansive, i.e.

‖Srx − Sry‖2 � 〈Srx − Sry, x − y〉,
for all x, y ∈ H ;

(3) Fix(Sr ) = EP(G);
(4) EP(G) is closed and convex.

Definition 2.6. Let C be a nonempty convex subset of a Banach space. Let {Ti}Ni=1 be a finite family of nonexpansive
mappings of C into itself and let λ1, . . . , λN be real numbers such that 0 � λi � 1 for every i = 1,2, . . . ,N . We define
a mapping W of C into itself as follows:
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U1 := λ1T1 + (1 − λ1)I,

U2 := λ2T2U1 + (1 − λ2)I,

...

UN−1 := λN−1TN−1UN−2 + (1 − λN−1)I,

W := UN = λNTNUN−1 + (1 − λN)I. (13)

Such a mapping W is called the W -mapping generated by T1, . . . , TN and λ1, . . . , λN .
The concept of W -mappings was introduced in [17,18]. It is now one of the main tools in studying convergence

of iterative methods for approaching a common fixed of nonlinear mappings; more recent progresses can be found in
[1,5,11,24] and the references cited therein.

Lemma 2.7. (See [1].) Let C be a nonempty closed convex set of a strictly convex Banach space. Let T1, . . . , TN be
nonexpansive mappings of C into itself such that

⋂N
i=1 Fix(Ti) �= ∅ and let λ1, . . . , λN be real numbers such that

0 < λi < 1 for every i = 1, . . . ,N − 1 and 0 < λN � 1. Let W be the W -mapping of C into itself generated by
T1, . . . , TN and λ1, . . . , λN . Then Fix(W) = ⋂N

i=1 Fix(Ti).

Lemma 2.8. Let C be a nonempty convex subset of a Banach space. Let {Ti}Ni=1 be a finite family of nonexpansive
mappings of C into itself and {λn,i}Ni=1 be sequences in [0,1] such that λn,i → λi (i = 1, . . . ,N). Moreover for every
n ∈ N, let W and Wn be the W -mappings generated by T1, . . . , TN and λ1, . . . , λN and T1, . . . , TN and λn,1, . . . , λn,N

respectively. Then for every x ∈ C, it follows that

lim
n

‖Wnx − Wx‖ = 0.

Proof. Let x ∈ C and Uk and Un,k be generated by T1, . . . , TN and λ1, . . . , λN and T1, . . . , TN and λn,1, . . . , λn,N

respectively, as in Definition 2.6. We have

‖Un,1x − U1x‖ = ∥∥λn,1T1x + (1 − λn,1)x − λ1T1x − (1 − λ1)x
∥∥ = ‖λn,1T1x − λn,1x − λ1T1x + λ1x‖

= |λn,1 − λ1|‖T1x − x‖.
Let k ∈ {2, . . . ,N}, then

‖Un,kx − Ukx‖ = ∥∥λn,kTkUn,k−1x + (1 − λn,k)x − λkTkUk−1x − (1 − λk)x
∥∥

= ‖λn,kTkUn,k−1x − λn,kx − λkTkUk−1x + λkx‖
� λn,k‖TkUn,k−1x − TkUk−1x‖ + |λn,k − λk|‖TkUk−1x‖ + |λn,k − λk|‖x‖
� ‖Un,k−1x − Uk−1x‖ + |λn,k − λk|

(‖TkUk−1x‖ + ‖x‖).
Hence,

‖Wnx − Wx‖ = ‖Un,Nx − UNx‖ �
N∑

k=2

|λn,k − λk|
(‖TkUk−1x‖ + ‖x‖) + |λn,1 − λ1|‖T1x − x‖.

Since for every k ∈ {1, . . . ,N}, limn |λn,k − λk| = 0, the result follows. �
The following lemma is an immediate consequence of the inner product on H .

Lemma 2.9. For all x, y ∈ H , there holds the inequality

‖x + y‖2 � ‖x‖2 + 2〈y, x + y〉.
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3. Main result

Theorem 3.1. Let H be a Hilbert space, C a closed convex nonempty subset of H , {Ti}Ni=1 a finite family of nonex-
pansive mappings from H into itself, G : C ×C → R a bifunction, A a strongly positive bounded linear operator with
coefficient γ and f an α-contraction on H for some 0 < α < 1. Moreover, let {εn} be a sequence in (0,1), {λn,i}Ni=1 a
sequence in [a, b] with 0 < a � b < 1, {rn} a sequence in (0,∞) and γ and β two real numbers such that 0 < β < 1
and 0 < γ < γ/α. Assume

(i) the bifunction G satisfies
(A1) G(x,x) = 0 for all x ∈ C;
(A2) G is monotone, i.e. G(x,y) + G(y,x) � 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim
t→0

G
(
tz + (1 − t)x, y

)
� G(x,y);

(A4) for all x ∈ C, y �→ G(x,y) is convex and lower semicontinuous;
(B1) F ∩ EP(G) �= ∅;

(ii) the sequence {εn} satisfies
(C1) limn εn = 0; and
(C2)

∑∞
n=1 εn = ∞;

(iii) the sequence {rn} satisfies
(D1) lim infn rn > 0; and
(D2) limn rn/rn+1 = 1 (this is weaker than the condition limn |rn+1 − rn| = 0);

(iv) the finite family of sequences {λn,i}Ni=1 satisfies
(E1) limn |λn,i − λn−1,i | = 0 for every i ∈ {1, . . . ,N}.

For every n ∈ N, let Wn be the W -mapping generated by T1, . . . , TN and λn,1, . . . , λn,N . If {xn} and {un} are the
sequences generated by x1 ∈ H and ∀n � 1⎧⎨

⎩G(un, y) + 1

rn
〈y − un,un − xn〉 � 0 ∀y ∈ H,

xn+1 = εnγf (xn) + βxn + (
(1 − β)I − εnA

)
Wnun

(14)

then both {xn} and {un} converge strongly to x∗ ∈ F, where x∗ is an equilibrium point for G and is the unique solution
of variational inequality (12), i.e.,

x∗ = PF∩EP(G)

(
I − (A − γf )

)
x∗.

Proof. By Lemma 2.5, it follows that for every n ∈ N, there exists a nonexpansive mapping Srn : H → H, such that
un = Srnxn and EP(G) = Fix(Srn). Whenever needed, we shall equivalently write scheme (14) as

xn+1 = εnγf (xn) + βxn + (
(1 − β)I − εnA

)
WnSrnxn. (15)

Moreover, since εn → 0, we shall assume that εn � (1 − β)‖A‖−1 and 1 − εn(γ̄ − αγ ) > 0.
Observe that, if ‖u‖ = 1, then〈(

(1 − β)I − εnA
)
u,u

〉 = (1 − β) − εn〈Au,u〉 �
(
1 − β − εn‖A‖) � 0.

By Lemma 2.4, we have∥∥(1 − β)I − εnA
∥∥ � 1 − β − εnγ . (16)

We shall divide the proof into several steps.

Step 1. The sequence {xn} is bounded.
Proof of Step 1. Let v ∈ EP(G) ∩ F and set

M = max
{‖x1 − v‖,∥∥γf (v) − Av

∥∥/(γ − αγ )
}
.
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We shall use induction to prove

‖xn − v‖ � M (17)

for all n � 1. Clearly ‖x1 − v‖ � M . Assume (17) holds for some n > 1. Then noting (15) and the fact that v =
WnSrnv = Srnv, we derive that

‖xn+1 − v‖ = ∥∥[
(1 − β)I − εnA

]
(WnSrnxn − WnSrnv) + εnγ

[
f (xn) − f (v)

]
+ εn

(
γf (v) − Av

) + β(xn − v)
∥∥

�
[
1 − εn(γ − αγ )

]‖xn − v‖ + εn(γ − αγ )
∥∥γf (v) − Av

∥∥/(γ − αγ )

� max
{‖xn − v‖,∥∥γf (v) − Av

∥∥/(γ − αγ )
}

� M.

Step 2. Let {wn} be a bounded sequence in H . Then

lim
n→∞‖Wn+1Srn+1wn − Wn+1Srnwn‖ = 0. (18)

Proof of Step 2. Since {wn} is bounded, we know that

L := sup
n

{‖wn‖ + ‖Srn+1wn‖
}

< ∞.

Now,

‖Wn+1Srn+1wn − Wn+1Srnwn‖ � ‖Srn+1wn − Srnwn‖.
By the definition of Srn (see Lemma 2.5) we have

G(Srn+1wn,y) + 1

rn+1
〈y − Srn+1wn,Srn+1wn − wn〉 � 0 ∀y ∈ C,

and

G(Srnwn, y) + 1

rn
〈y − Srnwn,Srnwn − wn〉 � 0 ∀y ∈ C.

In particular,

G(Srn+1wn,Srnwn) + 1

rn+1
〈Srnwn − Srn+1wn,Srn+1wn − wn〉 � 0

and

G(Srnwn,Srn+1wn) + 1

rn
〈Srn+1wn − Srnwn,Srnwn − wn〉 � 0.

Summing up the last two inequalities and using (A2), we obtain

1

rn+1
〈Srnwn − Srn+1wn,Srn+1wn − wn〉 + 1

rn
〈Srn+1wn − Srnwn,Srnwn − wn〉 � 0.

It then follows that〈
Srnwn − Srn+1wn,

Srn+1wn − wn

rn+1
− Srnwn − wn

rn

〉
� 0. (19)

We derive from (19) that

0 �
〈
Srn+1wn − Srnwn,Srnwn − wn − rn

rn+1
(Srn+1wn − wn)

〉

=
〈
Srn+1wn − Srnwn,Srnwn − Srn+1wn + Srn+1wn − wn − rn

rn+1
(Srn+1wn − wn)

〉

=
〈
Srn+1wn − Srnwn, (Srnwn − Srn+1wn) +

(
1 − rn

)
(Srn+1wn − wn)

〉

rn+1
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which implies that

‖Srn+1wn − Srnwn‖2 �
∣∣∣∣1 − rn

rn+1

∣∣∣∣‖Srn+1wn − Srnwn‖
(‖Srn+1wn‖ + ‖wn‖

)
.

This implies that

‖Srn+1wn − Srnwn‖ � L

∣∣∣∣1 − rn

rn+1

∣∣∣∣. (20)

Therefore, (18) is a consequence of (20) and condition (D2).

Step 3. Let {wn} be a bounded sequence in H . Then

lim
n→∞‖Wn+1wn − Wnwn‖ = 0. (21)

Proof of Step 3. Let j ∈ {0, . . . ,N − 2} and set

M := sup
n∈N

{
‖wn‖ + ‖T1wn‖ +

N∑
j=2

‖TjUn,j−1wn‖
}

< ∞.

It follows from (3) that

‖Un+1,N−jwn − Un,N−jwn‖
= ∥∥λn+1,N−j TN−jUn+1,N−j−1wn + (1 − λn+1,N−j )wn − λn,N−j TN−jUn,N−j−1wn − (1 − λn,N−j )wn

∥∥
� λn+1,N−j‖TN−jUn+1,N−j−1wn − TN−jUn,N−j−1wn‖

+ |λn+1,N−j − λn,N−j |‖TN−jUn,N−j−1wn‖ + |λn+1,N−j − λn,N−j |‖wn‖
� ‖Un+1,N−j−1wn − Un,N−j−1wn‖ + (‖wn‖ + ‖TN−jUn,N−j−1wn‖

)|λn+1,N−j − λn,N−j |
� ‖Un+1,N−j−1wn − Un,N−j−1wn‖ + M|λn+1,N−j − λn,N−j |.

Thus, repeatedly using the above recursive inequalities, we deduce

‖Wn+1wn − Wnwn‖ = ‖Un+1,Nwn − Un,Nwn‖

� M

N∑
j=2

|λn+1,j − λn,j | + |λn+1,1 − λn,1|
(‖wn‖ + ‖T1wn‖

)

� M

N∑
j=1

|λn+1,j − λn,j |. (22)

Now by condition (E1) and using (22), we obtain (21) and Step 3 is proven.

Step 4. limn→∞ ‖xn+1 − xn‖ = 0.
Proof of Step 4. Define a sequence {zn} by zn = (xn+1 − βxn)/(1 − β) so that

xn+1 = βxn + (1 − β)zn.

We now compute

‖zn+1 − zn‖ = 1

1 − β

∥∥(xn+2 − βxn+1) − (xn+1 − βxn)
∥∥

= 1

1 − β

∥∥γ
[
εn+1f (xn+1) − εnf (xn)

] + [
(1 − β)I − εn+1A

]
Wn+1Srn+1xn+1

− [
(1 − β)I − εnA

]
WnSrnxn

∥∥
=

∥∥∥∥ γ

1 − β

[
εn+1f (xn+1) − εnf (xn)

] − 1

1 − β
(εn+1AWn+1Srn+1xn+1 − εnAWnSrnxn)

+ Wn+1Srn+1xn+1 − WnSrnxn

∥∥∥∥. (23)
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Since {xn} is bounded and by (23), we have, for some big enough constant K > 0,

‖zn+1 − zn‖ � ‖Wn+1Srn+1xn+1 − WnSrnxn‖ + K(εn+1 + εn)

� ‖Wn+1Srn+1xn+1 − Wn+1Srn+1xn‖ + ‖Wn+1Srn+1xn − WnSrnxn‖ + K(εn+1 + εn)

� ‖xn+1 − xn‖ + ‖Wn+1Srn+1xn − Wn+1Srnxn‖ + ‖Wn+1un − Wnun‖ + K(εn+1 + εn) (24)

where un = Srnxn. Now since εn → 0 and by Steps 2 and 3, we immediately conclude from (24) that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖
)

� lim sup
n→∞

(‖Wn+1Srn+1xn − Wn+1Srnxn‖ + ‖Wn+1un − Wnun‖ + K(εn+1 + εn)
)
� 0.

Apply Lemma 2.2 to get limn ‖xn+1 − xn‖ = (1 − β) limn ‖xn − zn‖ = 0.

Step 5. limn ‖xn − Wnun‖ = 0, where un = Srnxn.
Proof of Step 5. Indeed we have

‖xn − Wnun‖ � ‖xn − xn+1‖ + ‖xn+1 − Wnun‖
= ‖xn − xn+1‖ + ∣∣εn

[
γf (xn) − AWnun

] + β(xn − Wnun)
∥∥

� ‖xn − xn+1‖ + εn

(
γ
∥∥f (xn)

∥∥ + ‖AWnun‖
) + β‖xn − Wnun‖.

It follows from Step 4 that

‖xn − Wnun‖ � 1

1 − β

(‖xn − xn+1‖ + εn

(
γ
∥∥f (xn)

∥∥ + ‖AWnun‖
)) → 0.

Step 6. limn ‖xn − Srnxn‖ = 0.
Proof of Step 6. Let v ∈ F ∩ EP(G). Since Srn is firmly nonexpansive, we obtain

‖v − Srnxn‖2 = ‖Srnv − Srnxn‖2

� 〈Srnxn − Srnv, xn − v〉 = 〈Srnxn − v, xn − v〉
= 1

2

(‖Srnxn − v‖2 + ‖xn − v‖2 − ‖xn − Srnxn‖2).
It follows that

‖Srnxn − v‖2 � ‖xn − v‖2 − ‖xn − Srnxn‖2. (25)

Set yn = γf (xn) − AWnSrnxn and let λ > 0 be a constant such that

λ > sup
n,k

{‖yn‖,‖xk − v‖}.
Using Lemma 2.9 and noting that ‖ · ‖2 is convex, we derive, using (25)

‖xn+1 − v‖2 = ∥∥[
(1 − β)(WnSrnxn − v) + β(xn − v)

] + εn

[
γf (xn) − AWnSrnxn

]∥∥2

�
∥∥(1 − β)(WnSrnxn − v) + β(xn − v)

∥∥2 + 2εn〈yn, xn+1 − v〉
� (1 − β)‖WnSrnxn − v‖2 + β‖xn − v‖2 + 2λ2εn

� (1 − β)‖Srnxn − v‖2 + β‖xn − v‖2 + 2λ2εn

= (1 − β)
(‖xn − v‖2 − ‖xn − Srnxn‖2) + β‖xn − v‖2 + 2λ2εn

= ‖xn − v‖2 − (1 − β)‖xn − Srnxn‖2 + 2λ2εn.



V. Colao et al. / J. Math. Anal. Appl. 344 (2008) 340–352 349
It follows that

‖xn − Srnxn‖2 � 1

1 − β

(‖xn − v‖2 − ‖xn+1 − v‖2 + 2λ2εn

)
= 1

1 − β

(‖xn − xn+1‖2 + 2〈xn − xn+1, xn+1 − v〉 + 2λ2εn

)
� 1

1 − β

(‖xn − xn+1‖2 + 2λ‖xn − xn+1‖ + 2λ2εn

)
→ 0

by Step 4 and condition (C1).

Step 7. The weak ω-limit set of (xn),ωw(xn), is a subset of F ∩ EP(G).
Proof of Step 7. Let z ∈ ωw(xn) and let {xnm} be a subsequence of {xn} weakly converging to z. We need to show that
z ∈ F ∩ EP(G).

At first, note that by (A2) and given y ∈ C we have

1

rn
〈y − un,un − xn〉 � G(y,un).

In particular,〈
y − unm,

unm − xnm

rnm

〉
� G(y,unm). (26)

By condition (A4), G(y, ·) is lower semicontinuous and convex, and thus weakly semicontinuous. Step 6 and condi-
tion (D1) imply that (unm − xnm)/rnm → 0 in norm. Therefore, letting m → ∞ in (26) yields

G(y, z) � lim
m→∞G(y,um) � 0, y ∈ H.

Replacing y with yt := ty + (1 − t)z with t ∈ [0,1] and using (A1) and (A4), we obtain

0 = G(yt , yt ) � tG(yt , y) + (1 − t)G(yt , z) � tG(yt , y).

Hence

G
(
ty + (1 − t)z, y

)
� 0, t ∈ (0,1], y ∈ H.

Letting t → 0+ and using assumption (A3), we conclude

G(z, y) � 0, y ∈ H.

Therefore, z ∈ EP(G).
It remains to prove that z ∈ F . To see this, we observe that we may assume (by passing to a further subsequence if

necessary)

λnm,k → λk ∈ (0,1) (k = 1,2, . . .N).

Let W be the W -mapping generated by T1, . . . , TN and λ1, . . . , λN . Then by Lemma 2.8, we have, for every x ∈ H ,

Wnmx → Wx. (27)

Moreover, from Lemma 2.7 it follows that F = Fix(W). Assume that z /∈ F ; then z �= Wz. Since z ∈ EP(G) =
Fix(Srn), by Step 5, (27) and using Opial’s property of a Hilbert space, we have

lim inf
m

‖xnm − z‖ < lim inf
m

‖xnm − Wz‖
� lim inf

m

(‖xnm − WnmSrnm
xnm‖ + ‖WnmSrnm

xnm − WnmSrnm
z‖ + ‖Wnmz − Wz‖)

� lim inf
m

‖xnm − z‖.
This is a contradiction. Therefore, z must belong to F .
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Step 8. Let x∗ be the unique solution of the variational inequality (12). That is,〈
(A − γf )x∗, x − x∗〉 � 0, x ∈ F ∩ EP(G). (28)

Then

lim sup
n

〈
(γf − A)x∗, xn − x∗〉 � 0. (29)

Proof of Step 8. Let {xnk
} be a subsequence of {xn} such that

lim
k

〈
(γf − A)x∗, xnk

− x∗〉 = lim sup
n

〈
(γf − A)x∗, xn − x∗〉. (30)

Without loss of generality, we can assume that (xnk
) weakly converges to some z in C. By Step 7, z ∈ F ∩ EP(G).

Thus combining (30) and (28), we get

lim sup
n

〈
(γf − A)x∗, xn − x∗〉 = 〈

(γf − A)x∗, z − x∗〉 � 0

as required.

Step 9. The sequences {xn} and {un} converge strongly to x∗.
Proof of Step 9. By the definition (14) (or equivalently, (15)) of {xn} and using Lemmas 2.4 and 2.9, we have (note
un = Srnxn)

∥∥xn+1 − x∗∥∥2 = ∥∥[(
(1 − β)I − εnA

)(
Wnun − x∗) + β

(
xn − x∗)] + εn

(
γf (xn) − Ax∗)∥∥2

�
∥∥(

(1 − β)I − εnA
)(

Wnun − x∗) + β
(
xn − x∗)∥∥2 + 2εn

〈
γf (xn) − Ax∗, xn+1 − x∗〉

=
∥∥∥∥(1 − β)

((1 − β)I − εnA)

(1 − β)

(
Wnun − x∗) + β

(
xn − x∗)∥∥∥∥

2

+ 2εnγ
〈
f (xn) − f

(
x∗), xn+1 − x∗〉 + 2εn

〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉

� (1 − β)

∥∥∥∥ ((1 − β)I − εnA)

(1 − β)

(
Wnun − x∗)∥∥∥∥

2

+ β
∥∥xn − x∗∥∥2

+ 2εnγ α
∥∥xn − x∗∥∥ · ∥∥xn+1 − x∗∥∥ + 2εn

〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉

� ‖(1 − β)I − εnA‖2

1 − β

∥∥Wnun − x∗∥∥2 + β
∥∥xn − x∗∥∥2

+ εnγ α
(∥∥xn − x∗∥∥2 + ∥∥xn+1 − x∗∥∥2) + 2εn

〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉

�
(

((1 − β) − γ εn)
2

1 − β
+ β + εnγ α

)∥∥xn − x∗∥∥2 + εnγ α
∥∥xn+1 − x∗∥∥2

+ 2εn

〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉

=
(

1 − (2γ − αγ )εn + γ 2ε2
n

1 − β

)∥∥xn − x∗∥∥2 + αγ εn

∥∥xn+1 − x∗∥∥2

+ 2εn

〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉.

It follows that

∥∥xn+1 − x∗∥∥2 �
(

1 − 2(γ − αγ )εn

1 − αγ εn

)∥∥xn − x∗∥∥2

+ εn

1 − αγ εn

[
2
〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉 + γ 2εn

1 − β

∥∥xn − x∗∥∥2
]
. (31)
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Set

an = ∥∥xn − x∗∥∥2
, γn = 2(γ − αγ )εn

1 − αγ εn

,

δn = εn

1 − αγ εn

[
2
〈
γf

(
x∗) − Ax∗, xn+1 − x∗〉 + γ 2εn

1 − β

∥∥xn − x∗∥∥2
]
.

Then we can rewrite (31) as

an+1 � (1 − γn)an + δn. (32)

It is easily verified from conditions (C1) and (C2), and Step 8 that

γn → 0,

∞∑
n=1

γn = ∞, lim sup
n→∞

δn/γn � 0.

Therefore we can apply Lemma 2.3 to (32) to conclude that an → 0. Namely, xn → x∗ in norm.
Finally, noticing∥∥un − x∗∥∥ = ∥∥Srnxn − Srnx

∗∥∥ �
∥∥xn − x∗∥∥

we also conclude that un → x∗ in norm. �
Remark. If we take N = 1, T1 = S and β = 0, then we obtain the result of Theorem 3.3 in [15], without the hypothesis

∞∑
n=1

|εn+1 − εn| < ∞.

Moreover, if we set G = 0 in Theorem 3.1, we arrive at [24, Theorem 1] without the assumption

‖I − A‖ � 1 − αγ.
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