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This paper is concerned with the existence of traveling wave fronts for delayed non-
local diffusion systems without quasimonotonicity, which can not be answered by the
known results. By using exponential order, upper–lower solutions and Schauder’s fixed
point theorem, we reduce the existence of monotone traveling wave fronts to the existence
of upper–lower solutions without the requirement of monotonicity. To illustrate our results,
we establish the existence of traveling wave fronts for two examples which are the
delayed non-local diffusion version of the Nicholson’s blowflies equation and the Belousov–
Zhabotinskii model. These results imply that the traveling wave fronts of the delayed
non-local diffusion systems without quasimonotonicity are persistent if the delay is small.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Reaction diffusion system is the classical model in describing the spatial-temporal pattern, see, e.g., Britton [3], Pao [33],
Smoller [36], Volpert et al. [39], Ye and Li [45]. However, as mentioned in Murray [28, pp. 244–246], the Laplacian operator
in the reaction diffusion system is not sufficiently precise in modeling the spatial diffusion of the individuals in some
cases, such as the embryological development process. One way of overcoming the imprecise is to introduce the following
non-local diffusion model

∂ui(x, t)

∂t
=
∫
R

J i(x − y)
[
ui(y, t) − ui(x, t)

]
dy + f i

(
u(x, t)

)
, x ∈ R, (1.1)

in which i ∈ I = {1, . . . ,n}, u = (u1, . . . , un) ∈ R
n , f i : R

n → R is a continuous mapping, and J i : R → R is the kernel
function describing the spatial migration of the individuals in population dynamics. In fact, the model similar to (1.1) was
also proposed in other practical fields, for example, phase transition model [1], material science [2], Ising model [13,14,29],
network model [15], thalamic model [6] and lattice dynamical systems [7,8]. In the past decades, the traveling wave fronts
of (1.1) have been widely investigated due to the significant senses in several areas, and we refer to Bates et al. [1], Carr
and Chamj [4], Chen [5], Chow et al. [8], Coville [9], Coville and Dupaigne [10–12].

It is well known that time delay seems to be inevitable in many evolutionary processes [42], and the traveling wave
fronts of some delayed models similar to (1.1) have been studied by researchers, such as the delayed lattice dynamical
system [19,20,27,43] and the delayed neural network [17]. In particular, Pan et al. [32] considered the traveling wave fronts
of the following delayed non-local diffusion system

∂ui(x, t)

∂t
=
∫
R

J i(x − y)
[
ui(y, t) − ui(x, t)

]
dy + f i

(
ut(x)

)
, x ∈ R, i ∈ I, (1.2)
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where u = (u1, . . . , un) ∈ R
n , ut(x) is an element in C([−τ ,0],R

n) parameterized by x, t and is defined by u(x, t + s) for
s ∈ [−τ ,0], herein τ > 0 denotes the maximal time delay in the model [42], thus f i maps C([−τ ,0],R

n) to R. Furthermore,
there exists a vector K = (k1, . . . ,kn) ∈ R

n with ki > 0, i ∈ I , such that f i (̂0) = f i(K̂ ) = 0, and ·̂ is the constant function in
the space C([−τ ,0],R

n). For the convenience of statement, the definition of a traveling wave front is given as follows.

Definition 1.1. A traveling wave solution of (1.2) is a special solution with form u(x, t) = Φ(x+ ct), in which c > 0 is the speed
parameter and Φ = (φ1, . . . , φn) ∈ C1(R,R

n) is the wave profile function. Moreover, if Φ(t) is monotone in t ∈ R, then it is
called a traveling wave front.

Remark 1.2. In some models, c � 0 is admissible [1]. Our main interest in the paper is the case c > 0, so we give the above
definition.

Substituting u(x, t) = Φ(x + ct) into (1.2) and replacing x + ct by t , then

cφ′
i(t) =

∫
R

J i(y − t)
[
φi(y) − φi(t)

]
dy + f c

i (Φt), t ∈ R, i ∈ I, (1.3)

where f c
i (Φt) is defined by f i(Φ(t + cs)) for s ∈ [−τ ,0]. Recalling the background of traveling wave fronts in several fields,

e.g., material science [1,2], we also require that Φ satisfies the following asymptotic boundary conditions

lim
t→−∞φi(t) = 0, lim

t→+∞φi(t) = ki, i ∈ I. (1.4)

Combining the upper–lower solutions with the Schauder’s fixed point theorem, Pan et al. [32] established the existence
of traveling wave fronts of (1.2), namely, the existence of monotone solutions of (1.3) and (1.4) when the reaction term f
satisfies the following quasimonotone condition (in short, (QM))

(QM) For every i ∈ I , there exists a constant βi > 0 such that

f i(Φ) − f i(Ψ ) + βi
[
φi(0) − ψi(0)

]
�
∫
R

J i(x)dx
[
φi(0) − ψi(0)

]
holds for any Φ(s) = (φ1, . . . , φn), Ψ (s) = (ψ1, . . . ,ψn) ∈ C([−cτ ,0],R

n) with 0 � Ψ (s) � Φ(s) � K , s ∈ [−cτ ,0].

Moreover, Pan et al. [32] also established the existence of traveling wave fronts for the delayed non-local diffusion version
of the Hutchinson equation and the Belousov–Zhabotinskii system. The effects of non-local diffusion and time delay were
also discussed when the threshold of the wave speed was concerned. Recently, Pan [31] further investigated the following
Nicholson’s blowflies equation with non-local diffusion and delay

∂u(x, t)

∂t
=

∞∫
−∞

J (x − y)
[
u(y, t) − u(x, t)

]
dy − δu(x, t) + pu(x, t − τ )e−au(x,t−τ ), (1.5)

where all parameters are positive. More results on the Nicholson’s model can be found in Li et al. [23]. By the results in
Pan et al. [32], the existence of a nontrivial traveling wave front of (1.5) is proved if 1 < p/δ � e. But for the case of p/δ > e
and τ > 0, (1.5) does not satisfy (QM) such that the previous results are invalid in considering the existence of traveling
wave fronts of (1.5). If τ = 0 and p > δ hold in (1.5), then the existence of a traveling wave front is affirmative by applying
the results in [10–12,32]. However, if p/δ > e is true, it remains an open problem whether such a traveling wave front
persists [30] for τ > 0. In order to answer this question, we shall further consider the existence of traveling wave fronts
of (1.2) including (1.5) and this constitutes the purpose of the current paper.

To establish the existence of traveling wave fronts of (1.2) that at least includes (1.5) with p > eδ, we shall introduce
the following exponential quasimonotone condition (in short, (EQM)) which has less requirements than that of (QM) and is
based on the exponential order [35].

(EQM) There exist constants βi > 0, i ∈ I , such that

f i(Φ) − f i(Ψ ) + βi
[
φi(0) − ψi(0)

]
�
∫
R

J i(x)dx
[
φi(0) − ψi(0)

]
, i ∈ I,

for any Φ(s) = (φ1, . . . , φn), Ψ (s) = (ψ1, . . . ,ψn) ∈ C([−cτ ,0],R
n) satisfying (i) 0 � Ψ (s) � Φ(s) � K , s ∈ [−cτ ,0],

(ii) e
βi s

c (φi(s) − ψi(s)), s ∈ [−cτ ,0], is nondecreasing.
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In what follows, under the assumption of (EQM), the existence of traveling wave fronts of (1.2) will be investigated by
combining the Schauder’s fixed point theorem with the upper–lower solutions. And we reduce the existence of monotone
traveling wave fronts to the existence of upper–lower solutions without the requirement of monotonicity. To illustrate our
results, we study the traveling wave fronts of (1.5) as well as the delayed non-local diffusion system with the Belousov–
Zhabotinskii reaction. Moreover, we also show that (EQM) is very common in the mathematical literature.

Our current paper is partly motivated by the traveling wave fronts of the delayed reaction diffusion systems and lattice
dynamical systems although we concern about a non-local diffusion model with delay, we refer to [18–22,24–26,34,37,40,
41,43,44] and the references cited therein.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries for the later sections. In Section 3,
the traveling wave fronts of (1.2) will be studied by the Schauder’s fixed point theorem and the upper–lower solutions.
Finally, our abstract results will be applied to two models, and the existence of the traveling wave fronts will be established.

2. Preliminaries

Throughout the current paper, we shall use the usual notations for the standard partial ordering and order intervals
in R

n or R, and the monotonicity of vector function is in the sense of its components. Let C[0,K ](R,R
n) be

C[0,K ]
(
R,R

n)= {
u: u(t) ∈ C

(
R,R

n), 0 � u(t) � K for all t ∈ R
}
.

For Φ = (φ1, . . . , φn) ∈ C[0,K ](R,R
n), denote H = (H1, . . . , Hn) : C[0,K ](R,R

n) → C(R,R
n) as follows

Hi(Φ)(t) =
∫
R

J i(y − t)
[
φi(y) − φi(t)

]
dy + βiφi(t) + f c

i (Φt), t ∈ R, i ∈ I.

Then (1.3) is equivalent to

cφ′
i(t) = −βiφi(t) + Hi(Φ)(t), i ∈ I. (2.1)

Due to (2.1), we further define F = (F1, . . . , Fn) : C[0,K ](R,R
n) → C(R,R

n) by

Fi(Φ)(t) = 1

c
e− βi

c t

t∫
−∞

e
βi
c s Hi(Φ)(s)ds, t ∈ R, Φ ∈ C[0,K ]

(
R,R

n), i ∈ I.

Then it is clear that the fixed point of F also satisfies (1.3). Hence, it is sufficient to consider the existence of the fixed point
of F in order to prove the existence of (1.3), and we shall complete the goal by applying the Schauder’s fixed point theorem.
For this purpose, we now introduce a Banach space. Let μ ∈ (0,min1�i�n{ βi

c }), define

Bμ

(
R,R

n)=
{

u(t): u(t) ∈ C
(
R,R

n) and sup
t∈R

∣∣u(t)
∣∣e−μ|t| < ∞

}
,

where | · | denotes the super norm in R
n . Thus, Bμ(R,R

n) is a Banach space when it is equipped with the norm | · |μ
defined by

|u|μ = sup
t∈R

∣∣u(t)
∣∣e−μ|t| for u ∈ Bμ

(
R,R

n).
For convenience, we list the necessary assumptions of (1.3) and all of them will be imposed throughout the next section.

(H1) f (̂0) = f (K̂ ) = 0, where ·̂ means the constant value function in C([−cτ ,0],R
n).

(H2) For any u, v ∈ C([−cτ ,0],R
n) and 0 � u, v � K , there exists a constant L > 0 such that∣∣ f (u) − f (v)

∣∣� L‖u − v‖,
in which ‖ · ‖ denotes the upper norm in C([−cτ ,0],R

n).
(H3) J i(x) � 0, x ∈ R and

∫
R

J i(x)dx > 0 for all i ∈ I .

(H4) For μ ∈ (0,min1�i�n{ βi
c }),

∫∞
−∞ J i(x)eμ|x| dx < ∞, i ∈ I .

Remark 2.1. An operator similar to F was earlier used in Wu and Zou [43] in proving the existence of traveling wave fronts
for delayed lattice dynamical systems.

3. Main results

In order to apply the Schauder’s fixed point theorem, it is very important to construct proper convex set, which will be
defined by upper–lower solutions in this paper. So, we first give the following definition of upper–lower solutions.
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Definition 3.1. A continuous vector function Φ(t) = (φ1(t), . . . , φn(t)) ∈ C[0,K ](R,R
n) is called an upper solution of (1.3) if

φ′
i(t) is bounded for t ∈ R \ T and satisfies

cφ′
i(t) �

∫
R

J i(y − t)
[
φi(y) − φi(t)

]
dy + f c

i (Φt), t ∈ R \ T, i ∈ I, (3.1)

where T = {T1, T2, . . . , Tk} with T1 < T2 < · · · < Tk . The lower solution of (1.3) can be defined by reversing the inequality
in (3.1).

In what follows, we assume that an upper solution Φ(t) = (φ1(t), . . . , φn(t)) and a lower solution Φ(t) =
(φ1(t), . . . , φn(t)) of (1.3) are given such that

(A1) 0 � Φ(t) � Φ(t) � K , t ∈ R, with limt→−∞ Φ(t) = 0, limt→∞ Φ(t) = K ;
(A2) let A = (inft∈R φ1(t), . . . , inft∈R φn(t)) and B = (supt∈R φ1(t), . . . , supt∈R φn(t)), then B < K and A > 0;

(A3)
∑n

i=1 f 2
i ( û ) �= 0 if u ∈ (0, A] ∪ [B, K );

(A4) the set Γ (Φ,Φ) is nonempty, where Γ (Φ,Φ) is defined by

Γ (Φ,Φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ = (φ1, . . . , φn)

∈ C(R,R
n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) Φ(t) � Φ(t) � Φ(t), t ∈ R;
(ii) Φ(t) is nondecreasing in t ∈ R;

(iii) e
βi
c t[φi(t) − φi(t)] and e

βi
c t[φi(t) − φi(t)]

are nondecreasing in t ∈ R, i ∈ I;
(iv) e

βi
c t[φi(t + s) − φi(t)] is nondecreasing

in t ∈ R for every s > 0, i ∈ I.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Lemma 3.2. Γ is a bounded and closed subset of C(R,R

n) with respect to the decay norm | · |μ . Moreover, it is also a convex subset
of C(R,R

n).

The proof of Lemma 3.2 is similar to that of Huang et al. [20, Lemma 4.3] (also see Huang and Zou [21, Lemma 3.1]), so
we omit it here. Moreover, by repeating the proof of Pan et al. [32, Lemma 3.5], the following result can be verified.

Lemma 3.3. F : C[0,K ](R,R
n) → C(R,R

n) is continuous with respect to the norm | · |μ .

Lemma 3.4. Assume that (EQM) holds. Then

(i) H(Φ)(t) and F (Φ)(t) are nondecreasing in t ∈ R if Φ ∈ Γ ;
(ii) for t ∈ R, H(Ψ )(t) � H(Φ)(t), F (Ψ )(t) � F (Φ)(t), if Ψ (t) = (ψ1, . . . ,ψn), Φ(t) = (φ1, . . . , φn) ∈ C[0,K ](R,R

n) satisfy that (a)

0 � Ψ (t) � Φ(t) � K , t ∈ R, (b) for every i ∈ I , e
βi t
c (φi(t) − ψi(t)) is nondecreasing in t ∈ R.

Lemma 3.4 is clear by the condition (EQM) and the definitions of H and F , so the proof is omitted here.

Lemma 3.5. Assume that (EQM) holds. Then F : Γ → Γ .

Proof. For any Φ ∈ Γ , we shall show that F (Φ)(t) satisfies the items (i)–(iv) in the definition of Γ . For the item (i), it
suffices to prove that

F (Φ)(t) � Φ(t) and Φ(t) � F (Φ)(t), t ∈ R, (3.2)

by Lemma 3.4. Let T0 = −∞, Tk+1 = +∞, then

Fi(Φ)(t) = 1

c

t∫
−∞

e− βi
c (t−s) Hi(Φ)(s)ds

� 1

c

{(
l−1∑
j=1

T j∫
T j−1

+
t∫

Tl−1

)
e− βi

c (t−s)[cφ′
i(s) + βiφi(s)

]
ds

}

= φi(t), i ∈ I,
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for t ∈ (Tl−1, Tl) with l = 1,2, . . . ,k + 1. Thus the continuity of Fi(Φ)(t) and φi(t) implies that φi(t) � Fi(Φ)(t), t ∈ R, i ∈ I .
Similarly, we can prove that F (Φ)(t) � Φ(t), t ∈ R. This completes the proof of the item (i).

The proof of the item (ii) is clear by Lemma 3.4, so we omit it here.
For t ∈ (Tl−1, Tl) with l = 1,2, . . . ,k + 1, direct calculations imply that

e
βi t
c
[
φi(t) − Fi(Φ)(t)

]= e
βi t
c

c

{(
l−1∑
j=1

T j∫
T j−1

+
t∫

Tl−1

)
e− βi

c (t−s)[cφ′
i(s) + βiφi(s)

]
ds

}

− e
βi t
c

c

{(
l−1∑
j=1

T j∫
T j−1

+
t∫

Tl−1

)
e− βi

c (t−s)Hi(Φ)(s)ds

}

= 1

c

(
l−1∑
j=1

T j∫
T j−1

+
t∫

Tl−1

)
e

βi s
c
(
cφ′

i(s) + βiφi(s) − Hi(Φ)(s)
)

ds, i ∈ I.

Moreover, Lemma 3.4 and Definition 3.1 indicate that

cφ′
i(s) + βiφi(s) − Hi(Φ)(s) � cφ′

i(s) + βiφi(s) − Hi(Φ)(s) � 0, s ∈ R \ T, i ∈ I.

Then the nondecreasing of e
βi t
c [φi(t) − Fi(Φ)(t)] is clear. In a similar way, we can prove that for every i ∈ I ,

e
βi t
c [Fi(Φ)(t) − φi(t)] is nondecreasing in t ∈ R. Therefore, the item (iii) is true.

In order to verify the item (iv), let s > 0 be any given constant, then

e
βi
c t[Fi(Φ)(t + s) − Fi(Φ)(t)

]= e
βi
c t

[ t+s∫
−∞

e− βi
c (t+s−z) Hi(Φ)(z)dz −

t∫
−∞

e− βi
c (t−z)Hi(Φ)(z)dz

]

=
t+s∫

−∞
e

βi
c (z−s) Hi(Φ)(z)dz −

t∫
−∞

e
βi
c z Hi(Φ)(z)dz

=
t∫

−∞
e

βi
c z[Hi(Φ)(z + s) − Hi(Φ)(z)

]
dz, i ∈ I.

Since Hi(Φ)(z + s) − Hi(Φ)(z) � 0, z ∈ R by Lemma 3.4, then e
βi
c t[Fi(Φ)(t + s) − Fi(Φ)(t)] is nondecreasing in t ∈ R, i ∈ I .

Thus, the item (iv) holds. The proof is complete. �
Lemma 3.6. F : Γ → Γ is compact with respect to the decay norm | · |μ .

The proof of Lemma 3.6 is similar to that of Huang et al. [20, Lemma 3.5], Huang and Zou [21, Lemma 3.4], Pan et al.
[32, Lemma 3.7], so it is omitted here.

Theorem 3.7. Assume that (EQM) holds and (1.3) has a pair of upper–lower solutions such that (A1)–(A4) are satisfied. Then (1.3)–(1.4)
has a monotone solution which is a traveling wave front of (1.2).

Proof. By Lemmas 3.2–3.6 and the Schauder’s fixed point theorem, F has a fixed point Φ∗ ∈ Γ . Then limt→±∞ Φ∗(t) exist
by the items (i)–(ii), and we denote them by Φ± . The assumption (H2) further implies that f (Φ̂±) = 0. Combining these
with the assumptions (A2) and (A3), then Φ− = 0 and Φ+ = K hold. The proof is complete. �
4. Applications

In this section, we first apply Theorem 3.7 to two examples and prove the existence of traveling wave fronts by con-
structing upper–lower solutions. Then we will show that (EQM) is very common in mathematical models.

Example 4.1. Let us consider the following delayed non-local diffusion model

∂u(x, t)

∂t
=

∞∫
J (x − y)

[
u(y, t) − u(x, t)

]
dy − δu(x, t) + pu(x, t − τ )e−au(x,t−τ ), (4.1)
−∞
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in which x, u ∈ R and all parameters are positive. This model is the non-local diffusion version of the Nicholson’s blowflies
equation with delay, herein δ denotes the per capita daily adult death rate, p measures the maximal per capita daily egg
production rate, a−1 describes the size at which the blowfly population reproduces at its maximum rate and time delay τ
depends on the generation time. We refer to Gurney et al. [16] for the delayed Nicholson’s model and Li et al. [23] for the
non-local delay version of the Nicholson’s model.

It is clear that (4.1) has a trivial equilibrium 0 and a positive spatial homogeneous equilibrium k = 1
a ln p

δ
provided that

p > δ holds. Moreover, the following assumptions will be imposed throughout the two examples in this section.

(J1) J : R → R, J (x) = J (−x) � 0, x ∈ R and
∫

R
J (x)dx > 0.

(J2) For any λ > 0,
∫

R
J (x)eλx dx < ∞.

Let u(x, t) = φ(x + ct) be a traveling wave front of (4.1), then φ must satisfy

cφ′(t) =
∞∫

−∞
J (t − y)

[
φ(y) − φ(t)

]
dy − δφ(t) + pφ(t − cτ )e−aφ(t−cτ ), t ∈ R, (4.2)

and we are interested in the following asymptotic boundary conditions

lim
t→−∞φ(t) = 0, lim

t→∞φ(t) = k. (4.3)

For any φ(s) ∈ C([−cτ ,0],R) with 0 � φ(s) � k, s ∈ [−cτ ,0], define

f (φ) = −δφ(0) + pφ(−cτ )e−aφ(−cτ ).

Lemma 4.2. Assume that τ is small enough and p > eδ holds. Then f satisfies (EQM).

Proof. For any φ,ψ ∈ C([−cτ ,0],R) with (i) 0 � φ � ψ � k; (ii) e
βs
c [ψ(s) − φ(s)] is nondecreasing in s ∈ [−cτ ,0], where

β > 0 will be clarified later. Then we have

f (ψ) − f (φ) = −δψ(0) + pψ(−cτ )e−aψ(−cτ ) + δφ(0) − pφ(−cτ )e−aφ(−cτ )

� −δ
[
ψ(0) − φ(0)

]− p ln
p

δ

[
ψ(−cτ ) − φ(−cτ )

]
= −δ

[
ψ(0) − φ(0)

]− p ln
p

δ
eβτ e−βτ

[
ψ(−cτ ) − φ(−cτ )

]
� −

(
δ + p ln

p

δ
eβτ

)[
ψ(0) − φ(0)

]
.

If τ is small enough, then we can choose β > 0 such that β >
∫

R
J (x)dx + δ + p ln p

δ
eβτ , which implies that f satisfies

(EQM) for small τ > 0. The proof is complete. �
Remark 4.3. If 1 < p/δ � e holds, then f satisfies (QM) (see [31]).

Now, we are in a position to construct proper upper–lower solutions for (4.2). For λ � 0 and c � 0, define

�(λ, c) =
∞∫

−∞
J (y)

[
eλy − 1

]
dy − cλ − δ + pe−λcτ . (4.4)

Then �(λ, c) is well defined by (J1)–(J2). We further show the properties of �(λ, c) by the following lemma.

Lemma 4.4. There exists a constant c∗ > 0 such that (4.4) has two distinct positive roots if c > c∗ while (4.4) has no real zero if c < c∗ .
More precisely, c > c∗ implies that there exist λ2(c) > λ1(c) > 0 such that

�(λ, c)

⎧⎪⎪⎨⎪⎪⎩
> 0 for 0 < λ < λ1(c),

= 0 for λ = λ1(c), λ2(c),

< 0 for λ1(c) < λ < λ2(c),

> 0 for λ > λ2(c).

By the constants in Lemma 4.4, define the continuous functions as follows

φ(t) = min
{
k,keλ1(c)t}, φ(t) = max

{
0,k

[
eλ1(c)t − qeηλ1(c)t]},
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where q > 1 is large enough and η is fixed such that

η ∈
(

1,min

{
2,

λ2

λ1

})
. (4.5)

Lemma 4.5. If τ is small enough, then φ(t) is an upper solution of (4.2).

Proof. It is sufficient to prove that φ(t) satisfies the definition of an upper solution. If t < 0, then φ(t) = keλ1(c)t and

∞∫
−∞

J (t − y)
[
φ(y) − φ(t)

]
dy − δφ(t) + pφ(t − cτ )e−aφ(t−cτ ) − cφ′(t)

� k

{ ∞∫
−∞

J (t − y)
[
eλ1 y − eλ1t]dy − δeλ1t + peλ1(t−cτ ) − cλ1eλ1t

}

= keλ1t

{ ∞∫
−∞

J (y)
[
eλ1 y − 1

]
dy − δ + pe−λ1cτ − cλ1

}
= 0.

When t > cτ holds, then φ(t) = φ(t − cτ ) = k and the result is clear.
Note that τ > 0 is small enough, then there exists μ < 0 such that

∞∫
−∞

J (t − y)
[
φ(y) − φ(t)

]
dy � k

−cτ∫
−∞

J (s)
[
eλ1(cτ+s) − 1

]
ds � μ, t ∈ [0, cτ ]

since (J1) indicates that
∫ −cτ
−∞ J (y)dy > 0. Moreover, if τ > 0 is small enough, then

sup
θ∈[−cτ ,0]

[−δk + pφ(θ)e−aφ(θ)
]
� −μ.

Thus, t ∈ [0, cτ ] with τ > 0 small enough implies that

∞∫
−∞

J (t − y)
[
φ(y) − φ(t)

]
dy − δφ(t) + pφ(t − cτ )e−aφ(t−cτ ) − cφ′(t)

=
0∫

−∞
J (t − y)

[
φ(y) − φ(t)

]
dy − δk + pφ(t − cτ )e−aφ(t−cτ )

� −μ + μ = 0.

The proof is complete. �
Lemma 4.6. If q > 1 is large enough, then φ(t) is a lower solution of (4.2).

Proof. We only need to verify that φ(t) satisfies the definition of a lower solution. In particular, let M be a positive constant
such that∣∣pue−au − pu

∣∣� Mu2, u ∈ [0,k].
If φ(t) = k[eλ1(c)t − qeηλ1(c)t ], then φ(t − cτ ) = k[eλ1(c)(t−cτ ) − qeηλ1(c)(t−cτ )] and

∞∫
−∞

J (t − y)
[
φ(y) − φ(t)

]
dy − δφ(t) + pφ(t − cτ )e−aφ(t−cτ ) − cφ′(t)

� k

{ ∞∫
−∞

J (t − y)
[
eλ1 y − qeηλ1 y − (

eλ1t − qeηλ1t)]dy − δ
(
eλ1t − qeηλ1t)

+ peλ1(t−cτ ) − peηλ1(t−cτ ) − Mke2λ1(t−cτ ) − c
(
λ1eλ1t − qηλ1eηλ1t)}
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= keλ1t

{ ∞∫
−∞

J (y)
[
eλ1 y − 1

]
dy − δ + pe−λ1cτ − cλ1

}
− Mk2e2λ1(t−cτ )

− qkeηλ1t

{ ∞∫
−∞

J (y)
[
eηλ1 y − 1

]
dy − δ + pe−ηλ1cτ − cηλ1

}

− qk�(ηλ1, c)eηλ1t − Mk2e2λ1(t−cτ ).

Choose q > Mk
−�(ηλ1,c) +1, then −qk�(ηλ1, c)eηλ1t − Mk2e2λ1(t−cτ ) > 0 and this implies that φ(t) is the lower solution of (4.2)

if φ(t) = k[eλ1(c)t − qeηλ1(c)t].
When φ(t) = 0, then φ(t − cτ ) � 0 and the result is clear. The proof is complete. �

Theorem 4.7. Let p > eδ be true, c∗ and λ1(c) be defined by Lemma 4.4. Assume that τ > 0 is small enough. Then for every c > c∗ ,
(4.1) has a traveling wave front φ(x + ct) such that limt→−∞ φ(t)e−λ1(c)t > 0 holds.

Proof. In order to apply Theorem 3.7, it suffices to prove that the set Γ (φ,φ) is nonempty by Lemmas 4.2 and 4.5–4.6.

Define the continuous function φ∗(t) = k
1+e−λ1t , then it is clear that φ∗(t) ∈ Γ (φ,φ) for β > cλ1. The asymptotic behavior

limt→−∞ φ(t)e−λ1(c)t > 0 holds by those of upper–lower solutions. The proof is complete. �
Remark 4.8. Let τ = 0, then the result of Theorem 4.7 remains true. Thus, the traveling wave front of (4.1) is persistent with
respect to small delay.

Example 4.9. Let us consider the following delayed system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
=
∫
R

J (x − y)
[
u(y, t) − u(x, t)

]
dy + u(x, t)

[
1 − u(x, t − τ1) − rv(x, t − τ2)

]
,

∂v(x, t)

∂t
=
∫
R

J (x − y)
[
v(y, t) − v(x, t)

]
dy − bu(x, t)v(x, t),

(4.6)

where x, u, v ∈ R and all parameters are positive. System (4.6) can be regarded as the delayed non-local diffusion version
of the Belousov–Zhabotinskii model which was proposed to describe the concentration of Bromic acid and bromide ion
in chemical reactions. Recently, the traveling wave fronts in different versions of Belousov–Zhabotinskii model have been
widely studied by many authors, see, e.g., [21,25,28,38].

Similar to that in [21,25], letting v∗ = 1 − v in (4.6), and omitting the asterisks for notational simplicity, then (4.6)
becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
=
∫
R

J (x − y)
[
u(y, t) − u(x, t)

]
dy + u(x, t)

[
1 − r − u(x, t − τ1) + rv(x, t − τ2)

]
,

∂v(x, t)

∂t
=
∫
R

J (x − y)
[
v(y, t) − v(x, t)

]
dy + bu(x, t)

[
1 − v(x, t)

]
.

(4.7)

Assume that (u(x, t), v(x, t)) = (φ1(x+ct),φ2(x+ct)) is a traveling wave front of (4.7), then (φ1(t),φ2(t)), t ∈ R, must satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cφ′
1(t) =

∞∫
−∞

J (t − y)
[
φ1(y) − φ1(t)

]
dy + φ1(t)

[
1 − r − φ1(t − cτ1) + rφ2(t − cτ2)

]
,

cφ′
2(t) =

∞∫
−∞

J (t − y)
[
φ2(y) − φ2(t)

]
dy + bφ1(t)

[
1 − φ2(t)

]
.

(4.8)

Recalling the background of Belousov–Zhabotinskii model [21,25,28,38], we will prove the existence of (4.8) with the fol-
lowing asymptotic boundary conditions

lim
t→−∞φ1(t) = lim

t→−∞φ2(t) = 0, lim
t→∞φ1(t) = lim

t→∞φ2(t) = 1. (4.9)

Let τ = max{τ1, τ2}. For (φ1, φ2) ∈ C([−cτ ,0],R
2), define f = ( f1, f2) by{

f1 = φ1(0)
[
1 − r − φ1(−cτ1) + rφ2(−cτ2)

]
,

f2 = bφ1(0)
[
1 − φ2(0)

]
.
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Lemma 4.10. Assume that τ1 is small enough. Then f satisfies (EQM).

The proof is similar to that of [21, Lemma 4.1], so we omit it here.
For λ � 0, c > 0, define

�(γ , c) =
∞∫

−∞
J (y)

[
eγ y − 1

]
dy − cγ + 1 − r. (4.10)

Then (J1)–(J2) imply that �(γ , c) is well defined and the following result holds.

Lemma 4.11. There exists a constant c∗ > 0 such that (4.10) has two distinct positive zeros if c > c∗ while (4.10) has no real root
if c < c∗ . More precisely, if c > c∗ holds, then there exist γ2(c) > γ1(c) > 0 such that

�(γ , c)

⎧⎪⎪⎨⎪⎪⎩
> 0 for 0 < γ < γ1(c),

= 0 for γ = γ1(c), γ2(c),

< 0 for γ1(c) < γ < γ2(c),

> 0 for γ > γ2(c).

By the constants in Lemma 4.11, define continuous functions as follows

φ1(t) = min
{

eγ1t ,1
}
, φ2(t) = min

{
eγ1(t−cτ1),1

}
,

φ1(t) = max
{
(1 − r)(eγ1t − qeηγ1t),0

}
, φ2(t) = 0,

where η ∈ (1,min{2,
γ2(c)
γ1(c) }) and q > 1 is a constant. Moreover, similar to the proof of Lemmas 4.5–4.6, we can verify the

following results.

Lemma 4.12. Assume that τ1 is small enough and b < 1 − r. Then (φ1(t), φ2(t)) is an upper solution and (φ1(t),φ2(t)) is a lower
solution of (4.8) if q > 1 is large enough.

Theorem 4.13. Assume that τ1 is small enough and b < 1 − r. Then (4.6) has a traveling wave front with wave speed c > c∗ .

Proof. In order to apply Theorem 3.7, it is sufficient to prove that Γ ([φ1, φ2], [φ1, φ2]) is nonempty by Lemma 4.12. In fact,(
1

1 + e−γ1t
,

1

1 + e−γ1(t−cτ1)

)
∈ Γ

for some β > 0 large enough. The proof is complete. �
Examples 4.1 and 4.9 imply that the construction of upper and lower solutions is possible when we establish the ex-

istence of traveling wave fronts of (1.2) by Theorem 3.7. Furthermore, (EQM) is very common in mathematical literature
besides that the (QM) system must be the (EQM) system. For example, let n = 1 in (1.2)–(1.3), and denote f1, J1 by f , J ,
then we have the following result.

Proposition 4.14. Assume that (H1) and (H2) hold. Then f in (1.3) satisfies (EQM) if τ > 0 is small enough.

Proof. Assume that φ(s), ψ(s) ∈ C([−cτ ,0],R) satisfy (i) 0 � ψ(s) � φ(s) � K , s ∈ [−cτ ,0], (ii) e
βs
c (φ(s) − ψ(s)),

s ∈ [−cτ ,0] is nondecreasing for β > 0 clarified later. Then

f (φ) − f (ψ) � −L‖φ − ψ‖ � −Leβτ
[
φ(0) − ψ(0)

]
by (H2). Since τ is small enough, then there exists β > 0 such that

β � Leβτ +
∫
R

J (x)dx

holds. The proof is complete. �
Remark 4.15. It should be noted that β in Lemma 4.2 and Proposition 4.14 are independent of the wave speed c.
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