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1. Introduction

Piecewise deterministic Markov processes (PDMPs) are Markov processes involving deterministic motion punctuated by
random jumps. A general theory for such processes was introduced in [13] within an abstract framework with numerous
examples from queueing and control theory. The sample paths X(t) of the PDMP depend on three local characteristics:
a flow π , a nonnegative jump rate function ϕ , and a stochastic transition kernel J . Instead of a flow, here we consider
semi-flows on a Borel state space E such that πt(E) ⊆ E , t � 0, which leads to PDMPs without active boundaries and allows
us to use the more general formulation of stochastic models presented in [22]. Starting from x the process follows the
trajectory πt x until the first jump time t1 which occurs at a rate ϕ . The value of the process at the jump time t1 is selected
from the distribution J (πt1 x, ·) and the process restarts afresh from this new point (see Section 5.1 for the construction).
If the function ϕ is unbounded then it might happen that the process is only defined up to a finite random time, called an
explosion time, so that we study the minimal PDMP with the given characteristics.

Let the state space be a σ -finite measure space (E, E ,m). Suppose that the distribution of X(0) is absolutely continuous
with respect to the measure m. One of our main objectives is to give sufficient conditions for the distribution of X(t) to be
absolutely continuous with respect to m for all t > 0, and to derive rigorously an evolution equation for its density u(t, x).
This leads us to study equations of the form

∂u(t, x)

∂t
= A0u(t, x) − ϕ(x)u(t, x) + P

(
ϕu(t, ·))(x), (1.1)

where P is a stochastic operator on L1 corresponding to the stochastic kernel J (see Section 2) and A0 is the (infinitesimal)
generator of a strongly continuous semigroup of stochastic operators (stochastic semigroup) corresponding to the determin-
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istic semi-flow π . Let us write

Au = A0u − ϕu and C u = Au + P (ϕu). (1.2)

When ϕ is bounded, then the Cauchy problem associated with (1.1) is well posed, by the bounded perturbation theorem
(see e.g. [16, Section III.1]), and C generates a stochastic semigroup. If ϕ is unbounded, then C is the sum of two unbounded
operators and the existence and uniqueness of solutions to the Cauchy problem in L1 is problematic. The strategy which can
be adapted to tackle such problems involves perturbation results for strongly continuous semigroups of positive contractions
on L1 (substochastic semigroups). We refer the reader to the monograph [7] for an extensive overview on the subject. We
make use of one such result (Theorem 3.1 in Section 3), which goes back to [24] in the case of a discrete state space and was
subsequently developed in [33,2,4], from which it follows that the operator C has an extension C generating a substochastic
semigroup {P (t)}t�0 provided that the operator A is the generator of a substochastic semigroup on L1 and C is defined on
the domain D(A) of A. In general, the semigroup {P (t)}t�0 is stochastic if and only if the generator C is the minimal closed
extension of (C, D(A)). In that case, if u0 is nonnegative then the norm∥∥P (t)u0

∥∥ =
∫
E

P (t)u0(x)m(dx), t � 0,

is constant in time, meaning that there is conservation of mass. If C is not the minimal closed extension of (C, D(A)), then
we have∥∥P (t)u0

∥∥ < ‖u0‖ (1.3)

for some u0 and t > 0, meaning that there is a loss of mass. Our objective is to study the two extreme cases: either
{P (t)}t�0 is stochastic or it is strongly stable

lim
t→∞

∥∥P (t)u0
∥∥ = 0 for all u0 ∈ L1.

In Section 3 we provide general necessary and sufficient conditions for either to hold (Theorems 3.4–3.6). To the best of our
knowledge all past investigations of the semigroup {P (t)}t�0 concentrated on providing necessary and sufficient conditions
for conservation of mass [7] and it was only shown in [9] that if there is a loss of mass for fragmentation models and
explosive birth-death processes then (1.3) holds for every u0 and sufficiently large t . Thus, the study of strong stability
seems to be new.

Formulating the problem in the context of piecewise deterministic Markov processes allows us to identify the cor-
responding semigroup {P (t)}t�0 from a probabilistic point of view (Theorem 5.2). The combination of probabilistic and
functional-analytic methods leads to rigorous results providing a derivation of an evolution equation for densities of such
processes and necessary and sufficient conditions for the semigroup to be either stochastic or strongly stable. In the discrete
state space, (1.1) with A0 = 0 is the forward Kolmogorov equation [17] and we recover the results of [24,30]. To illustrate
our general approach, we use fragmentation models (Section 6) in our framework and provide a refined analysis of such
models, previously studied extensively with either purely functional-analytic or probabilistic methods [29,18,27,15,28,21,19,
8,3,1,5,34]. Our results can also be applied to stochastic differential equations with jumps [20,11].

The outline of this paper is as follows. In Section 2 we collect relevant definitions for stochastic operators and give
necessary and sufficient conditions for strongly stable operators and semigroups. In Section 3 we recall the Kato–Voigt per-
turbation theorem and we prove necessary and sufficient conditions for the corresponding semigroup to be either stochastic
or strongly stable. In Section 4 we describe the extension techniques introduced in [2], and further developed in [4], which
provide the characterization of the generator and the evolution equation for densities. In Section 5 we study piecewise
deterministic Markov processes. In Section 5.1 we describe a general construction of PDMPs and in Section 5.2 the relation
of such stochastic models to the corresponding semigroups {P (t)}t�0 on L1. In Section 6 we let the operators P and A have
definite forms and give a number of concrete examples of situations that fit directly into our framework.

2. Preliminaries

Let (E, E ,m) be a σ -finite measure space and L p = L p(E, E ,m) for all p � 1. A linear operator A : D → L1, where D is a
linear subspace of L1, is said to be positive if Au � 0 for u ∈ D+ := D ∩ L1+ . Then we write A � 0. Every positive operator A
with D = L1 is a bounded operator. In general, we will denote the domain of any operator A by D(A), its range by Im(A),
Im(A) = {Au: u ∈ D(A)}, and its null space by Ker(A), Ker(A) = {u ∈ D(A): Au = 0}. The resolvent set ρ(A) of A is the set of
all complex numbers λ for which λ− A is invertible. The family R(λ, A) := (λ− A)−1, λ ∈ ρ(A), of bounded linear operators
is called the resolvent of A. Finally, if (A, D(A)) is the generator of a substochastic semigroup then R(λ, A)u � R(μ, A)u � 0
for μ > λ > 0 and u ∈ L1+ .

Let D(m) ⊂ L1 be the set of all densities on E , i.e.

D(m) = {
u ∈ L1: u � 0, ‖u‖ = 1

}
,

where ‖ · ‖ is the norm in L1. A linear operator P : L1 → L1 such that P (D(m)) ⊆ D(m) is called stochastic or Markov [25].
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Let J : E × E → [0,1] be a stochastic transition kernel, i.e. J (x, ·) is a probability measure for each x ∈ E and the function
x 
→ J (x, B) is measurable for each B ∈ E , and let P be a stochastic operator on L1. If∫

E

J (x, B)u(x)m(dx) =
∫
B

P u(x)m(dx) for all B ∈ E , u ∈ D(m),

then P is called the transition operator corresponding to J . If p : E × E → [0,∞) is a measurable function such that∫
E

p(x, y)m(dx) = 1, y ∈ E,

then the operator P defined by

P u(x) =
∫
E

p(x, y)u(y)m(dy), x ∈ E, u ∈ L1,

is stochastic and it corresponds to the stochastic kernel

J (x, B) =
∫
B

p(y, x)m(dy), x ∈ E, B ∈ E .

We simply say that P has kernel p.
A linear operator T on L1 is called mean ergodic if

lim
N→∞

1

N

N−1∑
n=0

T nu exists for all u ∈ L1

and strongly stable if

lim
n→∞

∥∥T nu
∥∥ = 0 for all u ∈ L1. (2.1)

Note that a stochastic operator is never strongly stable. We have the following characterization of strongly stable positive
contractions on L1. The result seems to be known but we cannot find appropriate references. We include its very simple
proof for the sake of completeness.

Proposition 2.1. Let T be a positive contraction on L1 and T ∗ : L∞ → L∞ be the adjoint of T . Then the following are equivalent:

(1) T is mean ergodic and Ker(I − T ) = {0}.
(2) T is strongly stable.
(3) Condition (2.1) holds for some u ∈ L1+ , u > 0 a.e.
(4) If for some f ∈ L∞+ we have T ∗ f = f then f = 0.
(5) limn→∞ T ∗n1 = 0 a.e.

Proof. First observe that (1) is equivalent to

lim
N→∞

1

N

N−1∑
n=0

T nu = 0 for all u ∈ L1.

Since T is a positive contraction, the sequence (‖T nu‖) is convergent for nonnegative u. Thus

lim
N→∞

1

N

∥∥∥∥∥
N−1∑
n=0

T nu

∥∥∥∥∥ = lim
N→∞

1

N

N−1∑
n=0

∥∥T nu
∥∥ = lim

n→∞
∥∥T nu

∥∥,

by additivity of the norm, which gives (1) ⇔ (2). The implications (5) ⇒ (2) and (2) ⇒ (3) are trivial. Now assume that (3)
holds. Let f ∈ L∞+ be such that T ∗ f = f . We have∫

E

f u dm =
∫
E

T ∗n f u dm =
∫
E

f T nu dm � ‖ f ‖∞
∥∥T nu

∥∥,

which shows that f = 0. Finally, assume that (4) holds. Since T ∗1 � 1, the limit h := limn→∞ T ∗n1 exists and T ∗h = h. Thus
h = 0 by (4). �
Remark 2.2. Note that if T is a positive contraction with Ker(I − T ) = {0} then T is mean ergodic if and only if
Ker(I − T ∗) = {0}, by Sine’s theorem [31].
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We now state for later use the inheritance of mean ergodicity under domination. This is a consequence of the Yosida–
Kakutani ergodic theorem (see e.g. [35, Theorem VIII.3.2]).

Proposition 2.3. Let T and K be positive contractions on L1 such that

T u � K u for u ∈ L1+.

If K is mean ergodic then T is mean ergodic.

A semigroup {S(t)}t�0 is called strongly stable if

lim
t→∞ S(t)u = 0 for all u ∈ L1.

Note that a stochastic semigroup is never strongly stable. The mean ergodic theorem for semigroups [35, Chapter VIII.4] and
additivity of the norm give the following characterization (see also [12, Theorems 2.1 and 7.7]).

Proposition 2.4. Let {S(t)}t�0 be a substochastic semigroup on L1 with generator A. Then the following are equivalent:

(1) {S(t)}t�0 is strongly stable.
(2) For every u ∈ L1+

lim
λ↓0

λR(λ, A)u = 0.

(3) Im(A) is dense in L1 .

3. Perturbation of substochastic semigroups

In this section we consider two linear operators (A, D(A)) and (B, D(B)) in L1 which are assumed throughout to have
the following properties:

(G1) (A, D(A)) generates a substochastic semigroup {S(t)}t�0;
(G2) D(B) ⊇ D(A) and Bu � 0 for u ∈ D(A)+;
(G3) for every u ∈ D(A)+∫

E

(Au + Bu)dm = 0. (3.1)

We refer to Sections 4 and 6 for examples of operators satisfying (G1)–(G3).

Theorem 3.1. (See [24,33,4].) There exists a substochastic semigroup {P (t)}t�0 on L1 generated by an extension C of the operator
(A + B, D(A)). The generator C is characterized by

R(λ, C)u = lim
N→∞ R(λ, A)

N∑
n=0

(
B R(λ, A)

)n
u, u ∈ L1, λ > 0, (3.2)

and {P (t)}t�0 is the smallest substochastic semigroup whose generator is an extension of (A + B, D(A)).
Moreover, the following are equivalent:

(1) {P (t)}t�0 is a stochastic semigroup.
(2) The generator C is the closure of (A + B, D(A)).
(3) For some λ > 0

lim
n→∞

∥∥(
B R(λ, A)

)n
u
∥∥ = 0 for all u ∈ L1. (3.3)

The semigroup {P (t)}t�0 from Theorem 3.1 can be obtained [4,7] as the strong limit in L1 of semigroups {Pr(t)}t�0
generated by (A + rB, D(A)) as r ↑ 1. It satisfies the integral equation

P (t)u = S(t)u +
t∫

P (t − s)B S(s)u ds (3.4)
0
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for any u ∈ D(A) and t � 0, where {S(t)}t�0 is the semigroup generated by (A, D(A)), and it is also given by the Dyson–
Phillips expansion

P (t)u =
∞∑

n=0

Sn(t)u, u ∈ D(A), t � 0, (3.5)

where

S0(t)u = S(t)u, Sn+1(t)u =
t∫

0

Sn(t − s)B S(s)u ds, n � 0. (3.6)

Let λ > 0. Since the generator C of the substochastic semigroup {P (t)}t�0 is such that Cu = (A + B)u for u ∈ D(A), we
have

(λ − C)R(λ, A)v = (λ − A − B)R(λ, A)v = (
I − B R(λ, A)

)
v

for v ∈ L1. Thus Ker(I − B R(λ, A)) ⊆ Ker(R(λ, A)) and

B R(λ, A)v + λR(λ, A)v = v + (A + B)R(λ, A)v for v ∈ L1+. (3.7)

Combining this with (G2) and (G3), we obtain the following corollary.

Corollary 3.2. Let λ > 0. Then∥∥B R(λ, A)u
∥∥ + ∥∥λR(λ, A)u

∥∥ = ‖u‖ for u ∈ L1+ (3.8)

and B R(λ, A) is a positive contraction with Ker(I − B R(λ, A)) = {0}.

Remark 3.3. Note that if u ∈ L1+ then for each N � 0

λ

∥∥∥∥∥R(λ, A)

N∑
n=0

(
B R(λ, A)

)n
u

∥∥∥∥∥ = ‖u‖ − ∥∥(
B R(λ, A)

)N+1
u
∥∥. (3.9)

In fact, since R(λ, A)v ∈ D(A)+ for v ∈ L1+ , we obtain, by (3.7) and (3.1),

λ

∫
E

R(λ, A)v dm =
∫
E

(
v − B R(λ, A)v

)
dm,

which gives (3.9) for v = ∑N
n=0(B R(λ, A))nu.

We have the following result for stochastic semigroups.

Theorem 3.4. Let λ > 0. The following are equivalent:

(1) {P (t)}t�0 is a stochastic semigroup.
(2) The operator B R(λ, A) is mean ergodic.
(3) m{x ∈ E: fλ(x) > 0} = 0, where

fλ(x) = lim
n→∞

(
B R(λ, A)

)∗n
1(x). (3.10)

(4) There is u ∈ L1+ , u > 0 a.e. such that

lim
n→∞

∥∥(
B R(λ, A)

)n
u
∥∥ = 0.

Proof. By Corollary 3.2, the operator B R(λ, A) is a positive contraction with Ker(I − B R(λ, A)) = {0}. First assume that
(1) holds. Since the operator λR(λ, C) is stochastic, we have ‖λR(λ, C)u‖ = ‖u‖ for u ∈ L1+ . Hence (4) follows from (3.2)
and (3.9). The implications (4) ⇒ (3) ⇒ (2) ⇒ (1) follow from Proposition 2.1 and condition (3.3). �

Next, we consider strong stability.

Theorem 3.5. The semigroup {P (t)}t�0 is strongly stable if and only if

m
{

x ∈ E: lim inf
λ↓0

fλ(x) < 1
}

= 0,

where fλ is defined in (3.10).
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Proof. It follows from (3.9) and the monotone convergence theorem that∥∥λR(λ, C)u
∥∥ = ‖u‖ − ‖ fλu‖ for u ∈ L1+.

Since fλ � 1 for all λ > 0 and ‖ fμu‖ � ‖ fλu‖ for μ > λ and all u ∈ L1+ , the claim follows from Proposition 2.4. �
We now prove the following general result which provides another sufficient condition for {P (t)}t�0 to be stochastic.

Theorem 3.6. Define the operator K : L1 → L1 by

K u = lim
λ↓0

B R(λ, A)u for u ∈ L1. (3.11)

Then the following hold:

(1) K is a positive contraction.
(2) K is stochastic if and only if the semigroup {S(t)}t�0 generated by A is strongly stable.
(3) If K is mean ergodic then {P (t)}t�0 is stochastic.

Proof. We have ‖B R(λ, A)u‖ � ‖u‖ for u ∈ L1+ and 0 � B R(μ, A)u � B R(λ, A)u for μ > λ, u ∈ L1+ . Thus the limit
limλ↓0 B R(λ, A)u exists and ‖limλ↓0 B R(λ, A)u‖ = limλ↓0 ‖B R(λ, A)u‖ for u ∈ L1+ , by the monotone convergence theorem.
Since the cone L1+ is generating, i.e. L1 = L1+ − L1+ , K is a well-defined positive contraction. From (3.8) it follows that

‖K u‖ = ‖u‖ − lim
λ↓0

λ
∥∥R(λ, A)u

∥∥ for u ∈ L1+,

which implies (2), by Proposition 2.4. Since B R(λ, A) � K for λ > 0, claim (3) is a consequence of Proposition 2.3 and
Theorem 3.4. �

The semigroup {P (t)}t�0 dominates {S(t)}t�0. By part (2) of Theorem 3.6, we obtain the following necessary condition
for {P (t)}t�0 to be strongly stable.

Corollary 3.7. If the semigroup {P (t)}t�0 is strongly stable then the operator K defined by (3.11) is stochastic.

4. Evolution equation

In this section we introduce an abstract setting in which the evolution equations for densities of PDMPs can be studied.
Let P be a stochastic operator on L1, ϕ : E → [0,∞) be a measurable function, and let

L1
ϕ =

{
u ∈ L1:

∫
E

ϕ(x)
∣∣u(x)

∣∣m(dx) < ∞
}
.

We assume that {S(t)}t�0 is a substochastic semigroup on L1 with generator (A, D(A)) such that

D(A) ⊆ L1
ϕ and

∫
E

Au dm = −
∫
E

ϕu dm for u ∈ D(A)+. (4.1)

Remark 4.1. Note that (4.1) holds if

Au = A0u − ϕu for u ∈ D(A) ⊆ D(A0) ∩ L1
ϕ,

where (A0, D(A0)) is the generator of a stochastic semigroup.

Define the operator B by Bu = P (ϕu), u ∈ L1
ϕ . Since P is positive and ‖P (ϕu)‖ = ‖ϕu‖ for u ∈ D(A)+ , it follows from

(4.1) that the operators (A, D(A)) and (B, L1
ϕ) satisfy the assumptions (G1)–(G3) of Section 3 and, by Theorem 3.1, there

exists a smallest substochastic semigroup {P (t)}t�0 with generator (C, D(C)) which is an extension of the operator

C u = Au + P (ϕu) for u ∈ D(A). (4.2)

Since (C, D(C)) is the generator of {P (t)}t�0, the Cauchy problem

u′(t) = Cu(t), t � 0, u(0) = u0,

possesses a unique classical solution for all u0 ∈ D(C), which is given by u(t) = P (t)u0 ∈ D(C). However, as we do not know
the operator C , we should rather work with the equation

u′(t) = C u(t), where C u = Au + P (ϕu)
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and A and P are extensions of the operators A and P such that D(C) ⊆ D(C). The existence of such extensions follows
from the construction of [2, Section 2] (see [7, Section 6.3] for more details) which we now reformulate in terms of the
operators that appear in (4.2).

We denote by L = L(E, E ,m) the space of equivalent classes of all measurable [−∞,∞]-valued function on E and by
L0 the subspace of L consisting of all elements which are finite almost everywhere. If 0 � un � un+1, un ∈ L1, n ∈ N, then
the pointwise almost everywhere limit of un exists and will be denoted by supn un , so that supn un ∈ L. If T is a positive
bounded linear operator, it may be extended pointwise and linearly beyond the space L1 in the following way: if u ∈ L+
then we define

T u = sup
n

T un for u = sup
n

un, un ∈ L1+

(note that T u is independent of the particular approximating sequence un), and if u ∈ L is such that T |u| ∈ L0 then we set
T u = T u+ − T u− . Since R(1, A) and P are positive contractions, they have pointwise extensions, which will be denoted in
what follows by R(1, A) and P .

Let

F= {
u ∈ L: R(1, A)|u| ∈ L1} and R1u = R(1, A)u for u ∈ F.

Then F⊂ L0 and the operator R1 : F→ L1 is one-to-one [4, Lemma 3.1]. We can define the operator A : D(A) → L0 by

Au = u − R−1
1 u for u ∈ D(A) := {R1 v: v ∈ F} (4.3)

and the operator B : D(B) → L0 by

Bu = P (ϕu) for u ∈ D(B) := {
u ∈ L1: P

(
ϕ|u|) ∈ L0}.

Since L1
ϕ ⊂ D(B) and A is an extension of (A, D(A)), the operator C : D(C) → L1 given by

C u = Au + Bu for u ∈ D(C) = {
u ∈ D(A) ∩ D(B): C u ∈ L1}

is an extension of the operator (C, D(A)) defined by (4.2). Theorem 1 of [2] characterizes the generator (C, D(C)) of the
semigroup {P (t)}t�0 in the following way:

Cu = C u for u ∈ D(C) =
{

u ∈ D(C): lim
n→∞

∥∥(R1 B)nu
∥∥ = 0

}
.

Since (C, D(C)) is a closed extension of C|D(A) , we obtain

D(C|D(A)) ⊆ D(C) ⊆ D(C).

Consequently, if u0 ∈ D(C) ∩ D(m) then the equation

u′(t) = C u(t), t � 0, u(0) = u0, (4.4)

has a nonnegative strongly differentiable solution u(t) which is given by u(t) = P (t)u0 for t � 0 and if {P (t)}t�0 is stochastic
then this solution is unique in D(m). Recall that D(m) is the set of densities.

Remark 4.2. Suppose that the operator P has kernel p. Then for every u ∈ L1+ we obtain

P (ϕu)(x) =
∫
E

p(x, y)ϕ(y)u(y)m(dy),

by the monotone convergence theorem.
If Au = −ϕu for u ∈ L1

ϕ then

F=
{

u ∈ L0:
u

1 + ϕ
∈ L1

}
and Au = −ϕu for u ∈ D(A) = L1.

5. Piecewise deterministic Markov processes

5.1. Construction

Let E be a Borel subset of a Polish space (separable complete metric space) and let B(E) be the Borel σ -algebra. We
consider three local characteristics (π,ϕ, J ):

(1) A semidynamical system π : R+ × E → E on E , i.e. π0x = x, πt+sx = πt(πsx) for x ∈ E , s, t ∈ R+ , and the mapping
(t, x) 
→ πt x is continuous [25, Section 7.2].
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(2) A jump rate function ϕ : E → R+ which is Borel measurable and such that for every x ∈ E , t > 0, the function s 
→ ϕ(πsx)
is integrable on [0, t). We additionally assume that

lim
t→∞

t∫
0

ϕ(πsx)ds = +∞ for all x ∈ E. (5.1)

(3) A jump distribution J : E × B(E) → [0,1] which is a stochastic transition kernel such that J (x, {x}) = 0 for all x ∈ E .

The local characteristics (π,ϕ, J ) determine a piecewise deterministic Markov process {X(t)}t�0 (PDMP) on E (see e.g.
[13,14,22]). Define the function

Φx(t) = 1 − e−φx(t), t > 0, x ∈ E, where φx(t) =
t∫

0

ϕ(πsx)ds.

From (2) it follows that for every x ∈ E the function φx is non-decreasing and right-continuous, because φx(τ ) → 0 as τ ↓ 0
and φx(t + τ ) = φπt x(τ ) + φx(t) for all t, τ > 0, x ∈ E . This and (5.1) imply that Φx is the distribution function of a positive
finite random variable. Let φ←

x be the generalized inverse of φx , i.e.

φ←
x (q) = inf

{
t: φx(t) � q

}
, q � 0,

and let κ : [0,1] × E → E be a measurable function such that

J (x, B) = l1
{

q ∈ [0,1]: κ(q, x) ∈ B
}

for x ∈ E, B ∈ B(E), (5.2)

where l1 is the Lebesgue measure on ([0,1], B([0,1])); the existence of this function follows from (3) and the regularity
of the space E [23, Lemma 3.22]. Observe that if ϑ is a random variable uniformly distributed on (0,1), then κ(ϑ, x)
has distribution J (x, ·) and if ε is exponentially distributed with mean 1, then φ←

x (ε) has distribution Φx (note that
ε = − log(1 − ϑ)).

Let εn, ϑn , n ∈ N, be a sequence of independent random variables, where the εn are exponentially distributed with
mean 1 and the ϑn are uniformly distributed on (0,1). Let �t0 = τ , τ ∈ R+ , and let ξ0 = x, x ∈ E . Define recursively the
sequence of holding times as

�tn := φ←
ξn−1

(εn),

and post-jump positions as

ξn := κ
(
ϑn,π�tn (ξn−1)

)
.

Then (ξn,�tn) is a discrete time-homogeneous Markov process on E × R+ with stochastic transition kernel given by

G
(
(x, τ ), B × [0, t)

) =
t∫

0

J (πsx, B)ϕ(πsx)e− ∫ s
0 ϕ(πr x)dr ds

for (x, τ ) ∈ E × R+ , t ∈ R+ , and B ∈ B(E). Let P(x,τ ) be the distribution of (ξn,�tn) starting at (ξ0,�t0) = (x, τ ). We write
in an abbreviated fashion Px for P(x,0) and Ex for the integration with respect to Px , x ∈ E .

Now let �t0 ≡ 0 and define jump times as

tn :=
n∑

l=0

�tl for n � 0.

Since �tn > 0 for all n � 1 with probability one, the sequence (tn) is increasing and we can introduce the explosion time

t∞ := lim
n→∞ tn.

The sample path of the process {X(t)}t�0 starting at X(0) = ξ0 = x is now defined by

X(t) =
{

πt−tn (ξn), if tn � t < tn+1, n � 0,

�, if t � t∞,

where � /∈ E is some extra state representing a cemetery point for {X(t)}t�0. The process {X(t)}t�0 is called the minimal
PDMP corresponding to the characteristics (π,ϕ, J ). It has right continuous sample paths, by construction, and it is a strong
Markov process, by [22, Theorem 8]. The process is called non-explosive if Px(t∞ = ∞) = 1 for all x ∈ E .

In particular, if πt x = x for all t � 0, x ∈ E , then {X(t)}t�0 is the so-called pure jump Markov process. Observe that in this
case condition (5.1) is equivalent to ϕ(x) > 0 for every x ∈ E and Px(t∞ = ∞) = 1 is equivalent to

∞∑ εn

ϕ(ξn−1)
= ∞ Px-a.e.
n=1
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We also have Px(t∞ = ∞) = 1 if and only if the series
∑∞

n=1
1

ϕ(ξn−1)
diverges Px-a.e. (see e.g. [23, Proposition 12.19]). General

sufficient conditions for the explosion of pure jump Markov processes are contained in [34, Section 2]. Note also that pure
jump Markov processes on a countable set E are continuous-time Markov chains.

5.2. Existence of densities for PDMP

Let {X(t)}t�0 be the minimal PDMP on E with characteristics (π,ϕ, J ) as defined in Section 5.1 and let m be a σ -
finite measure on E = B(E). In this section we impose further restrictions on the characteristics (π,ϕ, J ) which allow
us to define a substochastic semigroup {P (t)}t�0 on L1 corresponding to the Markov process {X(t)}t�0 and to provide a
probabilistic characterization of the analytic results from Section 3.

We assume that a stochastic operator P : L1 → L1 is the transition operator corresponding to J and that a substochastic
semigroup {S(t)}t�0 on L1, with generator (A, D(A)) satisfying (4.1), is such that∫

E

e− ∫ t
0 ϕ(πr x)dr1B(πt x)u(x)m(dx) =

∫
B

S(t)u(x)m(dx) (5.3)

for all t � 0, u ∈ L1+ , B ∈ B(E). As shown in Section 4, there exists a smallest substochastic semigroup {P (t)}t�0 on L1

whose generator is an extension of the operator (C, D(A)) defined in (4.2). The semigroup {P (t)}t�0 will be referred to as
the minimal semigroup on L1 corresponding to (π,ϕ, J ).

Remark 5.1. Observe that from (5.3) it follows that for every t > 0 the transformation πt : E → E is nonsingular, i.e.
m(π−1

t (B)) = 0 for all B ∈ B(E) such that m(B) = 0 [25, Section 3.2], and that there is a stochastic operator P0(t) on
L1 satisfying∫

E

1B(πt x)v(x)m(dx) =
∫
B

P0(t)v(x)m(dx), B ∈ B(E), v ∈ L1.

Hence,

S(t)u = P0(t)vt , where vt(x) = e− ∫ t
0 ϕ(πr x)dru(x).

If {P0(t)}t�0 is a stochastic semigroup with generator A0 then one may expect that the minimal semigroup {P (t)}t�0 solves
(1.1) and that the operator A is as in (1.2) (see Section 6 for some examples).

Substituting B = E into (5.3) leads to∥∥S(t)u
∥∥ =

∫
E

e− ∫ t
0 ϕ(πr x)dru(x)m(dx) for all u ∈ L1+,

which shows that {S(t)}t�0 is strongly stable if and only if condition (5.1) holds. Thus, the operator K : L1 → L1 defined by

K u = lim
λ↓0

P
(
ϕR(λ, A)u

)
for u ∈ L1 (5.4)

is stochastic, by Theorem 3.6.
The main result of this section is the following (we use the convention e−∞ = 0).

Theorem 5.2. Let (tn) be the sequence of jump times and t∞ = limn→∞ tn be the explosion time for {X(t)}t�0 . Then the following
hold:

(1) For any λ > 0

lim
n→∞

(
P
(
ϕR(λ, A)

))∗n
1(x) = Ex

(
e−λt∞)

m-a.e. x.

(2) For any B ∈ B(E), u ∈ D(A)+ , and t > 0∫
B

P (t)u(x)m(dx) =
∫
E

Px
(

X(t) ∈ B, t < t∞
)
u(x)m(dx).

(3) The operator K as defined in (5.4) is the transition operator corresponding to the discrete-time Markov process (X(tn))n�0 with
stochastic kernel

K(x, B) =
∞∫

0

J (πsx, B)ϕ(πsx)e− ∫ s
0 ϕ(πr x)dr ds, x ∈ E, B ∈ B(E).
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Proof. Let M(E)+ (respectively BM(E)+) be the space of all (bounded) Borel measurable nonnegative functions on E . From
(5.3) we obtain, by approximation,∫

E

e− ∫ t
0 ϕ(πr x)dr f (πt x)u(x)m(dx) =

∫
E

f (x)S(t)u(x)m(dx) (5.5)

for all t � 0, u ∈ L1+ , f ∈ M(E)+ . Let λ > 0 and

Gλ f (x) =
∞∫

0

e−λs T0(s)(ϕJ f )(x)ds, x ∈ E, f ∈ BM(E)+,

where the operators J and T0(s) are defined by

J f (x) =
∫
E

f (y)J (x,dy), x ∈ E, f ∈ BM(E)+,

and

T0(s) f (x) = e− ∫ s
0 ϕ(πr x)dr f (πsx), x ∈ E, f ∈ M(E)+, s � 0.

From (5.5) and Fubini’s theorem it follows that∫
E

Gλ f (x)u(x)m(dx) =
∫
E

f (x)P
(
ϕR(λ, A)u

)
(x)m(dx) (5.6)

for f ∈ BM(E)+, u ∈ L1+ , which gives (P (ϕR(λ, A)))∗ f = Gλ f . On the other hand, the construction of the sequence
(tn, X(tn)) yields(

Gλ
)n

f (x) = Ex
(

f
(

X(tn)
)
e−λtn

)
, x ∈ E, n ∈ N, f ∈ BM(E)+, (5.7)

which, by the monotone convergence theorem, leads to

lim
n→∞

(
Gλ

)n
1(x) = Ex

(
e−λt∞)

and proves (1).
In order to show (2), for each n � 0 we define

Tn(t) f (x) = Ex f
(

X(t)
)
1{t<tn+1}, x ∈ E, t ∈ R+, f ∈ BM(E)+.

Let B ∈ B(E) and u ∈ D(A)+ . From the construction of the process and the strong Markov property it follows that
[22, Theorem 9]

Tn(t)1B(x) = T0(t)1B(x) +
t∫

0

T0(s)
(
ϕJ

(
Tn−1(t − s)1B

))
(x)ds

for all x ∈ E , t � 0, and n � 1. Hence, by induction,∫
E

Tn(t)1B(x)u(x)m(dx) =
∫
B

n∑
j=0

S j(t)u(x)m(dx), n � 0, t > 0,

where the S j are defined in (3.6). From (3.5) we obtain

lim
n→∞

∫
B

n∑
j=0

S j(t)u(x)m(dx) =
∫
B

P (t)u(x)m(dx).

On the other hand,

Tn(t)1B(x) = Px
(

X(t) ∈ B, t < tn
) ↑ Px

(
X(t) ∈ B, t < t∞

)
for all x ∈ E , which proves (2).

Finally, from (5.7) we conclude that

lim
λ↓0

Gλ1B(x) = Ex
(
1B

(
X(t1)

)) = K(x, B),

which completes the proof of (3), by (5.6). �
As a direct consequence of Theorem 5.2 and Theorem 3.4 we obtain the following corollary.
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Corollary 5.3. The semigroup {P (t)}t�0 is stochastic if and only if

m
{

x ∈ E: Px(t∞ < ∞) > 0
} = 0.

In that case, if the distribution of X(0) has a density u0 ∈ D(A) then X(t) has the density P (t)u0 for all t > 0.

Furthermore, as a consequence of Theorem 5.2 and Theorem 3.5 we obtain the following result.

Corollary 5.4. The semigroup {P (t)}t�0 is strongly stable if and only if

m
{

x ∈ E: Px(t∞ = ∞) > 0
} = 0.

Remark 5.5. Note that for every density u ∈ D(A)+ we obtain∫
E

P (t)u(x)m(dx) =
∫
E

Px(t∞ > t)u(x)m(dx) for all t > 0, (5.8)

by part (2) of Theorem 5.2. In particular, if D(A) is such that for every u ∈ L1+ we can find a non-decreasing sequence
un ∈ D(A)+ such that un ↑ u then (5.8) holds for all u ∈ L1+ .

Corollary 5.6. Let E be a countable set, m be the counting measure on E, ϕ > 0, and {X(t)}t�0 be a pure jump Markov process on E.
Then the semigroup {P (t)}t�0 is stochastic if and only if the process {X(t)}t�0 is non-explosive.

6. Fragmentation models revisited

In this section we illustrate the applicability of our results to fragmentation models described by linear rate equations
[27,15,28,8,1,5]. For a recent survey of analytic methods for such models we refer the reader to [6]. See also [10] for a
different probabilistic treatment of so-called random fragmentation processes.

Let E = (0,∞), E = B(E), and m(dx) = x dx. Let b : E × E → R+ be a Borel measurable function such that for every y > 0

y∫
0

b(x, y)x dx = y and b(x, y) = 0 for x � y. (6.1)

The stochastic kernel defined by

J (x, B) = 1

x

x∫
0

1B(y)b(y, x)y dy for x ∈ E, B ∈ B(E), (6.2)

will be referred to as the fragmentation kernel. According to (5.2), we have J (x, B) = l1{q ∈ [0,1]: κ(q, x) ∈ B}, where

κ(q, x) = H←
x (q)x for q ∈ [0,1], x > 0,

and H←
x (q) = inf{r ∈ [0,1]: Hx(r) � q}, q ∈ [0,1], is the generalized inverse of the distribution function

Hx(r) =
r∫

0

b(xz, x)xz dz for r ∈ [0,1].

Note that 0 < H←
x (q) � 1 for all x and q ∈ (0,1).

The kernel J is called homogenous if b is of the form

b(x, y) = 1

y
h

(
x

y

)
for 0 < x < y, (6.3)

where h : (0,1) → R+ is a Borel measurable function with
∫ 1

0 h(z)z dz = 1. Since Hx(r) does not depend on x, we obtain

κ(q, x) = H←(q)x, where H(r) =
r∫

0

h(z)z dz.

The kernel J is called separable if b is of the form

b(x, y) = β(x)y

Λ(y)
for x < y, where Λ(y) =

y∫
β(z)z dz
0
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and β is a nonnegative Borel measurable function on E such that Λ(y) is finite and positive for all y > 0. We have Hx(r) =
Λ(xr)/Λ(x) for r ∈ [0,1]. Hence H←

x (q) = Λ←(qΛ(x))/x and in this case

κ(q, x) = Λ←(
qΛ(x)

)
.

Since Λ(Λ←x) = x for all x > 0, the mapping x 
→ Λ(x) transforms this case into the homogenous fragmentation with
H(r) = r for r ∈ (0,1).

In what follows we assume that εn, ϑn , n ∈ N, and ξ0 are independent random variables, where the εn are exponentially
distributed with mean 1, the ϑn are uniformly distributed on (0,1), and ξ0 is an E-valued random variable.

6.1. Pure fragmentation

In this section we consider the pure fragmentation equation [27–29]

∂u(t, x)

∂t
=

∞∫
x

b(x, y)ϕ(y)u(t, y)dy − ϕ(x)u(t, x), t > 0, x > 0, (6.4)

where b satisfies (6.1) and ϕ is a positive Borel measurable function. If we let ψ(y, x) = b(x, y)ϕ(y) then (6.4) has the same
form as in [29] in the absence of coagulation. For a discussion of the model we refer the reader to [7, Chapter 8].

We rewrite Eq. (6.4) in the form (4.4) with the stochastic operator P on L1 given by

P u(x) =
∞∫

x

b(x, y)u(y)dy, u ∈ L1, (6.5)

and

Au = −ϕu, u ∈ L1
ϕ =

{
u ∈ L1:

∞∫
0

ϕ(x)
∣∣u(x)

∣∣x dx < ∞
}

.

Observe that P is the transition operator corresponding to J as defined in (6.2). The operator (A, L1
ϕ) generates a sub-

stochastic semigroup {S(t)}t�0 on L1 where S(t)u(x) = e−ϕ(x)t u(x), t � 0, x ∈ E , u ∈ L1. Hence, (5.3) holds with πt x = x,
t � 0, x ∈ E .

Let {X(t)}t�0 be the minimal pure jump Markov process with characteristics (π,ϕ, J ) and let {P (t)}t�0 be the minimal
semigroup on L1 corresponding to (π,ϕ, J ) as defined in Section 5.2. The sequences of jump times tn and post-jump
positions ξn = X(tn) satisfy

tn =
n∑

k=1

εk

ϕ(ξk−1)
, ξn = H←

ξn−1
(ϑn)ξn−1, n � 1.

Since the sequence (ξn) is non-increasing, we can take � = 0 and write for the explosion time

t∞ = inf
{

t > 0: X(t) = 0
}
.

As a consequence of Corollary 5.3 we obtain the following result of [28].

Corollary 6.1. If ϕ is bounded on bounded subsets of (0,∞) then {P (t)}t�0 is stochastic.

Proof. Let N > 0 and let MN < ∞ be such that ϕ(x) � MN for all x � N . Thus, if ξ0 � N then ξk � N for all k, and
tn �

∑n
k=1 εk/MN for all n. As a result Px(t∞ < ∞) = 0 for all x � N , and the claim follows from Corollary 5.3. �

From Corollary 5.4 we obtain the following result.

Corollary 6.2. Let V be a nonnegative Borel measurable function such that V (x)ϕ(x) � 1 for all x > 0. If

m

{
x ∈ E: Px

( ∞∑
n=1

εn V (ξn) = ∞
)

> 0

}
= 0

then {P (t)}t�0 is strongly stable.

Example 6.1. Consider a homogenous kernel as in (6.3) and let V (x) = xγ /a, where γ ,a > 0. The random variable

τ =
∞∑

εk

k−1∏
H←(ϑl)

γ

k=1 l=1
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is finite with probability 1, by [32, Theorem 1.6]. Thus, if ϕ(x) � a/xγ for x > 0, then {P (t)}t�0 is strongly stable, by
Corollary 6.2. Since t∞ � V (ξ0)τ , we have for every u ∈ L1+ , by Remark 5.5,

∞∫
0

P (t)u(x)x dx �
∞∫

0

(
1 − Fτ

(
atx−γ

))
u(x)x dx for all t > 0, (6.6)

with equality when ϕ(x) = a/xγ , where Fτ is the distribution function of τ .
In particular, if h(z) = (ν + 2)zν with ν + 2 > 0, then H←(ϑ1) = ϑ

1/(ν+2)

1 and τ has the gamma distribution [32, Exam-
ple 3.8] such that

1 − Fτ (q) = 1

�(1 + (ν + 2)/γ )

∞∫
q

s(ν+2)/γ e−s ds, q � 0,

where � is the Gamma function. When ϕ(x) = 1/xγ the equality in (6.6) coincides with the heuristic results of [27]; for
values of ν and γ such that (ν + 2)/γ ∈ N ∪ {0} we obtain

∞∫
0

P (t)u(x)x dx =
∞∫

0

e−tx−γ
(ν+2)/γ∑

k=0

(tx−γ )k

k! u(x)x dx

for all t > 0 and u ∈ L1+ . See [6, Example 6.5] for quite involved calculations for the specific choice of ν = 0 and γ = 1.

Remark 6.3. Since the sequence (ξn) is non-increasing, it converges with probability one to some random variable. In
particular, when the kernel is either homogenous or separable the limiting random variable is zero. Then it is sufficient to
look only at a neighborhood of zero to decide whether the semigroup is stochastic or not.

6.2. Fragmentation with growth

Pure fragmentation, described by (6.4), may occur together with other phenomena. In this section we study fragmenta-
tion processes with continuous growth, where the growth process is described by a semidynamical system π satisfying the
equation

∂

∂t
πt x = g(πt x) for x, t > 0, (6.7)

where g is a strictly positive continuous function. We refer the reader to [1,5,26] for related examples. We denote by L1
loc

the space of all Borel measurable functions on E which are integrable on compact subsets of E and by AC the space of
absolutely continuous functions on E .

Our first task is to construct the minimal PDMP {X(t)}t�0 on E with characteristics (π,ϕ, J ), where π satisfies (6.7),
ϕ ∈ L1

loc is nonnegative, and J is the fragmentation kernel (6.2). We assume throughout this section that there is x̄ > 0 such
that

∞∫
x̄

1

g(z)
dz = ∞ and

∞∫
x̄

ϕ(z)

g(z)
dz = ∞. (6.8)

Since 1/g ∈ L1
loc and ϕ/g ∈ L1

loc, we can define

G(x) =
x∫

x0

1

g(z)
dz and Q (x) =

x∫
x1

ϕ(z)

g(z)
dz, (6.9)

where x0 = 0 and x1 = 0 when the integrals exist for all x and, otherwise, x0, x1 are any points in E .
The function G is increasing, invertible, continuously differentiable on E , and the formula r(t, x) = G−1(G(x) + t) defines

a monotone continuous function in each variable. Since G(∞) = +∞, the function r(t, x) is well defined for all t � 0, x ∈ E
and determines a semidynamical system on E

πt x = G−1(G(x) + t
)
. (6.10)

In the case when G(0) = −∞ the function r(t, x) is well defined for all t ∈ R and x ∈ E , so that we have, in fact, a flow πt on
E such that πt(E) = E . In any case, for any given x > 0 we have π−t x = r(−t, x) ∈ E for all t > 0 such that t < G(x) − G(0).
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The function Q is non-decreasing. Let Q ← be the generalized inverse of Q , which is defined and finite for all q ∈ R,
by (6.8). We have

φx(t) =
t∫

0

ϕ(πr x)dr =
πt x∫
x

ϕ(z)

g(z)
dz = Q (πt x) − Q (x) for x > 0, t � 0,

so that (5.1) holds if and only if Q (∞) = ∞, which is our assumption (6.8). From (6.10) it follows that

φ←
x (q) = G

(
Q ←(

Q (x) + q
)) − G(x) (6.11)

and

πφ←
x (q)x = Q ←(

Q (x) + q
)

for x > 0, q � 0. (6.12)

Consequently, the random variables tn and ξn = X(tn), n � 1, now satisfy

tn =
n∑

k=1

φ←
ξk−1

(εk), ξn = H←
Q ←(Q (ξn−1)+εn)(ϑn)Q ←(

Q (ξn−1) + εn
)
. (6.13)

Remark 6.4. If ϕ is bounded above by a constant a then

φ←
x (q) = G

(
Q ←(

Q (x) + q
)) − G(x) � 1

a

(
Q

(
Q ←(

Q (x) + q
)) − Q (x)

)
� q

a
.

Thus tn � 1
a

∑n
k=1 εk for every n, so that Px(t∞ < ∞) = 0 for all x > 0.

Remark 6.5. Observe that if

m
{

x ∈ E: Px

(
lim sup

n→∞
ξn < ∞

)
> 0

}
= 0,

then m{x ∈ E: Px(t∞ < ∞) > 0} = 0. This is a consequence of G(∞) = ∞ and tn � G(Q ←(Q (ξn−1) + εn)) − G(ξ0) for n � 1.

We now turn our attention to the minimal semigroup {P (t)}t�0 on L1 corresponding to (π,ϕ, J ). For t > 0 we define
the operators S(t) on L1 by

S(t)u(x) = 1E(π−t x)u(π−t x)
π−t xg(π−t x)

xg(x)
eQ (π−t x)−Q (x), x ∈ E, (6.14)

for u ∈ L1. Then {S(t)}t�0 is a substochastic semigroup on L1 satisfying (5.3), whose generator is of the form

Au(x) = −1

x

d

dx

(
xg(x)u(x)

) − ϕ(x)u(x), u ∈ D(A) = D0 ∩ L1
ϕ,

where u ∈ D0 if and only if the function ũ(x) = xg(x)u(x) is such that ũ ∈ AC , ũ′(x)/x belongs to L1, and, additionally
limx→0 ũ(x) = 0 when G(0) = 0. This can be derived from [26, Theorem 5] by an isomorphic transformation of the space L1.
The resolvent operator R(1, A) is given by

R(1, A)u(x) = 1

xg(x)
e−G(x)−Q (x)

x∫
0

eG(y)+Q (y)u(y)y dy, u ∈ L1,

and its extension R1, as described in Section 4, is defined by the same integral expression. It can be proved as in
[3, Lemma 4.1] that the extension (A, D(A)) defined in (4.3) is of the form

Au(x) = −1

x

d

dx

(
xg(x)u(x)

) − ϕ(x)u(x)

for u ∈ D(A) ⊆ {u ∈ L1: g̃u ∈ AC}, where g̃(x) = xg(x), x > 0. Consequently, the corresponding evolution equation on L1 for
u(t, x) = P (t)u0(x) is of the form

∂u(t, x)

∂t
= −1

x

∂

∂x

(
xg(x)u(t, x)

) − ϕ(x)u(t, x) +
∞∫

x

b(x, y)ϕ(y)u(t, y)dy

with u(0, x) = u0(x).
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Finally, we apply our results from Sections 3 and 5.2 to the minimal semigroup {P (t)}t�0. It is easily seen, by Theo-
rem 5.2, that the operator K as defined in (5.4) is a stochastic operator with kernel

k(x, y) =
∞∫

max{x,y}
b(x, z)

ϕ(z)

zg(z)
eQ (y)−Q (z) dz, x, y ∈ (0,∞). (6.15)

By Theorem 3.6, {P (t)}t�0 is stochastic, if K is mean ergodic. In particular, K is mean ergodic, if K is asymptotically stable,
i.e. there is u∗ ∈ D(m) such that K u∗ = u∗ and

lim
n→∞

∥∥K nu − u∗
∥∥ = 0 for all u ∈ D(m).

General sufficient conditions for the latter to hold are contained in [25, Chapter 5] and we have the following result.

Theorem 6.6. (See [25, Theorem 5.7.1].) If the kernel k satisfies

∞∫
0

inf
0<y<r

k(x, y)m(dx) > 0 for every r > 0

and has a Lyapunov function V : (0,∞) → [0,∞), i.e. limx→∞ V (x) = ∞ and for some constants 0 � c < 1, d � 0

∞∫
0

V (x)K u(x)m(dx) � c

∞∫
0

V (x)u(x)m(dx) + d for u ∈ D(m),

then the operator K is asymptotically stable.

In the reminder of this section, we will study the semigroup {P (t)}t�0 under the assumption that the kernel J is
homogeneous as in (6.3).

Corollary 6.7. Assume that there are r, γ > 0 such that

r∫
0

ϕ(z)

g(z)
dz < ∞ and lim inf

x→∞
ϕ(x)

xγ −1 g(x)
> 0. (6.16)

Then the operator K is asymptotically stable and the semigroup {P (t)}t�0 is stochastic.

Proof. Since Q (0) = 0, we have

k(x, y) �
∞∫

x

h

(
x

z

)
ϕ(z)

z2 g(z)
e−Q (z) dz for 0 < y < r < x,

which shows that the first condition in Theorem 6.6 holds, by (6.16). We also have limx→∞ xγ e−Q (x) = 0 and

∞∫
0

xγ k(x, y)x dx =
1∫

0

zγ zh(z)dz

(
yγ + γ eQ (y)

∞∫
y

zγ −1e−Q (z) dz

)
� cyγ + d,

where c := ∫ 1
0 zγ zh(z)dz < 1 = ∫ 1

0 zh(z)dz, which shows that V (x) = xγ is a Lyapunov function. �
The assumptions in Corollary 6.7 cannot be essentially weakened.

Example 6.2. Suppose that ϕ(x) = g(x)/x for all x > 0. Then Q (x) = log x for x > 0, so that the sequence ξn is of the form

ξn = ξ0

n∏
k=1

H←(ϑk)eεk for n � 1.

Let μ0 = ∫ 1
0 log zh(z)z dz. Observe that μ0 is always negative and might be equal to −∞. If μ0 � −1 then for any x we have

Px(lim supn→∞ ξn = ∞) = 1. If μ0 < −1 then, by the strong law of large numbers, Px(limn→∞ ξn = 0) = 1 for all x. Thus K
is not asymptotically stable in both cases and {P (t)}t�0 is stochastic when μ0 � −1, by Remark 6.5. In any case, if g(x) � ãx
then {P (t)}t�0 is stochastic, by Remark 6.4.
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Example 6.3. Suppose that g(x) = x1−β and ϕ(x) = axα for x > 0, where a > 0. Then condition (6.8) holds if and only if
β � 0 and α +β � 0. If α +β > 0 then (6.16) holds, thus {P (t)}t�0 is stochastic. Now suppose that α +β = 0. If either β = 0

or μ0 = ∫ 1
0 log zh(z)z dz � −1/a then {P (t)}t�0 is also stochastic, as in the preceding example. If β > 0 and μ0 < −1/a then

{P (t)}t�0 is strongly stable. This follows from the representation

tn = 1

β

n∑
k=1

(
eβεk/a − 1

)
ξ

β

k−1 = ξ
β

0

β

n∑
k=1

(
eβεk − 1

) k−1∏
l=1

H←(ϑl)
βeβεl/a

and the fact that the random variable

τ =
∞∑

k=1

(
eβεk/a − 1

) k−1∏
l=1

H←(ϑl)
βeβεl/a

is finite with probability 1 precisely when μ0 < −1/a [32, Theorem 1.6].

6.3. Fragmentation with decay

In this section we consider fragmentation processes with continuous degradation, where the degradation process is
described by a semidynamical system π satisfying the equation

∂

∂t
πt x = −g(πt x) for x, t > 0, (6.17)

where g is a strictly positive continuous function. Now the corresponding linear evolution equation will be of the form

∂u(t, x)

∂t
= 1

x

∂

∂x

(
xg(x)u(t, x)

) − ϕ(x)u(t, x) +
∞∫

x

b(x, y)ϕ(y)u(t, y)dy.

We refer the reader to [15,8,3] for related examples.
To construct the minimal PDMP {X(t)}t�0 with characteristics (π,ϕ, J ), where π satisfies (6.17), ϕ ∈ L1

loc is nonnegative,
and J is given by (6.2), we redefine the functions G and Q from (6.9) in such a way that formulas (6.10)–(6.13) remain
valid. We assume that there is x̄ > 0 such that

x̄∫
0

1

g(z)
dz = ∞ and

x̄∫
0

ϕ(z)

g(z)
dz = ∞, (6.18)

and define

G(x) =
x0∫

x

1

g(z)
dz and Q (x) =

x1∫
x

ϕ(z)

g(z)
dz, (6.19)

where x0 = +∞ and x1 = +∞ when the integrals exist for all x, and, otherwise, x0, x1 are any points from E . The semi-
dynamical system π defined by (6.10) satisfies (6.17). The function G is now decreasing and Q is non-increasing. As the
generalized inverse of Q we take

Q ←(q) =
{

sup{x: Q (x) � q}, q > Q (∞),

0, q � Q (∞) and Q (∞) > −∞.

With these alterations Eqs. (6.11) and (6.12) remain valid. The random variables tn and ξn = X(tn), n � 1, again satisfy (6.13).
The semigroup {S(t)}t�0, defined by (6.14), is a substochastic semigroup on L1 satisfying (5.3), whose generator is of the

form

Au(x) = 1

x

d

dx

(
xg(x)u(x)

) − ϕ(x)u(x), u ∈ D(A) = D0 ∩ L1
ϕ,

where u ∈ D0 if and only if the function ũ(x) = xg(x)u(x) is such that ũ ∈ AC , ũ′(x)/x belongs to L1, and, additionally
limx→∞ ũ(x) = 0 when G(∞) = 0. This can be derived from [26, Theorem 7].

We conclude this section with the following characterization of the minimal semigroup {P (t)}t�0 on L1 corresponding
to (π,ϕ, J ).
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Corollary 6.8. If ϕ is bounded on bounded subsets of (0,∞) then {P (t)}t�0 is stochastic.
If V is a non-decreasing function such that V (x)ϕ(x) � 1 for all x > 0 and

m

{
x ∈ E: Px

( ∞∑
n=1

εn V (ξn) = ∞
)

> 0

}
= 0,

then {P (t)}t�0 is strongly stable.

Proof. Observe that for all x,q > 0 we have Q ←(Q (x) + q) < x. Since H←
x (q) � 1 for all x > 0, q ∈ [0,1], we obtain

ξn � Q ←(
Q (ξn−1) + εn

)
< ξn−1, n � 1,

which shows that the sequence ξn is decreasing. We also have

q

supz∈Ix,q
ϕ(z)

� G
(

Q ←(
Q (x) + q

)) − G(x) � q

infz∈Ix,q ϕ(z)
, (6.20)

where Ix,q = [Q ←(Q (x) + q), x]. The first inequality in (6.20) implies that

φ←
ξk−1

(εk) � εk

supz�ξk−1
ϕ(z)

� εk

supz�ξ0
ϕ(z)

, k � 1,

which proves the first assertion, as in the proof of Corollary 6.8. The second statement is a direct consequence of the second
inequality in (6.20) and Corollary 5.4. �
Example 6.4. Consider a homogenous kernel as in (6.3). First suppose that ϕ(x) � a/xγ for x > 0, where a, γ > 0. Then
{P (t)}t�0 is strongly stable and condition (6.6) holds for every density u ∈ D(A).

For the particular choice of g(x) = x1−β and ϕ(x) = axα for x > 0, condition (6.18) holds if and only if β � 0 and
α + β � 0. Hence, if β � 0 then {P (t)}t�0 is stochastic when 0 � α � −β and it is strongly stable when α < 0.

Observe also that the case when G(0) < ∞, which in this example holds when β > 0, corresponds to the situation when
for every x > 0 there is t ∈ (0,∞) such that πt x = 0, so that 0 is reached in a finite time from every point.
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