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1. Introduction

In this paper, we consider the periodic Schrödinger–Boussinesq system (hereafter referred to as the S B-system){
iut + uxx = αvu,

vtt − vxx + vxxxx = β
(|u|2)xx,

(1)

where t > 0, x ∈ [0, L], for some L > 0, and α,β are real constants.
Here, u and v are, respectively, a complex-valued and a real-valued function defined in space-time [0, L] × R. The

S B-system may be considered as a model of interactions between short and intermediate long waves, which is derived in
describing the dynamics of Langmuir soliton formation and interaction in a plasma [28] and diatomic lattice system [32]. The
short wave term u(x, t) : [0, L]×R → C is described by a Schrödinger-type equation with a potential v(x, t) : [0, L] × R → R

satisfying some sort of Boussinesq equation, and representing the intermediate long wave.
The nonlinear Schrödinger (NLS) equation models a wide range of physical phenomena including self-focusing of optical

beams in nonlinear media, propagation of Langmuir waves in plasmas, etc. For an introduction in this topic, we refer the
reader to [26]. The Boussinesq equation, as a model of long waves, was originally derived by Boussinesq [8] in his study
of nonlinear, dispersive wave propagation. It should be remarked that it was the first equation proposed in the literature
to describe this kind of physical phenomena. This equation was also used by Zakharov [34], as a model of nonlinear string,
and by Falk et al. [13] in their study of shape-memory alloys.

Our first aim in the current paper, is to study the well-posedness of the periodic boundary value problem (BVP) for the
S B-system (1), that is, we are interested in the solvability of system (1) subject to the initial conditions

u(x,0) = u0(x); v(x,0) = v0(x); vt(x,0) = (v1)x(x). (2)

Concerning the local well-posedness question, some results has been obtained for the S B-system (1) in the continuous
case. Indeed, Linares and Navas [25] proved that (1) is locally well-posed for initial data u0 ∈ L2(R), v0 ∈ L2(R), v1 = hx
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with h ∈ H−1(R), and u0 ∈ H1(R), v0 ∈ H1(R), v1 = hx with h ∈ L2(R). Moreover, by using some conservations laws, in the
latter case, the solutions can be extended globally. Yongqian [33] established a similar result when u0 ∈ Hs(R), v0 ∈ Hs(R),
v1 = hxx with h ∈ Hs(R) for s � 0. Assuming s � 1 these solutions are global. Finally, Farah [15] proved local well-posedness
for initial data (u0, v0, v1) ∈ Hk(R) × Hs(R) × Hs−1(R) provided

(i) |k| − 1/2 < s < 1/2 + 2k for k � 0,
(ii) k − 1/2 < s < 1/2 + k for k > 0.

In particular, local well-posedness holds for initial data (u0, v0, v1) ∈ Hs(R) × Hs(R) × Hs−1(R) with s > −1/4. Moreover,
when s = 0 the solution is shown to be global. It should be mentioned that, in fact, it is possible to obtain global well-
posedness for s � 0 in the continuous case. This can be proved using the arguments introduced by Bourgain [7] (see also
Angulo et al. [4]). In the proof of Theorem 1.5 below, we also apply these techniques for the periodic S B-system (1)–(2).

The local well-posedness for single dispersive equations with quadratic nonlinearities has been extensively studied in
Sobolev spaces. In general, the proofs are based in the Fourier restriction norm approach introduced by Bourgain [6] in his
study of the nonlinear Schrödinger (NLS) equation iut + uxx + u|u|p−2 = 0, with p � 3, and the Korteweg–de Vries (KdV)
equation ut + uxxx + uxu = 0. This method was further developed by Kenig, Ponce, and Vega in [23] for the KdV equation,
and in [24] for the quadratic nonlinear Schrödinger equations

iut + uxx + F j(u, ū) = 0, j = 1,2,3,

where ū denotes the complex conjugate of u and F1(u, ū) = u2, F2(u, ū) = uū, F3(u, ū) = ū2.
The original Bourgain method makes extensive use of Strichartz-type inequalities in order to derive the bilinear estimates

corresponding to the nonlinearity. On the other hand, Kenig, Ponce, and Vega simplified Bourgain’s proof and improved the
bilinear estimates using only elementary techniques, such as Cauchy–Schwarz inequality and simple calculus inequalities.

This last technique was used by Farah [16] in the study of the Boussinesq equation. It should be pointed out that the
symbol of the Boussinesq equation does not have good cancelations. To overcome this difficulty, the author observed that
the dispersion of the Boussinesq equation (given by the symbol

√
ξ2 + ξ4) is, in some sense, related with the dispersion of

the Schrödinger equation (given by the symbol ξ2) (see Lemma 3.3 below). Therefore, one can “modify” the symbols and
work just with the algebraic relations for the Schrödinger equation already used in Kenig, Ponce, and Vega [24], in order to
derive the relevant bilinear estimates.

To describe our results, we first introduce some functional spaces. Given s ∈ R and L > 0, the periodic Sobolev space
Hs

per = Hs
per([0, L]) is the set of all periodic distributions f such that

‖ f ‖Hs
per

:= ∥∥(
1 + |n|)s

f̂ (n)
∥∥

l2n
< ∞.

Next, we define the X S
s,b and X B

s,b spaces related, respectively, to the Schrödinger and Boussinesq equations. For the first
equation, this spaces were first introduced in [6], whereas for the second one, they were first defined by Fang and Gril-
lakis [14]. By using these spaces and following Bourgain’s argument introduced in [6], they proved local well-posedness for
the BVP{

utt − uxx + uxxxx + ∂2
x

[
f (u)

] = 0,

u(x,0) = u0(x), ut(x,0) = (u1)x(x),

where u0 ∈ Hs
per , u1 ∈ Hs−2

per , 0 � s � 1, and the nonlinearity f satisfies | f (u)| � c|u|p , with 1 < p < 3−2s
1−2s if 0 � s < 1

2 , and

1 < p < ∞ if 1
2 � s � 1. Moreover, if u0 ∈ H1

per , u1 ∈ H−1
per , and f (u) = λ|u|q−1u −|u|p−1u, 1 < q < p, λ ∈ R, then the solution

is global.

Definition 1.1. Let Y be the space of functions F = F (x, t) such that

(i) F : [0, L] × R → C.
(ii) F (x, ·) ∈ S(R) for each x ∈ [0, L].

(iii) F (·, t) ∈ C∞([0, L]) for each t ∈ R.

For s,b ∈ R, X S
s,b and X B

s,b denotes, respectively, the completion of Y with respect to the norm

‖F‖X S
s,b

= ∥∥〈
τ + (2πn/L)2〉b〈n〉s F̃

∥∥
l2n L2

τ
, (3)

‖F‖X B
s,b

= ∥∥〈|τ | − γL(n)
〉b〈n〉s F̃

∥∥
l2n L2

τ
, (4)

where˜denotes the space-time Fourier transform, 〈a〉 ≡ 1 + |a| and γL(n) ≡ (2π/L)2
√

n2 + n4.

We will also need the localized Xs,b spaces defined as follows.
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Definition 1.2. Let I be a time interval. For s,b ∈ R, X S,I
s,b and X B,I

s,b denotes the space endowed with the norm

‖u‖X S,I
s,b

= inf
w∈X S

s,b

{‖w‖X S
s,b

: w(t) = u(t) on I
}
,

‖u‖X B,I
s,b

= inf
w∈X B

s,b

{‖w‖X B
s,b

: w(t) = u(t) on I
}
.

Now, we state our main results concerning local well-posedness.

Theorem 1.1. Let s � 0 and 1/4 < a < 1/2 < b. Then, there exists c > 0, depending only on a,b, s, such that

(i) ‖uv‖X S
s,−a

� c‖u‖X S
s,b

‖v‖X B
s,b

.

(ii) ‖u1ū2‖X B
s,−a

� c‖u1‖X S
s,b

‖u2‖X S
s,b

.

Theorem 1.2. Let s � 0. Then for any (u0, v0, v1) ∈ Hs
per([0, L]) × Hs

per([0, L]) × Hs−1
per ([0, L]) there exist T = T (‖u0‖Hs

per
,‖v0‖Hs

per
,

‖v1‖Hs−1
per

) > 0, b > 1/2 and a unique solution (u, v) of the BVP (1)–(2), satisfying

u ∈ C
([0, T ] : Hs

per

([0, L])) ∩ X S,[0,T ]
s,b and v ∈ C

([0, T ] : Hs
per

([0, L])) ∩ X B,[0,T ]
s,b .

Moreover, the map (u0, v0, v1) �→ (u(t), v(t)) is locally Lipschitz from Hs
per([0, L]) × Hs

per([0, L]) × Hs−1
per ([0, L]) into

C([0, T ] : Hs
per([0, L]) × Hs

per([0, L])).

We also obtain some counter-examples, which show that the bilinear estimates stated in Theorem 1.1 are sharp.

Theorem 1.3.

(i) The estimate

‖uv‖X S
k,−a

� c‖u‖X S
k,b

‖v‖X B
s,b

(5)

holds only if k � s.
(ii) The estimate

‖uv‖X S
k,−a

� c‖u‖X S
k,b

‖v‖X B
s,b

holds only if k + s � 0.
(iii) The estimate

‖u1ū2‖X B
s,−a

� c‖u1‖X S
k,b

‖u2‖X S
k,b

(6)

holds only if s � k.

Theorem 1.3 has an important consequence. It shows that our local well-posedness result in Theorem 1.2 is sharp, in
the sense that it cannot be improved using the spaces X S

s,b and X B
s,b . This situation is very different from the continuous

case obtained in Farah [15], where the author showed local well-posedness for initial data in different Sobolev spaces with
negative indices.

Next, we obtain bilinear estimates for the case s = 0 and b < 1/2. These estimates will be useful to establish the existence
of global solutions.

Theorem 1.4. Let a,a1,b,b1 > 1/4, then there exists c > 0, depending only on a,a1,b,b1 , such that

(i) ‖uv‖X S
0,−a1

� c‖u‖X S
0,b1

‖v‖X B
0,b

.

(ii) ‖u1ū2‖X B
0,−a

� c‖u1‖X S
0,b1

‖u2‖X S
0,b1

.

The bilinear estimates in Theorem 1.4 are the essential tools to prove our global result. It asserts that the local solution
given by Theorem 1.2 is, in fact, a global one, for all s � 0.

Theorem 1.5. Let s � 0. Then, the BVP (1)–(2) is globally well-posed for data (u0, v0, v1) ∈ Hs
per([0, L])× Hs

per([0, L])× Hs−1
per ([0, L]).

Moreover, the solution (u, v) satisfies, for all t > 0,
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∥∥v(t)
∥∥

Hs
per

+ ∥∥(−
)−1/2 vt(t)
∥∥

Hs−1
per

� e
((ln 2)‖u0‖2

Hs
per

t)
max

{‖v0, v1‖Bs ,‖u0‖Hs
per

}
,

where

‖v0, v1‖2
Bs ≡ ‖v0‖2

Hs
per([0,L]) + ‖v1‖2

Hs−1
per ([0,L]).

The argument used to prove Theorem 1.5 follows the ideas introduced by Colliander, Holmer, and Tzirakis [10] to deal
with the Zakharov system. The intuition for this theorem comes from the fact that the nonlinearity for the second equation
in the S B-system (1) depends only on the first equation. Therefore, noting that the bilinear estimates given in Theorem 1.4
hold for a,a1,b,b1 < 1/2, it is possible to show that the time existence, given in Theorem 1.2, depends only on ‖u0‖L2

per
.

Since this norm is conserved by the flow, we obtain a global solution.
Our second aim in the present paper, is to study existence and orbital (nonlinear) stability of periodic traveling-wave

solutions. These two questions are, in general, important in the understanding of the dynamic of the system under consid-
eration.

The stability of traveling waves has been extensively studied for the whole Euclidean space case (solitary waves), whereas
the study under periodic boundary conditions has been started quite recently and only a few works are available in the
current literature. To cite a few important contributions, in [1] Angulo studied the orbital stability of dnoidal wave solutions
for the cubic Schrödinger and modified Korteweg–de Vries equations; his method of proofs follows the pioneers ideas
of Benjamin, Bona, and Weinstein. In [2], Angulo et al. gave a complete stability study of cnoidal wave solutions for the
Korteweg–de Vries equation, adapting to the periodic context the abstract theory developed in [18]. For other equations and
systems see e.g. [3,4,11,20,29] (and references therein).

One of the main reasons why the stability study in the periodic case has been received little attention, lies on the needed
spectral theory associated with the corresponding linearized operator. Indeed, to fix ideas, suppose we have a Schrödinger-
type operator L = − d2

dx2 + Q (x), where Q (x) is a smooth real function. Assume that Q and φ are smooth and rapidly
decaying to zero at infinity, and satisfy Lφ = 0. Assume also that φ has exactly two zeros on the whole real line. Then it
follows immediately, from Sturn–Liouville’s theory, that zero is the third eigenvalue of the operator L, and it is a simple
eigenvalue. On the other hand, suppose that Q and φ are smooth L-periodic functions such that Lφ = 0. If φ has exactly
two zeros on the interval [0, L), then from Floquet’s theory, the eigenvalue zero is the second or the third one (see e.g. [12]).
In most cases, it is a hard task to decide between these two alternatives. As a consequence, most of the current papers deal
with explicit periodic traveling-wave solutions. This is the case of the present paper.

The explicit solutions are, usually, given in terms of the Jacobian elliptic functions (dnoidal, cnoidal, and snoidal). So,
the main idea to obtain the spectral properties for the linearized operator is to reduce matter to some known periodic
eigenvalue problem. The most popular one deals with the periodic eigenvalue problem associated with the Lamé operator

LLame := − d2

dx2
+ n(n + 1)sn2(x;k), (7)

for some determined value of n ∈ N (see e.g. [1–3,29]).
Here, we consider α = β = −1 in (1) and look for solutions of the form

u(x, t) = eiωtψω(x), v(x, t) = φω(x), (8)

where ω is a real parameter and ψω,φω : R → R are L-periodic functions with a period L > 0. Then, substituting this
waveform into the system and integrating twice the second equation in the obtained system, we have{

ψ ′′
ω − ωψω + ψωφω = 0,

φ′′
ω − φω + ψ2

ω = 0.
(9)

To solve system (9), we assume ω = 1 and ψω = φω = ψ , so that, it admits a periodic solution of the cnoidal type, namely,

ψ(x) = β2 + (β3 − β2)cn2
(√

β3 − β1

6
x;k

)
, k2 = β3 − β2

β3 − β1
, (10)

where cn(·;k) denotes the cnoidal function and β1, β2, β3 are real parameters.

Remark 1.1. We point out that existence and stability of hyperbolic-secant-type solitary waves for (1) were recently con-
sidered in [19]. The author has proved an orbital stability result by using the abstract theory contained in [18], taking the
advantage of the spectral properties established in [27].

Our main theorem concerning the orbital stability of cnoidal waves reads as follows.

Theorem 1.6. Let ψ be the cnoidal wave solution given in (10). Then, the periodic traveling wave (eitψ,ψ) is orbitally stable in the
energy space X = H1

per([0, L]) × H1
per([0, L]) × L2

per([0, L]) by the flow of the SB-system (1).
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To prove Theorem 1.6, we shall employ the theory developed by Grillakis, Shatah, and Strauss [18]. To do so, we first
observe that system (1) (with α = β = −1) can be written in a Hamiltonian form (see (51)). We point out that although the
operator J in (52) is not onto, along the lines of proofs in [18], the stability result still holds (see also [19,31]).

Our strategy to get the needed spectral properties is to combine the results in [3], which are essentially proved from
well-known results for the Lamé operator in (7), with the min–max principle for the characterization of eigenvalues.

Finally, we also obtain periodic traveling waves for ω �= 1. Our idea is simple: once obtained the cnoidal solution for
ω = 1, we employ the Implicit Function Theorem combined with spectral properties related with the linearized operator to
extend our range of parameters for ω near 1.

The plan of this paper is as follows: in Section 2, we introduce some notations and state important results that we will
use throughout the paper. The proof of the bilinear estimates and the relevant counter-examples are given in Sections 3
and 4, respectively. In Section 5, we prove Theorem 1.5. Finally, the stability questions are treated in Section 6.

2. Notations and preliminaries

In what follows we use a � b to say that a � Cb for some constant C > 0. Also, we denote a ∼ b when a � b and b � a.
We write a � b to denote an estimate of the form a � cb for some small constant c > 0. In addition, a+ means that there
exists ε > 0 such that a+ = a + ε.

Let us recall some properties of L-periodic functions. For a detailed presentation of the spaces of periodic functions and
its properties we refer the reader, for instance, to [21]. The Fourier transform of a function f ∈ L1([0, L]) is defined by

f̂ (n) = 1

L

L∫
0

e−2π i x
L n f (x)dx.

For f in an appropriate class of functions we have f = ( f̂ )∨ , where for a sequence s = {sn}n∈Z , the symbol ∨ denotes
the inverse Fourier transform of s given by

(s)∨(x) =
∑
n∈Z

e2π i x
L nsn.

The Plancherel identity reads as

‖ f ‖L2
per

= ‖ f̂ ‖l2n
.

The operator (−
)−1/2 is defined, via its Fourier transform, by[
(−
)−1/2 f

]∧
(n) = |n|−1 f̂ (n) n �= 0.

Next, we recall some facts on the linear Schrödinger and Boussinesq equations. Consider the free Schrödinger equation

iut + uxx = 0. (11)

It is easy to see that the solution of (11), with initial data u(0) = u0, is given by the formula

u(t) = U (t)u0, (12)

where

U (t)u0 = (
e−(2π/L)2itn2

û0(n)
)∨

.

On the other hand, for the linear Boussinesq equation

vtt − vxx + vxxxx = 0, (13)

the solution, with initial data v(0) = v0 and vt(0) = (v1)x , is given by

u(t) = V c(t)v0 + V s(t)(v1)x, (14)

where

V c(t)v0 =
(

e(2π/L)2it
√

n2+n4 + e−(2π/L)2it
√

n2+n4

2
v̂0(n)

)∨
,

V s(t)(v1)x =
(

e(2π/L)2it
√

n2+n4 − e−(2π/L)2it
√

n2+n4

2i
√

n2 + n4
(̂v1)x(n)

)∨
.
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As a consequence, by Duhamel’s Principle, the solution of (1)–(2) is equivalent to

u(t) = U (t)u0 − i

t∫
0

U
(
t − t′)(αvu)

(
t′)dt′,

v(t) = V c(t)v0 + V s(t)(v1)x +
t∫

0

V s
(
t − t′)(β|u|2)xx

(
t′)dt′. (15)

Let θ be a cut-off function satisfying θ ∈ C∞
0 (R), 0 � θ � 1, θ ≡ 1 in [−1,1], supp(θ) ⊆ [−2,2]. For 0 < T � 1 define

θT (t) = θ(t/T ). In order to work in the X S
s,b and X B

s,b spaces, we consider another versions of (15), viz.

u(t) = θ(t)U (t)u0 − iθT (t)

t∫
0

U
(
t − t′)(αvu)

(
t′)dt′,

v(t) = θ(t)
(

V c(t)v0 + V s(t)(v1)x
) + θT (t)

t∫
0

V s
(
t − t′)(β|u|2)xx

(
t′)dt′ (16)

and

u(t) = θT (t)U (t)u0 − iθT (t)

t∫
0

U
(
t − t′)(αvu)

(
t′)dt′,

v(t) = θT (t)
(

V c(t)v0 + V s(t)(v1)x
) + θT (t)

t∫
0

V s
(
t − t′)(β|u|2)xx

(
t′)dt′. (17)

We will use Eq. (16) (resp. (17)) to study the local (resp. global) well-posedness problem associated to (1)–(2).
Note that the integral equations (16) and (17) are defined for all (t, x) ∈ R2. Moreover, if (u, v) is a solution of (16)

or (17), then (ũ, ṽ) = (u|[0,T ], v|[0,T ]) is a solution of (15) in [0, T ].
Before proceeding to the group and integral estimates for (16) and (17), we recall that

‖v0, v1‖2
Bs ≡ ‖v0‖2

Hs
per([0,L]) + ‖v1‖2

Hs−1
per ([0,L]).

For simplicity, we denote B0 by B and, for functions of t , we use the shorthand∥∥v(t)
∥∥2

Bs ≡ ∥∥v(t)
∥∥2

Hs
per([0,L]) + ∥∥(−
)−1/2 vt(t)

∥∥2
Hs−1

per ([0,L]).

The following three lemmas are standard in this context. Although we are studying the periodic case, the proofs are
essentially the same ones of the continuous setting. We refer the reader to Farah [15] for the details.

Lemma 2.1 (Group estimates). Let L = 2π and 0 < T � 1.

(a) Linear Schrödinger equation:
(i) ‖U (t)u0‖C(R:Hs

per)
= ‖u0‖Hs

per
.

(ii) If 0 � b1 � 1, then∥∥θT (t)U (t)u0
∥∥

X S
s,b1

� T 1/2−b1‖u0‖Hs
per

.

(b) Linear Boussinesq equation:
(i) ‖V c(t)v0 + V s(t)(v1)x‖C(R:Hs

per)
� ‖v0‖Hs

per
+ ‖v1‖Hs−1

per
.

(ii) ‖V c(t)v0 + V s(t)(v1)x‖C(R:B) = ‖v0, v1‖B .
(iii) If 0 � b � 1, then∥∥θT (t)

(
V c(t)v0 + V s(t)(v1)x

)∥∥
X B

s,b
� T 1/2−b(‖v0‖Hs

per
+ ‖v1‖Hs−1

per

)
.

Next, we estimate the integral parts of (15)–(16).
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Lemma 2.2 (Integral estimates). Let L = 2π and 0 < T � 1.

(a) Nonhomogeneous linear Schrödinger equation:
(i) If 0 � a1 < 1/2, then∥∥∥∥∥

t∫
0

U
(
t − t′)z

(
t′)dt′

∥∥∥∥∥
C([0,T ]:Hs

per)

� T 1/2−a1‖z‖X S
s,−a1

.

(ii) If 0 � a1 < 1/2, b1 � 0, and a1 + b1 � 1, then∥∥∥∥∥θT (t)

t∫
0

U
(
t − t′)z

(
t′)dt′

∥∥∥∥∥
X S

s,b1

� T 1−a1−b1‖z‖X S
s,−a1

.

(b) Nonhomogeneous linear Boussinesq equation:
(i) If 0 � a < 1/2, then∥∥∥∥∥

t∫
0

V s
(
t − t′)zxx

(
t′)dt′

∥∥∥∥∥
C([0,T ]:Bs)

� T 1/2−a‖z‖X B
s,−a

.

(ii) If 0 � a < 1/2, b � 0, and a + b � 1, then∥∥∥∥∥θT (t)

t∫
0

V s
(
t − t′)zxx

(
t′)dt′

∥∥∥∥∥
X B

s,b

� T 1−a−b‖z‖X B
s,−a

.

We also have the following embeddings concerning the X S
s,b and X B

s,b spaces.

Lemma 2.3. Let b > 1/2. There exists c > 0, depending only on b, such that

‖u‖C(R:Hs
per)

� c‖u‖X B
s,b

,

‖u‖C(R:Hs
per)

� c‖u‖X S
s,b

.

We finish this section with the following standard Bourgain–Strichartz estimates.

Lemma 2.4. Let u ∈ L3
x,t , then

‖u‖L3
x,t

� c min
{‖u‖X S

0,1/4+
,‖u‖X B

0,1/4+
}
.

Proof. This estimate is easily obtained by interpolating between

• ‖u‖L4
x,t

� c min{‖u‖X S
0,3/8+

,‖u‖X B
0,3/8+

} (see Bougain [6], and Fang and Grillakis [14]).

• ‖u‖L2
x,t

= ‖u‖X S
0,0

= ‖u‖X B
0,0

(by definition).

This proves the lemma. �
Remark 2.1. To simplify our well-posedness analysis we will assume L = 2π . We will return to an arbitrarily L > 0 in
Section 6, where we study stability questions.

3. Bilinear estimates

First, we state some elementary calculus inequalities that will be useful later.

Lemma 3.1. For p,q > 0 and r = min{p,q, p + q − 1} with p + q > 1, there exists c > 0 such that
+∞∫

−∞

dx

〈x − α〉p〈x − β〉q
� c

〈α − β〉r
. (18)

Proof. See Lemma 4.2 in [17]. �
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Lemma 3.2. If γ > 1/2, then

sup
(n,τ )∈Z×R

∑
n1∈Z

1

(1 + |τ ± n1(n − n1)|)γ < ∞. (19)

Proof. See Lemma 5.3 in [24]. �
Lemma 3.3. There exists c > 0 such that

1

c
� sup

x,y�0

1 + |x − y|
1 + |x − √

y2 + y| � c. (20)

Proof. Since y �
√

y2 + y � y + 1/2, for all y � 0, a simple computation shows the desired inequalities. �
Remark 3.1. In view of the previous lemma, we have an equivalent way to estimate the X B

s,b-norm, viz.

‖u‖X B
s,b

∼ ∥∥〈|τ | − n2〉b〈n〉sũ(τ ,n)
∥∥

l2n L2
τ
.

This equivalence will be useful in the proof of Theorem 1.1. As we said in the introduction, the Boussinesq symbol
√

n2 + n4

does not have good cancelations to make use of Lemma 3.1. Therefore, we modify the symbols as above and work only with
the algebraic relations for the Schrödinger equation.

Now we are in position to prove the bilinear estimates stated in Theorem 1.1.

Proof of Theorem 1.1. (i) For u ∈ X S
s,b and v ∈ X B

s,b , we define f (τ ,n) ≡ 〈τ + n2〉b〈n〉sũ(τ ,n) and g(τ ,n) ≡
〈|τ | − γ (n)〉b〈n〉s ṽ(τ ,n), where γ (n) = √

n2 + n4. By duality, the desired inequality is equivalent to∣∣W ( f , g, φ)
∣∣ � c‖ f ‖l2n L2

τ
‖g‖l2n L2

τ
‖φ‖l2n L2

τ
(21)

where

W ( f , g, φ) =
∑
n,n1

∫
R2

〈n〉s

〈n1〉s〈n2〉s

g(τ1,n1) f (τ2,n2)φ̄(τ ,n)

〈σ 〉a〈σ1〉b〈σ2〉b
dτ dτ1

and

n2 = n − n1, τ2 = τ − τ1,

σ = τ + n2, σ1 = |τ1| − γ (n1), σ2 = τ2 + n2
2. (22)

In view of Remark 3.1, we know that 〈|τ1| − γ (n1)〉 ∼ 〈|τ1| − n2
1〉. Therefore, splitting the domain of integration into the

regions {(n, τ ,n1, τ1) ∈ R4: τ1 < 0} and {(n, τ ,n1, τ1) ∈ R4: τ1 � 0}, it is sufficient to prove inequality (21) with W1( f , g, φ)

and W2( f , g, φ) instead of W ( f , g, φ), where

W1( f , g, φ) =
∑
n,n1

∫
R2

〈n〉s

〈n1〉s〈n2〉s

g(τ1,n1) f (τ2,n2)φ̄(τ ,n)

〈σ 〉a〈τ1 + n2
1〉b〈σ2〉b

dτ dτ1

and

W2( f , g, φ) =
∑
n,n1

∫
R2

〈n〉s

〈n1〉s〈n2〉s

g(τ1,n1) f (τ2,n2)φ̄(τ ,n)

〈σ 〉a〈τ1 − n2
1〉b〈σ2〉b

dτ dτ1.

Applying the Cauchy–Schwarz and Hölder inequalities, it is easy to see that

|W1|2 � ‖ f ‖2
l2n L2

τ
‖g‖2

l2n L2
τ
‖φ‖2

l2n L2
τ

∥∥∥∥ 〈n〉2s

〈σ 〉2a

∑
n1

∫
dτ1

〈n1〉2s〈n2〉2s〈τ1 + n2
1〉2b〈σ2〉2b

∥∥∥∥
l∞n L∞

τ

.

Note that for s � 0, we have

〈n〉2s

〈n1〉2s〈n2〉2s
� 1. (23)
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Therefore, in view of Lemma 3.1, it suffices to get bounds for

sup
n,τ

1

〈σ 〉2a

∑
n1

1

〈τ + n2 + 2n2
1 − 2nn1〉2b

.

By Lemma 3.2, this expression is bounded provides a � 0 and b > 1/4.
Now we turn to the proof of inequality (21) with W2( f , g, φ) instead of W ( f , g, φ). Using the Cauchy–Schwarz and

Hölder inequalities, the duality argument implies that

|W2|2 � ‖ f ‖2
l2n L2

τ
‖g‖2

l2n L2
τ
‖φ‖2

l2n L2
τ

∥∥∥∥ 1

〈n2〉2s〈σ2〉2b

∑
n1

∫ 〈n1 + n2〉2s dτ1

〈n1〉2s〈τ1 − n2
1〉2b〈σ 〉2a

∥∥∥∥
l∞n2

L∞
τ2

.

Therefore, in view of Lemma 3.1 and (23), it suffices to get bounds for

sup
n2,τ2

1

〈σ2〉2b

∑
n1

1

〈τ2 + n2
2 + 2n2

1 + 2n1n2〉2a
.

By Lemma 3.2, this expression is bounded provides b � 0 and a > 1/4.
(ii) For u1 ∈ X S

s,b and u2 ∈ X S
s,b , we define f (τ ,n) ≡ 〈τ + n2〉b〈n〉sũ1(τ ,n) and g(τ ,n) ≡ 〈τ + n2〉b〈n〉sũ2(τ ,n). By duality,

the desired inequality is equivalent to∣∣Z( f , g, φ)
∣∣ � c‖ f ‖l2n L2

τ
‖g‖l2n L2

τ
‖φ‖l2n L2

τ
(24)

where

Z( f , g, φ) =
∑
n,n1

∫
R2

〈n〉s

〈n1〉s〈n2〉s

h(τ1,n1) f (τ2,n2)φ̄(τ ,n)

〈σ 〉a〈σ1〉b〈σ2〉b
dτ dτ1

and

h(τ1,n1) = ḡ(−τ1,−n1), n2 = n − n1, τ2 = τ − τ1,

σ = |τ | − γ (n), σ1 = τ1 − n2
1, σ2 = τ2 + n2

2.

Therefore, applying Lemma 3.3 and splitting the domain of integration according to the sign of τ , it is sufficient to prove
inequality (24) with Z1( f , g, φ) and Z2( f , g, φ) instead of Z( f , g, φ), where

Z1( f , g, φ) =
∑
n,n1

∫
R2

〈n〉s

〈n1〉s〈n2〉s

h(τ1,n1) f (τ2,n2)φ̄(τ ,n)

〈τ + n2〉a〈σ1〉b〈σ2〉b
dτ dτ1

and

Z2( f , g, φ) =
∑
n,n1

∫
R2

〈n〉s

〈n1〉s〈n2〉s

h(τ1,n1) f (τ2,n2)φ̄(τ ,n)

〈τ − n2〉a〈σ1〉b〈σ2〉b
dτ dτ1.

Inequality (24) with Z1( f , g, φ) instead of Z( f , g, φ), can be estimate by the same argument as the one used to bound
W2( f , g, φ).

Next, we proof inequality (24) with Z2( f , g, φ) replacing Z( f , g, φ). First, we make the change of variables τ2 = τ − τ1,
n2 = n − n1 to obtain

Z2( f , g, φ) =
∑
n,n2

∫
R2

〈n〉s

〈n − n2〉s〈n2〉s

h(τ − τ2,n − n2) f (τ2,n2)φ̄(τ ,n)

〈τ − n2〉a〈(τ − τ2) − (n − n2)2〉b〈τ2 + n2
2〉b

dτ dτ2.

Then, changing the variables (n, τ ,n2, τ2) �→ −(n, τ ,n2, τ2), we can rewrite Z2( f , g, φ) as

Z2( f , g, φ) =
∑
n,n2

∫
R2

〈n〉s

〈n − n2〉s〈n2〉s

k(τ − τ2,n − n2)l(τ2,n2)ψ̄(τ ,n)

〈τ + n2〉a〈τ − τ2 + (n − n2)2〉b〈τ2 − n2
2〉b

dτ dτ2

where

k(a,b) = h(−a,−b), l(a,b) = f (−a,−b) and ψ(a,b) = φ(−a,−b).

Since the L2-norm is preserved under the reflection operation, the result follows from the estimate for Z1( f , g, φ). This
completes the proof of the theorem. �



L.G. Farah, A. Pastor / J. Math. Anal. Appl. 368 (2010) 330–349 339
Remark 3.2. Once the bilinear estimates in Theorem 1.1 are established, it is a standard matter to conclude the local well-
posedness statement of Theorem 1.2. We refer the reader to [24,5,17,15] for further details.

Finally, we should remark that Theorem 1.4 can be obtained easily using Lemma 2.4 (see Farah [15]).
Before leaving this section, we state a slightly modified bilinear estimates that will be useful in the proof of Theorem 1.5.

Corollary 3.1. Let a,a1,b,b1 > 1/4 and s � 0, then there exists c > 0, depending only on a,a1,b,b1, s, such that

(i) ‖uv‖X S
s,−a1

� ‖u‖X S
s,b1

‖v‖X B
0,b

+ ‖u‖X S
0,b1

‖v‖X B
s,b

.

(ii) ‖u1ū2‖X B
s,−a

� ‖u1‖X S
s,b1

‖u2‖X S
0,b1

+ ‖u1‖X S
0,b1

‖u2‖X S
s,b1

.

Proof. The above estimates are direct consequence of Theorem 1.4 and the fact that, for all s > 0, the following inequality
holds

〈ξ〉s � 〈ξ1〉s + 〈ξ − ξ1〉s. �
4. Counter-examples to the bilinear estimates

Proof of Theorem 1.3. (i) For u ∈ X S
k,b and v ∈ X B

s,b , we define f (τ ,n) ≡ 〈τ + n2〉b〈n〉kũ(τ ,n) and g(τ ,n) ≡
〈|τ | − γ (n)〉b〈n〉s ṽ(τ ,n). By Lemma 3.3, inequality (5) is equivalent to∥∥∥∥ 〈n〉k

〈σ 〉a

∑
n1

∫
f (τ1,n1)g(τ2,n2)dτ1

〈n1〉k〈n2〉s〈σ1〉b〈σ2〉b

∥∥∥∥
l2n L2

τ

� ‖ f ‖l2n L2
τ
‖g‖l2n L2

τ
, (25)

where

n2 = n − n1, τ2 = τ − τ1,

σ = τ + n2, σ1 = τ1 + n2
1, σ2 = |τ2| − n2

2.

For N ∈ Z define

f N(τ ,n) = anχ
((

τ + n2)/2
)
, with an =

{
1, n = 0,

0, elsewhere,

and

gN(τ ,n) = bnχ
((

τ + n2)/2
)
, with bn =

{
1, n = N,

0, elsewhere,

where χ(·) denotes the characteristic function of the interval [−1,1]. Thus,

an1 bn−n1 �= 0 if and only if n1 = 0 and n = N.

Consequently, for N large∫
χ

((
τ1 + n2

1

)
/2

)
χ

((
τ − τ1 + (n − n1)

2)/2
)
� χ

((
τ + (n − n1)

2 + n2
1

))
� χ

((
τ + N2)).

Therefore, using the fact that ||τ2| − n2
2| � |τ2 + n2

2|, inequality (25) implies

1 �
∥∥Nk−sχ

((
τ + N2))∥∥

L2
τ

� Nk−s.

Letting N → ∞, this inequality is possible only when k � s.
(ii) Here, we define

f N(τ ,n) = anχ
((

τ + n2)/2
)
, with an =

{
1, n = −N,

0, elsewhere,

and

gN(τ ,n) = bnχ
((

τ − n2)/2
)
, with bn =

{
1, n = N,

0, elsewhere.

Then

an1 bn−n1 �= 0 if and only if n1 = 0 and n = N.
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Thus, for N large∫
χ

((
τ1 + n2

1

)
/2

)
χ

((
τ − τ1 − (n − n1)

2)/2
)
� χ

((
τ + n2 − 2nn1

))
� χ

(
(τ )

)
.

Therefore, using the fact that ||τ2| − n2
2| � |τ2 − n2

2|, inequality (25) implies

1 �
∥∥N−(k+s)χ

(
(τ )

)∥∥
L2
τ

� N−(k+s).

Letting N → ∞, this inequality is possible only when k + s � 0.
(iii) For u1 ∈ X S

k,b and u2 ∈ X S
k,b , we define f (τ ,n) ≡ 〈τ + n2〉b〈n〉kũ1(τ , ξ) and g(τ ,n) ≡ 〈τ + n2〉b〈n〉kũ2(τ , ξ). By

Lemma 3.3, inequality (6) is equivalent to∥∥∥∥ 〈n〉s

〈σ 〉a

∑
n1

∫
f (τ1,n1)h(τ2,n2)dτ1

〈n1〉k〈n2〉k〈σ1〉b〈σ2〉b

∥∥∥∥
l2n L2

τ

� ‖ f ‖l2n L2
τ
‖g‖l2n L2

τ
, (26)

where

h(τ2,n2) = ḡ(−τ2,−n2), n2 = n − n1, τ2 = τ − τ1,

σ = |τ | − n2, σ1 = τ1 + n2
1, σ2 = τ2 − n2

2.

For N ∈ Z, define

f N(τ ,n) = anχ
((

τ + n2)/2
)
, with an =

{
1, n = N,

0, elsewhere,

and

hN(τ ,n) = bnχ
((

τ − n2)/2
)
, with bn =

{
1, n = 0,

0, elsewhere,

where χ(·) denotes the characteristic function of the interval [−1,1]. Thus

an1 bn−n1 �= 0 if and only if n1 = N and n = N.

Moreover,∫
χ

((
τ1 + n2

1

)
/2

)
χ

((
τ − τ1 − (n − n1)

2)/2
)
� χ

((
τ − (n − n1)

2 + n2
1

))
� χ

((
τ + N2)).

Therefore, using the fact that ||τ | − n2| � |τ + n2|, inequality (26) implies

1 �
∥∥Ns−kχ

((
τ + N2))∥∥

L2
τ

� Ns−k.

Letting N → ∞, this inequality is possible only when s � k. �
5. Global well-posedness

We divide our analysis in two cases. The proof of Theorem 1.5 for s = 0 follows the same lines as in Farah [15, Theo-
rem 1.4]. For the convenience of the reader, we repeat the proof of this case below. The case s > 0 can be proved using
the arguments introduced by Bourgain [7] for the Schrödinger equation, and further developed by Angulo et al. [4] for the
Schrödinger–Benjamin–Ono system.

Proof of Theorem 1.5. Case s = 0.
Let (u0, v0, v1) ∈ L2

per([0,1]) × L2
per([0,1]) × H−1

per([0,1]) and 0 < T � 1. Based on the integral formulation (17), we define
the integral operators

G S
T (u, v)(t) = θT (t)U (t)u0 − iθT (t)

t∫
0

U
(
t − t′)(αvu)

(
t′)dt′,

G B
T (u, v)(t) = θT (t)

(
V c(t)v0 + V s(t)(v1)x

) + θT (t)

t∫
0

V s
(
t − t′)(β|u|2)xx

(
t′)dt′. (27)

Therefore, applying Lemmas 2.1–2.2 and Theorem 1.3, we obtain
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∥∥G S
T (u, v)

∥∥
X S

0,b1

� cT 1/2−b1‖u0‖L2
per

+ cT 1−(a1+b1)‖uv‖X S
0,−a1

� cT 1/2−b1‖u0‖L2
per

+ cT 1−(a1+b1)‖u‖X S
0,b1

‖v‖X B
0,b

,∥∥G B
T (u, v)

∥∥
X B

0,b
� cT 1/2−b‖v0, v1‖B + cT 1−(a+b)‖uū‖X B

0,−a

� cT 1/2−b‖v0, v1‖B + cT 1−(a+b)‖u‖2
X S

0,b1

. (28)

Also, ∥∥G S
T (u, v) − G S

T (z, w)
∥∥

X S
0,b1

� cT 1−(a1+b1)
(‖u‖X S

0,b1
‖v − w‖X B

0,b
+ ‖u − z‖X S

0,b1
‖w‖X B

0,b

)
,∥∥G B

T (u, v) − G B
T (z, w)

∥∥
X B

0,b
� cT 1−(a+b)

(‖u‖X S
0,b1

+ ‖z‖X S
0,b1

)‖u − z‖X S
0,b1

. (29)

We define

X S
0,b1

(d1) = {
u ∈ X S

0,b1
: ‖u‖X S

0,b1
� d1

}
,

X B
0,b(d) = {

v ∈ X B
0,b: ‖v‖X B

0,b
� d

}
,

where d1 = 2cT 1/2−b1‖u0‖L2
per

and d = 2cT 1/2−b‖v0, v1‖B .

For (G S
T , G B

T ) to be a contraction in X S
0,b1

(d1) × X B
0,b(d), it needs to satisfy

d1/2 + cT 1−(a1+b1)d1d � d1 ⇔ T 3/2−(a1+b1+b)‖v0, v1‖B � 1, (30)

d/2 + cT 1−(a+b)d2
1 � d ⇔ T 3/2−(a+2b1)‖u0‖2

L2
per

� ‖v0, v1‖B, (31)

2cT 1−(a+b)d1 � 1/2 ⇔ T 3/2−(a+b+b1)‖u0‖L2
per

� 1, (32)

2cT 1−(a1+b1)d1 � 1/2 ⇔ T 3/2−(a1+2b1)‖u0‖L2
per

� 1. (33)

Therefore, we conclude that there exists a solution (u, v) ∈ X S
0,b1

× X B
0,b satisfying

‖u‖
X S,[0,T ]

0,b1

� 2cT 1/2−b1‖u0‖L2
per

and ‖v‖
X B,[0,T ]

0,b
� 2cT 1/2−b‖v0, v1‖B. (34)

On the other hand, applying Lemmas 2.1–2.2, we have that, in fact, (u, v) ∈ C([0, T ] : L2)× C([0, T ] : L2). Moreover, since the
L2-norm of u is conserved by the flow, we have ‖u(T )‖L2

per
= ‖u0‖L2

per
.

Now, we need to control the growth of ‖v(t)‖B in each time step. If, for all t > 0, ‖v(t)‖B � ‖u0‖2
L2

per
we can repeat the

local well-posedness argument and extend the solution globally in time. Thus, without loss of generality, we suppose that
after some number of iterations we reach a time t∗ > 0 where ‖v(t∗)‖B � ‖u0‖2

L2
per

. Hence, since 0 < T � 1, condition (31)

is automatically satisfied and conditions (30)–(33) imply that we can select a time increment of size

T ∼ ∥∥v
(
t∗)∥∥−1/(3/2−(a1+b1+b))

B
. (35)

Therefore, applying Lemmas 2.1(b)–2.2(b) to v = G B
T (u, v) we have∥∥v

(
t∗ + T

)∥∥
B

�
∥∥v

(
t∗)∥∥

B
+ cT 3/2−(a+2b1)

(‖u0‖2
L2

per
+ 1

)
.

Thus, we can carry out m iterations on time intervals, each of length (35), before the quantity ‖v(t)‖B doubles, where m is
given by

mT 3/2−(a+2b1)
(‖u0‖2

L2
per

+ 1
) ∼ ∥∥v

(
t∗)∥∥

B
.

The total time of existence we obtain after these m iterations is


T = mT ∼ ‖v(t∗)‖B

T 1/2−(a+2b1)(‖u0‖2
L2

per
+ 1)

∼ ‖v(t∗)‖B

‖v(t∗)‖−(1/2−(a+2b1))/(3/2−(a1+b1+b))

B
(‖u0‖2

L2
per

+ 1)
.

Taking a,b,a1,b1 such that

a + 2b1 − 1/2 = 1

(3/2 − (a1 + b1 + b))
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(for instance, a = b = a1 = b1 = 1/3), we have that 
T depends only on ‖u0‖L2
per

, which is conserved by the flow. Hence, we

can repeat this entire argument and extend the solution (u, v) globally in time. Moreover, since in each step of time 
T
the size of ‖v(t)‖B will at most double, it is easy to see that, for all T̃ > 0,∥∥v(T̃ )

∥∥
B

� exp
(
(ln 2)‖u0‖2

L2
per

T̃
)

max
{‖v0, v1‖B,‖u0‖L2

per

}
. (36)

Case s > 0.
Let (u0, v0, v1) ∈ Hs

per × Hs
per × Hs−1

per . By the previous case, there exists a global solution (u, v) ∈ C([0,+∞); L2
per) ×

C([0,+∞); L2
per). Moreover, (u, v) is a solution of the integral equation (27) in the time interval [0,
T ], with 
T ∼

1
‖u0‖2

L2
per

+1
, satisfying

max
{‖u‖

X S,[0,
T ]
0,1/3

,‖v‖
X B,[0,
T ]

0,1/3

}
� C

(‖u0‖L2
per

,‖v0, v1‖B

)
, (37)

where the constant C(‖u0‖L2
per

,‖v0, v1‖B) > 0 depends only on ‖u0‖L2
per

and ‖v0, v1‖B .

We claim that the solution (u, v), in fact, belongs to X S,[0,T0]
s,1/3 × X B,[0,T0]

s,1/3 for all 0 < T0 � 
T . Indeed, applying Lem-
mas 2.1–2.2 and Corollary 3.1, with a = b = a1 = b1 = 1/3, we obtain

‖u‖
X

S,[0,T0]
s,1/3

� ‖u0‖Hs
per

+ T 1/3
0

(‖u‖
X

S,[0,T0]
s,1/3

‖v‖
X

B,[0,T0]
0,1/3

+ ‖u‖
X

S,[0,T0]
0,1/3

‖v‖
X

B,[0,T0]
s,1/3

)
(38)

and

‖v‖
X

B,[0,T0]
s,1/3

� ‖v0, v1‖Bs + T 1/3
0

(‖u‖
X

B,[0,T0]
s,1/3

‖u‖
X

B,[0,T0]
0,1/3

)
, (39)

where 0 < T0 � 
T . Inserting inequality (39) into (38), and using (37), we conclude that

‖u‖
X

S,[0,T0]
s,1/3

� ‖u0‖Hs
per

+ C
(‖u0‖L2

per
,‖v0, v1‖B

)‖v0, v1‖Bs + T 1/3
0 C

(‖u0‖L2
per

,‖v0, v1‖B

)‖u‖
X

S,[0,T0]
s,1/3

.

Let

T0 ∼ 1

(1 + C(‖u0‖L2
per

,‖v0, v1‖B))3
.

Hence, from the choice of T0, we deduce the following a priori estimates

‖u‖
X

S,[0,T0]
s,1/3

� ‖u0‖Hs
per

+ C
(‖u0‖L2

per
,‖v0, v1‖B

)‖v0, v1‖Bs

and

‖v‖
X

B,[0,T0]
s,1/3

� ‖v0, v1‖Bs + C
(‖u0‖L2

per
,‖v0, v1‖B

)(‖v0, v1‖Bs + ‖u0‖L2
per

)
.

Thus, applying Lemmas 2.1–2.2, we get that (u, v) ∈ C([0, T0]; Hs
per) × C([0, T0]; Hs

per). The preceding statement remains
valid for any bounded interval [0, T ], since T0 depends only on ‖u0‖L2

per
and ‖v0, v1‖B . Therefore, we can iterate the above

argument a finite number of times to deduce that

(u, v) ∈ C
([0, T ]; Hs

per

) × C
([0, T ]; Hs

per

)
, for all T > 0.

This completes the proof of Theorem 1.5. �
6. Stability of periodic traveling waves

As we said in the Introduction, here we will consider system (1) with α = β = −1, namely{
iut + uxx + uv = 0,

vtt − vxx + vxxxx + (|u|2)xx = 0,
(40)

and look for traveling waves of the form

u(x, t) = eiωtψω(x), v(x, t) = φω(x), (41)

where ω is a real parameter (to be determined later), and ψω,φω : R → R are smooth periodic functions with the same
fixed period L > 0. Then, substituting (41) into (40), integrating twice the second equation in the obtained system, and
assuming that the integration constants are zero, we obtain
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{
ψ ′′

ω − ωψω + ψωφω = 0,

φ′′
ω − φω + ψ2

ω = 0.
(42)

In order to solve system (42), we assume ω = 1 and ψ1 = φ1, so that it reduces to a single ordinary differential equation,
namely,

ψ ′′
1 − ψ1 + ψ2

1 = 0. (43)

As we will see later in our stability analysis, it is necessary to construct a smooth branch of periodic wave solutions
(depending on ω) passing through solution ψ1 of (43). Then, we will consider the family of equations

ψ ′′
ω − ωψω + ψ2

ω = 0, (44)

so that, at ω = 1, we obtain a solution for (43).

6.1. Existence of traveling waves

Along this subsection, we review the theory of finding solutions for (44). Indeed, Eq. (44) can be solved by using the
standard direct integration method (for details, we refer to [3]). As a matter of fact, Eq. (44) has a strictly positive solution of
the form

ψω(x) = β2 + (β3 − β2)cn2
(√

β3 − β1

6
x;k

)
, k2 = β3 − β2

β3 − β1
, (45)

where cn(·;k) denotes the Jacobian elliptic function of cnoidal type, k is the elliptic modulus, and β1, β2, β3 are real con-
stants satisfying

3ω

2
=

3∑
i=1

βi, 0 =
∑
i< j

βiβ j, β1β2β3 = 3Aψ, (46)

where Aψ is an integration constant. Moreover, it must be the case that

β1 < 0 < β2 < ω < β3 <
3ω

2
.

The first question concerning solution (45) is the following. Fixed L > 0, can we choose β1, β2, β3 such that the function
in (45) has fundamental period L? The answer is yes. To prove so, one first note since cn2(·;k) has fundamental period
2K (k), where K is the complete elliptic integral of the first kind defined by (see e.g. [9])

K (k) =
1∫

0

dt√
(1 − t2)(1 − k2t2)

,

the function ψω given in (45) has fundamental period

Tψω = 2
√

6√
β3 − β1

K (k). (47)

Next, we observe that Tψω can be rewritten as a function depending only on β2 (and ω > 0 fixed). In fact, by defining
ω0 = ω/2, we readily see, from (46), that

Tψω(β2;ω0) = 2
√

6√
ρ(β2;ω0)

K
(
k(β2;ω0)

)
, (48)

where

ρ(β2;ω0) =
√

9ω2
0 − 3β2

2 + 6ω0β2, k2(β2;ω0) = 1

2
+ 3(ω0 − β2)

2ρ(β2;ω0)
. (49)

Moreover, from (48), it is easy to see that Tψω → +∞, as β2 → 0 and Tψω → √
2π/

√
ω0, as β2 → 2ω0. Since the

function β2 ∈ (0,2ω0) → Tψω(β2;ω0) is strictly decreasing (this will be proved in the next theorem) we see that, fixed
L > 0 and choosing ω0 > 2π2/L2, there exists a unique β2 ≡ β2(ω0) ∈ (0,2ω0) such that the corresponding cnoidal wave
given by (45) has fundamental period Tψω(β2;ω0) = L.

In supplement to the above analysis, fixed L > 0, we can construct a smooth curve (depending on ω) of cnoidal waves
solutions for (44) such that each one of its elements have fundamental period L. This is the content of the next theorem.
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Theorem 6.1. Let L > 2π be fixed. Choose arbitrarily ω0 > 2π2/L2 , and consider the unique β2,0 = β2(ω0) ∈ (0,2ω0) such that

L = 2
√

6√
ρ(β2,0;ω0)

K
(
k(β2,0;ω0)

)
.

Then,

(i) there exist an interval J1(ω0) around ω0 , an interval J2(β2,0) around β2,0 and a unique smooth function Λ : J1(ω0) → J2(β2,0)

such that Λ(ω0) = β2,0 and

L = 2
√

6√
ρ(β2;η)

K
(
k(β2;η)

)
,

where η ∈ J1(ω0), β2 = Λ(η), and k(β2;η), ρ(β2;η) are defined in (49) with ω0 replaced with η. Moreover, the interval J1(ω0)

can be chosen to be I = (2π2/L2,+∞) and the modulus k = k(η), where

k2(η) := 1

2
+ 3(η − Λ(η))

2ρ(Λ(η);η)
, (50)

is a strictly increasing function.
(ii) For ω ∈ (4π2/L2,+∞) and η(ω) = ω/2, the cnoidal wave solution ψω(·) = ψη(ω)(·;β2(η(ω))) has fundamental period L and

satisfies (44). In addition, the mapping

ω ∈
(

4π2

L2
,+∞

)
�→ ψω ∈ Hk

per

([0, L]), k = 0,1, . . .

is a smooth function.

Sketch of the proof. The proof is an application of the Implicit Function Theorem. Here, we give only the main steps (for
details see [3]). Define Ω = {(β2, η) ∈ R2; η > 2π2/L2, β2 ∈ (0,2η)} and Γ : Ω → R by

Γ (β2, η) = 2
√

6√
ρ(β2;η)

K
(
k(β2;η)

) − L.

By our assumptions, we have Γ (β2,0,ω0) = 0. Moreover, taking into account the properties of the complete elliptic
integrals and the definitions of k and ρ , one infers that ∂Γ/∂β2 < 0, for all (β2, η) ∈ Ω . So, an application of the Implicit
Function Theorem gives the desired statements. The fact that J1(ω0) can be chosen to be I follows from the fact that ω0
can be arbitrarily chosen in I and the uniqueness of the function arising in the Implicit Function Theorem.

To see that k(η) is a strictly increasing function one just take the derivative with respect to η in (50) and note that
dk/dη > 0. �
Remark 6.1. We have assumed L > 2π in Theorem 6.1 because we want to get a smooth curve of cnoidal waves (defined in
an open interval) passing through ω = 1. Otherwise, that is, if L � 2π then such a curve does not exist.

6.2. Spectral analysis

To obtain our stability results, we will use the Grillakis, Shatah, and Strauss theory [18]. As it is well known in such
approach, we need to study the spectrum of some linearized operators.

First, we note that introducing a new variable w defined by vt = wx , system (40) can be written as a Hamiltonian system
of the form

d

dt
U (t) = J E ′(U (t)

)
, (51)

where U = (P , v, Q , w), P = Re(u), Q = Im(u), J is the skew-symmetric matrix

J =
⎛
⎜⎝

0 0 1/2 0
0 0 0 ∂x

−1/2 0 0 0
0 ∂x 0 0

⎞
⎟⎠ , (52)

and E is the energy functional given by

E (U ) =
L∫ {

P 2
x + Q 2

x + v2
x

2
+ v2

2
+ w2

2
− v

(
P 2 + Q 2)}dx. (53)
0
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Next, we consider the linearized operator we need to study. We first remind that system (40) preserves the L2 norm of
u and so, in the above notation,

F (U ) =
L∫

0

{
P 2 + Q 2}dx

is a conserved quantity of system (40).
To simplify our exposition, we denote Ψω = (ψω,ψω,0,0), where ψω is a cnoidal wave given in Theorem 6.1. By a direct

computation, we see that Ψω is a critical point of the functional E + ωF at ω = 1, that is,

E ′(Ψ1) + F ′(Ψ1) = 0. (54)

Consider the operator

A := E ′′(Ψ1) + F ′′(Ψ1) =
(

A R 0

0 AI

)
, (55)

where A R and AI are the self-adjoint 2 × 2 matrix differential operators defined by

A R =
(

2(−∂2
x + 1 − ψ1) −2ψ1

−2ψ1 −∂2
x + 1

)
(56)

and

AI =
(

2(−∂2
x + 1 − ψ1) 0

0 1

)
. (57)

Let us study the spectrum of the operator A. In what follows, we use the notation σ(L) to represent the spectrum of
the linear operator L. We first remind that if σess(L) and σdisc(L) denote, respectively, the essential and discrete spectra
of L, then σ(L) = σess(L) ∪ σdisc(L).

To begin our analysis, we observe that since A is a diagonal operator, we have σ(A) = σ(A R) ∪ σ(AI ). Moreover, since
A has a compact resolvent, we obtain σ(A) = σdisc(A) (see e.g. [30]).

Before studying the spectra of operators A R and AI , we recall the following lemma.

Lemma 6.1. Let ψ = ψ1 be the cnoidal wave given by Theorem 6.1. Then the following spectral properties hold.

(i) The operator

L1 := −∂2
x + 1 − 2ψ

defined in L2
per([0, L]) with domain H2

per([0, L]) has exactly one negative eigenvalue which is simple; zero is an eigenvalue which
is simple with eigenfunction ψ ′ . Moreover, the remainder of the spectrum is constituted by a discrete set of eigenvalues.

(ii) The operator

L2 := −∂2
x + 1 − ψ

defined in L2
per([0, L]) with domain H2

per([0, L]) has no negative eigenvalues; zero is a simple eigenvalue with eigenfunction ψ .
Moreover, the remainder of the spectrum is constituted by a discrete set of eigenvalues.

Proof. For the first part, see Theorem 4.1 in [3]. The second part follows immediately from Floquet’s theory. Indeed, in view
of (43), we have that 0 is an eigenvalue to L2 with eigenfunction ψ . Moreover, since ψ has no zeros in the interval [0, L],
0 must be the first eigenvalue (see e.g. [12, Chapter 3]). �

With Lemma 6.1 in hands, we are able to prove some spectral properties to the operators A R and AI .

Theorem 6.2. Let ψ = ψ1 be the cnoidal wave solution given by Theorem 6.1.

(i) The operator A R in (56) defined in L2
per([0, L]) × L2

per([0, L]) with domain H2
per([0, L]) × H2

per([0, L]) has its first three eigen-
values simple, being the eigenvalue zero the second one with eigenfunction (ψ ′,ψ ′). Moreover, the remainder of the spectrum is
constituted by a discrete set of eigenvalues.

(ii) The operator A I in (57) defined in L2
per([0, L])× L2

per([0, L]) with domain H2
per([0, L])× L2

per([0, L]) has no negative eigenvalues;
zero is the first eigenvalue which is simple with eigenfunction (ψ,0). Moreover, the remainder of the spectrum is constituted by a
discrete set of eigenvalues.
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Proof. (i) First we observe that, from (44), it is easy to see that zero is an eigenvalue with eigenfunction (ψ ′,ψ ′). Now, we
consider the quadratic form associated with A R . Let Y = H1

per([0, L]) × H1
per([0, L]). Then, for ( f , g) ∈ Y ,

Q R( f , g) := 〈
A R( f , g), ( f , g)

〉
=

L∫
0

{
2
(−∂2

x + 1 − ψ
)

f 2 − 4ψ f g + (−∂2
x + 1

)
g2}dx

= 2〈L1 f , f 〉 + 〈L1 g, g〉 + 2

L∫
0

ψ( f − g)2 dx. (58)

In order to prove that A R has at least one negative eigenvalue, let us prove that there exists a pair ( f , g) ∈ Y such
that Q R( f , g) < 0. Indeed, from Lemma 6.1, there exist μ0 < 0 and f0 ∈ H2

per([0, L]) satisfying L1 f0 = μ0 f0, and so that
〈L1 f0, f0〉 < 0. Thus, by choosing f = g = f0 in (58), we obtain

Q R( f0, f0) = 3〈L1 f0, f0〉 < 0.

This implies that the first eigenvalue of A R , say λ1, is negative. We prove next that the second eigenvalue of A R is zero.
To do so, we use the min–max characterization of eigenvalues (see e.g. [30, Theorem XIII.1]). Thus, if λ2 denotes the second
eigenvalue of A R , we have

λ2 = max
(φ1,φ2)∈Y

min
( f ,g)∈Y \{(0,0)}

f ⊥φ1,g⊥φ2

Q R( f , g)

‖( f , g)‖2
Y

. (59)

By taking φ1 = φ2 = f0, we see that

λ2 � min
( f ,g)∈Y \{(0,0)}

f ⊥ f0,g⊥ f0

Q R( f , g)

‖( f , g)‖2
Y

.

Now, if f ⊥ f0 and g ⊥ f0, we obtain 〈L1 f , f 〉 + 〈L1 g, g〉 � 0 (recall that, from Lemma 6.1, L1 has a unique negative
eigenvalue). Moreover, since ψ is a strictly positive function (and thus, the last integral in (58) is non-negative), we obtain
Q R( f , g) � 0, which implies λ2 � 0.

Finally, to prove that the third eigenvalue is strictly positive, we use the min–max principle again, taking into account
that L1 has a unique negative eigenvalue and zero is a simple eigenvalue. This proves part (i).

(ii) In this case, if Q I denotes the quadratic form associated with A I , we have

Q I ( f , g) := 〈
AI ( f , g), ( f , g)

〉 =
L∫

0

{
2
(−∂2

x + 1 − ψ
)

f 2 + g2}dx

= 2〈L2 f , f 〉 + ‖g‖2. (60)

Therefore, since L2 has no negative eigenvalue (see Lemma 6.1), we have 〈L2 f , f 〉 � 0. Then, from (60), we deduce
that Q I ( f , g) � 0. This implies that A I has no negative eigenvalue. Moreover, it is easy to see, from (44), that zero is an
eigenvalue with eigenfunction (ψ,0). This completes the proof of the theorem. �
6.3. Orbital stability

In this subsection, we prove our orbital stability result for the periodic wave (eitψ,ψ), where ψ = ψ1 is the cnoidal wave
given in Theorem 6.1. To make clear our notion of orbital stability, we point out that system (40) has translation and phase
symmetries, i.e., if (u(x, t), v(x, t)) is a solution for (40), so is(

eiθ u(x + x0, t), v(x + x0, t)
)
, (61)

for any θ, x0 ∈ R. Thus, our notion of orbital stability is modulo such symmetries. To be more precise, we have the following
definition.

Definition 6.1. A traveling wave solution for (40), of the form (eiωtψω(x),φω(x)), is said to be orbitally stable in X =
H1

per([0, L])× H1
per([0, L])× L2

per([0, L]) if for any ε > 0, there exists δ > 0 such that if (u0, v0, v1) ∈ X satisfies ‖(u0, v0, v1)−
(ψω,φω,0)‖X < δ, then the solution −→u (t) = (u, v, vt) of (40) with −→u (0) = (u0, v0, v1) exists for all t and satisfies

sup
t�0

inf
s,y∈R

∥∥−→u (t) − (
eisψω(· + y),φω(· + y),0

)∥∥
X < ε.

Otherwise, (eiωtψω(x),φω(x)) is said to be orbitally unstable in X .
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From Theorem 6.2 we obtain the following properties.

(i) The operator A has exactly one negative eigenvalue, that is, the negative eigenspace of A, say N , is one-dimensional.
(ii) For

−→
f = (ψ ′,ψ ′,0,0) and −→g = (0,0,ψ,0), the set Z = {r1

−→
f + r2

−→g ; r1, r2 ∈ R} is the kernel of the operator A.
(iii) There exists a closed subspace, say P , such that 〈Au, u〉 � δ0‖u‖X , for all u ∈ P and some δ0 > 0.

Therefore, from (i)–(iii), we obtain the following orthogonal decomposition of the real Hilbert space XR = H1
per([0, L]) ×

H1
per([0, L]) × H1

per([0, L]) × L2
per([0, L]):

XR = N ⊕ Z ⊕ P. (62)

Next, for ω ∈ I = (4π2/L2,+∞) and ψω the cnoidal wave given by Theorem 6.1, we define d : I → R by

d(ω) = E (Ψω) + ωF (Ψω), (63)

where, as before, Ψω = (ψω,ψω,0,0).
In the present setting, our orbital stability result in Theorem 1.6 can be rephrased as follows.

Theorem 6.3. Let ψ = ψ1 be the cnoidal wave given in Theorem 6.1. Then, the periodic traveling wave (eitψ,ψ) is orbitally stable
in X.

Proof. Since the periodic boundary value problem associated with (40) is globally well-posed in X (see Theorem 1.5), XR

admits the decomposition (62), and N is one-dimensional, the proof of the theorem follows from the Abstract Stability
Theorem in Grillakis, Shatah, and Strauss [18], provided we are able to show that d′′(1) > 0, where d is the function defined
in (63).

First, from (63), we have

d′(ω) =
〈

E ′(Ψω) + ωF ′(Ψω),
d

dω
Ψω

〉
+ F (Ψω)

= 2

〈
−ψ ′′

ω + ωψω − ψ2
ω,

d

dω
ψω

〉
+

〈
−ψ ′′

ω + ψω − ψ2
ω,

d

dω
ψω

〉
+ F (Ψω).

But, since ψω satisfies (44), we see that the first term in the last equality must be zero. Thus,

d′(ω) =
〈
−ψ ′′

ω + ψω − ψ2
ω,

d

dω
ψω

〉
+ F (Ψω). (64)

Taking the derivative with respect to ω in (64), we deduce

d′′(ω) =
〈
−ψ ′′

ω + ψω − ψ2
ω,

d2

dω2
ψω

〉
+

〈(−∂2
x + 1 − 2ψω

) d

dω
ψω,

d

dω
ψω

〉
+ d

dω
F (Ψω). (65)

But, again from (44), at ω = 1, the first term in (65) must be zero. Then,

d′′(1) =
〈(−∂2

x + 1 − 2ψ1
) d

dω
ψω

∣∣∣∣
ω=1

,
d

dω
ψω

∣∣∣∣
ω=1

〉
+ d

dω
F (Ψω)

∣∣∣∣
ω=1

.

Now, taking the derivative with respect to ω in (44), and evaluating at ω = 1, we get

(−∂2
x + 1 − 2ψ1

) d

dω
ψω

∣∣∣∣
ω=1

+ ψ1 = 0.

Hence,

d′′(1) = −
〈
ψ1,

d

dω
ψω

∣∣∣∣
ω=1

〉
+ d

dω
‖ψω‖2

L2
per

∣∣∣∣
ω=1

.

Note that

d

dω
‖ψω‖2

L2
per

∣∣∣∣
ω=1

= d

dω
〈ψω,ψω〉

∣∣∣∣
ω=1

= 2

〈
ψ1,

d

dω
ψω

∣∣∣∣
ω=1

〉
. (66)

Therefore, (66) implies that

d′′(1) = 1

2

d

dω
‖ψω‖2

L2
per

∣∣∣∣ .

ω=1
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As a consequence, our task reduces to show that d
dω ‖ψω‖2

L2
per

|ω=1 > 0. Actually, as we will see below, we can prove that

d
dω ‖ψω‖2

L2
per

> 0, for all ω ∈ I . This was essentially proved in [3], but for the sake of completeness, we bring the main steps

here. Integrating (44) over [0, L], we get

L∫
0

ψ2
ω(x)dx = ω

L∫
0

ψω(x)dx.

Then, for the positivity of d
dω ‖ψω‖2

L2
per

, it suffices to show that the function G(ω) = ω
∫ L

0 ψω(x)dx is strictly increasing.

In what follows we replace (up to a multiplicative positive constant) η with ω in the definition of k and ρ in Theorem 6.1.
Using that

K∫
0

cn2(x;k)dx = [E(k) − (1 − k2)K (k)]
k2

,

where E(k) is the complete elliptic integral of the second kind, L = 2
√

6K/
√

β3 − β1, and k2 = (β3 − β2)/(β3 − β1), we
deduce

L∫
0

ψω(x)dx = β2L + 24
K

L

[
E − (

1 − k2)K
]
.

Moreover, in view of the definitions of k and ρ , we infer that

β2 = 8K 2

L

[√
k4 − k2 + 1 + 1 − 2k2].

As a consequence,

L∫
0

ψω(x)dx = 8K 2

L

[√
k4 − k2 + 1 − 2 + k2] + 24

K E

L
≡ H

(
k(ω)

)
.

Finally,

d

dω
G(ω) =

L∫
0

ψω(x)dx + ω
dH

dk

dk

dω
> 0,

where we have used that k �→ H(k) is a strictly increasing function and dk/dω > 0 (see Theorem 6.1). This completes the
proof of the theorem. �
6.4. Existence of non-explicit solutions

In Subsection 6.1, we proved that system (42) admits a periodic wave solution for ω = 1 and ψω = φω , where ψω is given
explicitly by the formula in (45). The advantage in that case, is the reduction of system (42) to a single ordinary differential
equation. However, one can naturally ask if the system also admits a periodic solution for ω �= 1. In this regard, we shall
prove that for ω sufficiently close to 1, system (42) does admit an even periodic solution such that, at ω = 1, this solution
is the aforementioned one. We shall employ the Implicit Function Theorem combined with the spectral results given in
Theorem 6.2.

Let Hs
per,e([0, L]) be the subspace of Hs

per([0, L]) constituted by the even distributions. Let Xe = H2
per,e([0, L]) ×

H2
per,e([0, L]) and Ye = L2

per,e([0, L]) × L2
per,e([0, L]). Define the function Φ : R × Xe → Ye by

Φ(ω,ψ,φ) = (−ψ ′′ + ωψ − ψφ,−φ′′ + φ − ψ2).
In view of Theorem 6.1, we deduce that Φ(1,ψ1,ψ1) = (0,0). Moreover, if Φ(ψ,φ) denotes the Fréchet derivative of Φ at

(ψ,φ), it is easy to check that

Φ(ψ,φ)(ω,ψ,φ) =
(−∂2

x + ω − φ −ψ

−2ψ −∂2
x + 1

)
.

Thus, at ω = 1 and ψ = φ = ψ1, we obtain

B := Φ(ψ,φ)(1,ψ1,ψ1) =
(−∂2

x + 1 − ψ1 −ψ1
2

)
.
−2ψ1 −∂x + 1



L.G. Farah, A. Pastor / J. Math. Anal. Appl. 368 (2010) 330–349 349
Let us prove that B is a bijection from Xe into Ye . In fact, it is sufficient to show that 0 does not belong to σ(B).
An elementary calculation shows us that ( f , g) ∈ Ker(B) if and only if ( f , g) ∈ Ker(A R), where A R is the operator given
by (56). But, from Theorem 6.2, we have Ker(A R) = [(ψ ′

1,ψ
′
1)] (as an operator on L2

per([0, L]) × L2
per([0, L])). However, since

ψ1 is an even function, it follows that ψ ′
1 /∈ L2

per,e([0, L]) and so 0 /∈ σ(B) (as an operator on Ye).
Consequently, from the Implicit Function Theorem there exist an ε > 0 and a unique smooth function � : (1 − ε,

1 + ε) → Xe ,

�(ω) = (ψω,φω),

such that �(1) = (ψ1,ψ1) and Φ(ω,�(ω)) = (0,0), for all ω ∈ (1 − ε,1 + ε), that is, the pair (ψω,φω) is a solution for
system (42).

Remark 6.2. The periodic solution we found here are also orbitally stable. This can be proved by using classical perturbation
theory (see [22]) to show that the linearized operators arising in this context have the same spectral properties as those
ones in Theorem 6.2 (for related references see e.g. [4,29]). This will appear elsewhere.
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