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1. Introduction

We say that a nonempty set F ⊂ Rn is decomposable in Motzkin’s sense (M-decomposable in short) if there exist a com-
pact convex set C and a closed convex cone D such that F = C + D . Then we say that C + D is a Motzkin representation (or
decomposition) of F with compact and conic components C and D , respectively. Any M-decomposable set F has a unique
conic component D = 0+ F but multiple compact components when F is unbounded. When F contains no line, there ex-
ists a compact convex set C0 such that F = C0 + 0+ F and C0 ⊂ C for any compact component C of F ; such a set C0 is
called smallest compact component of F . The classical Motzkin Theorem [6] asserts that any polyhedral convex set is M-
decomposable. A set F , ∅ �= F ⊂ Rn , is said to be hyperbolic in [1,2] when there exists a compact convex set C such that
F = C + 0+ F . Obviously, any hyperbolic set is M-decomposable.

This class of closed convex sets was characterized in different ways in [3], two of them providing the smallest compact
component when the checked set F turns out to be M-decomposable and contains no line. The mentioned characterizations
involve a geometric object, the so-called Pareto-like set of the intersection of F with the linear subspace orthogonal to
its lineality, and a certain linear representation of the so-called conic representation of F , i.e., the closed convex cone
{(a,b) ∈ Rn+1: a′x � b, ∀x ∈ F }. The Pareto-like sets are characterized in different ways in Section 2.

In Section 3 we give two new characterizations of the M-decomposable sets, the main one showing that it is possible
to replace the mentioned concept of Pareto-like set by the more intuitive one of the set of extreme points. Section 4
considers the so-called M-decomposable functions, i.e., those extended functions whose epigraphs are M-decomposable. These
functions are characterized and their behavior in the optimization context is analyzed. In particular, it is shown that any
M-decomposable function which is bounded from below attains its infimum on the whole space. Concerning Section 4,
the only antecedents are the properties of two particular classes of M-decomposable functions: the polyhedral convex
functions and the support functions of nonempty closed convex sets, whose respective epigraphs (polyhedral convex sets
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and closed convex cones, respectively) are M-decomposable. Finally, Section 5 provides calculus rules with M-decomposable
sets and functions. In particular, we show how to obtain new M-decomposable sets from a given finite family of sets of
the same class by combining Minkowski sums and unions with convex hulls and closures. We also show that the sum of an
M-decomposable function with an affine function is M-decomposable, too, and we indicate how to build M-decomposable
functions from other functions of the same class by combining pointwise minimum and infimal convolution with convex
and lower semicontinuous hulls.

Throughout the paper we use the following notation. For any X ⊂ Rp , we denote by int X , cl X , bd X , rint X , rbd X ,
conv X , and cone X = R+ conv X , the interior, the closure, the boundary, the relative interior, the relative boundary, the convex
hull of X , and the convex conical hull of X , respectively.

The scalar product of x, y ∈ Rp is denoted either by x′ y or by 〈x, y〉, the Euclidean norm of x by ‖x‖, the Euclidean
distance by ρ , the canonical basis by {e1, . . . , ep}, the zero vector by 0p , the closed unit ball by B p , and the unit sphere
by S p−1. The orthogonal complement of a linear subspace X is X⊥ := {y ∈ Rp: 〈x, y〉 = 0, ∀x ∈ X}. If X is a convex set,
extr X , 0+ X and lin X := (0+ X) ∩ (−0+ X) denote the set of extreme points, the recession cone and the lineality space of X ,
respectively. Given a convex set X and a point a ∈ X ,

D(X;a) := {
u ∈ Rp: ∃λ > 0 such that a + λu ∈ X

}
and

N X (a) := {
u ∈ Rp: 〈x − a, u〉 � 0, ∀x ∈ X

}
are the cone of feasible directions and the normal cone at x, respectively. It is easy to prove that N X (a) is a linear subspace of
Rp whenever a ∈ rint X .

Given x = (x1, . . . , xp) we denote by x̂ the result of eliminating the last component of x, i.e., x̂ = (x1, . . . , xp−1). Coher-
ently, we identify X̂ = {̂x: x ∈ X} with the (orthogonal) projection of X ⊂ Rp onto Rp−1.

Given f : Rp → R = R ∪ {±∞}, we denote by gph f , epi f , s- epi f , and dom f = êpi f its graph, its epigraph, its strict
epigraph, and its domain, respectively, whereas ∂ f (x) denotes the subdifferential of f at x ∈ dom f .

The conjugate of f is the function f ∗ : Rp → R such that

f ∗(u) := sup
{〈x, u〉 − f (x): x ∈ dom f

}
.

Any set X ⊂ Rp is represented in a unique way by its indicator function

δX (x) :=
{

0, if x ∈ X,

+∞, otherwise.

The support function of X is δ∗
X (u) = sup{〈x, u〉: x ∈ X}.

The lower semicontinuous (lsc) envelope of f : Rp → R is the function f : Rp → R defined by

f (x) := inf
{

t ∈ R: (x, t) ∈ cl epi f
}
.

Clearly we have epi f = cl epi f , which implies that f is the greatest lsc function minorizing f ; so f � f . If f is convex,
then f is also convex, and then f does not take the value −∞ if and only if f admits an affine minorant.

The lsc convex hull of f is the convex lsc function conv f : Rp → R such that

epi(conv f ) = cl conv(epi f ).

Obviously conv f � f � f .

2. Pareto-like sets revisited

The Pareto-like set of a closed convex set F , ∅ �= F ⊂ Rn , is

M(F ) := {
x ∈ F ∩ (lin F )⊥: (x − K ) ∩ F = {x}},

where

K := (
0+ F

) ∩ (lin F )⊥ (1)

is a pointed convex cone. The next result characterizes M(F ) from any linear representation of F .

Proposition 1. Let {a′
t x � bt , t ∈ T } and {c′

sx = 0, s ∈ S} be linear representations of F �= ∅ and (lin F )⊥ (S = ∅ if F does not contain
lines), respectively. Then x ∈ M(F ) if and only if a′

t x � bt , ∀t ∈ T , c′
sx = 0, ∀s ∈ S, and

±
(

ei
e′

i x

)
∈ cl cone

{(
at

bt

)
, t ∈ T ; −

(
at

a′
t x

)
, t ∈ T ; ±

(
cs

c′
sx

)
, s ∈ S;

(
0n

−1

)}
,

i = 1, . . . ,n.
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Proof. Let K be as in (1). Since 0+ F = {x ∈ Rn: a′
t x � 0, t ∈ T }, we have

K = {
x ∈ Rn: a′

t x � 0, t ∈ T ; c′
sx = 0, s ∈ S

}
.

Then x ∈ M(F ) if and only if x ∈ F ∩ (lin F )⊥ and x = x is a consequence of x ∈ (x − K ) ∩ F , i.e., the equations e′
i x = e′

i x,
i = 1, . . . ,n, are consequences of the linear system{

a′
t x � bt, t ∈ T ; a′

t(x − x) � 0, t ∈ T ; c′
s(x − x) = 0, s ∈ S

}
.

The result follows from the nonhomogeneous Farkas Lemma for semi-infinite linear systems (see, e.g., [4, Theorem 3.1]). �
In the next two statements, we shall consider M-decomposable sets with pointed recession cones. It is not a too restric-

tive condition because, if it is not the case for a certain M-decomposable set F , then F = [F ∩ (lin F )⊥] + lin F , so that we
can refer to F ∩ (lin F )⊥ , whose recession cone 0+(F ∩ (lin F )⊥) is always pointed.

Proposition 2. Let F be an M-decomposable set with a pointed recession cone and x ∈ F . Then x ∈ M(F ) iff (−0+ F )∩ D(F ; x) = {0n}.
Hence, if F is unbounded then M(F ) ⊂ rbd F .

Proof. The proof is evident, because M(F ) is the set of efficient points of F with respect to the cone 0+ F , i.e., given x ∈ F ,
one has x ∈ M(F ) if and only if (x − 0+ F ) ∩ F = {x}. �
Proposition 3. Let F be an M-decomposable set with a pointed recession cone and x ∈ rbd F . If there exists a supporting hyperplane H
of F at x such that H ∩ F is a bounded set then x ∈ M(F ). If x ∈ M(F ) and D(F ; x) is closed, then there exists a supporting hyperplane
H of F at x such that H ∩ F is a bounded set.

Proof. Let there exist a supporting hyperplane H of F at x such that H ∩ F is a bounded set, H+ and H− be the
closed halfspaces determined by H , and assume that F ⊂ H+ . Since H ∩ F is a bounded set, then (x + 0+ F ) ∩ H = {x} =
(x − 0+ F ) ∩ H . Therefore x − 0+ F ⊂ H− . This implies that x ∈ M(F ).

Now, let x ∈ M(F ) and D(F ; x) be a closed cone. We point out that F ⊂ x + D(F ; x). From the previous proposition we
have (−0+ F ) ∩ D(F ; x) = {0n}. Let us consider the set conv((−0+ F ) ∩ Sn−1). Since 0+ F is a pointed closed convex cone,
conv((−0+ F ) ∩ Sn−1) is a compact base of −0+ F , 0n /∈ conv((−0+ F ) ∩ Sn−1) and conv((−0+ F ) ∩ Sn−1) ∩ D(F ; x) = ∅. There
exists an ε > 0 sufficiently small such that still 0n /∈ conv((−0+ F )∩ Sn−1)+εBn and (conv((−0+ F )∩ Sn−1)+εBn)∩ D(F ; x) =
∅. Now, we shall consider the closed convex pointed cone K generated by the compact base conv((−0+ F ) ∩ Sn−1) + εBn .
First, we have that (−0+ F )�{0n} ⊂ int K . Second, if we suppose that K ∩ D(F ; x) �= {0n} we shall get an element y ∈
(conv((−0+ F ) ∩ Sn−1) + εBn) ∩ D(F ; x), which is a contradiction. So, K ∩ D(F ; x) = {0n} and we can separate both closed
convex cones by means of a hyperplane H . Let us translate these cones and hyperplane at the point x. The translated
hyperplane H separates the closed sets x + D(F ; x) and x + K . Moreover x + 0+ F ⊂ x + D(F ; x). Let d �= 0n , d ∈ 0+ F and
x + d ∈ H . Then x − d ∈ H , which contradicts the inclusion (−0+ F )�{0n} ⊂ int K . Hence F ∩ H is a bounded set. The proof
is complete. �

If the M-decomposable set is a polyhedral convex set, the above closedness assumption on D(F ; x) is automatically sat-
isfied. The first part of Example 9 below shows that this assumption is not superfluous in the nonpolyhedral case (consider
the points ±(1,0,0)).

The next characterization of the M-decomposable sets is Theorem 19 in [3]. Here F ∗(c) represents the set of global
minima of the linear form 〈c, .〉 on F .

Theorem 4. Let F be a closed convex set, ∅ �= F ⊂ Rn. Then the following statements hold:

(i) F is M-decomposable if and only if M(F ) is bounded. In that case,

F = cl conv M(F ) + 0+ F (2)

is a Motzkin representation of F .
(ii) If F is an M-decomposable set containing no lines, then cl conv M(F ) is the smallest compact component of F , with

M(F ) = {
x ∈ F :

(
x − 0+ F

) ∩ F = {x}} (3)

satisfying

∅ �=
⋃{

F ∗(c): c ∈ int K̂ (F )
} ⊂ M(F )

⊂
⋃{

F ∗(c): 0n �= c ∈ cl K̂ (F )
}
. (4)
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3. Identifying and generating M-decomposable sets

The first characterization of M-decomposable sets requires the next simple lemma.

Lemma 5. Let F ⊂ Rn be a closed convex set. Then

0+ F = 0+(
F ∩ (lin F )⊥

) + lin F . (5)

Proof. It is consequence of the well-known decomposition of a convex set F as the sum of a closed convex set containing
no lines with a linear subspace:

F = F ∩ (lin F )⊥ + lin F (6)

(see, e.g., [7, p. 65]). �
According to Klee representation theorem [5], a sufficient condition for a nonempty closed convex set F to be M-

decomposable is the boundedness of F ∩ (lin F )⊥ . The next result shows that this condition is also necessary.

Theorem 6. A closed convex set F ⊂ Rn is M-decomposable if and only if F ∩ (lin F )⊥ is M-decomposable. In this event, any compact
component of F ∩ (lin F )⊥ is a compact component of F too. Consequently, F is M-decomposable whenever 0+ F is a linear subspace.

Proof. “If”. Let C be a compact convex set such that F ∩ (lin F )⊥ = C + 0+(F ∩ (lin F )⊥). Then, by (6),

F = C + 0+(
F ∩ (lin F )⊥

) + lin F . (7)

Since 0+(F ∩ (lin F )⊥) ⊂ (lin F )⊥ , the convex cone 0+(F ∩ (lin F )⊥) + lin F is closed, and hence (7) is an M-decomposition
of F with compact component C .

“Only if”. Let C be a compact convex set such that

F = C + 0+ F . (8)

Without loss of generality, we can assume that C ⊆ (lin F )⊥ (otherwise we replace C with its orthogonal projection on
(lin F )⊥ , i.e., the compact convex set (C + lin F )∩(lin F )⊥ , which is another compact component of F ). Since C ⊆ F ∩(lin F )⊥ ,
we have C + 0+(F ∩ (lin F )⊥) ⊆ F ∩ (lin F )⊥ . To prove the opposite inclusion, let x ∈ F ∩ (lin F )⊥ . In view of (8) and (5),
there exist y ∈ C + 0+(F ∩ (lin F )⊥) and d ∈ lin F such that x = y + d. Since x, y ∈ (lin F )⊥ , we have 0 = 〈x,d〉 = 〈y,d〉 +
‖d‖2 = ‖d‖2, so that d = 0 and therefore x = y ∈ C + 0+(F ∩ (lin F )⊥). We have thus proved the inclusion F ∩ (lin F )⊥ ⊆
C + 0+(F ∩ (lin F )⊥) and hence the equality between these two sets, which shows that F ∩ (lin F )⊥ is M-decomposable.

From (7) it is clear that any compact component of F ∩ (lin F )⊥ is a compact component of F too.
Now we assume that 0+ F is a linear subspace. Given y ∈ 0+(F ∩ (lin F )⊥), y ∈ 0+ F = lin F (by assumption) and y ∈

0+(lin F )⊥ = (lin F )⊥ , so that y = 0n . Thus F ∩ (lin F )⊥ is M-decomposable because it is a compact convex set. �
Observe that an M-decomposable set F has a smallest compact component if and only if lin F = {0n} (i.e., extr F �= ∅).

Corollary 7. Let f : Rn → R be a proper convex function. Then ∂ f (x) is M-decomposable for any x ∈ rint dom f .

Proof. Let x ∈ rint dom f . Then ∂ f (x) �= ∅ and this implies that 0+∂ f (x) = Ndom f (x) (see, e.g., [7, p. 218, l. 9–15]), this cone
being actually a linear subspace because x ∈ rint dom f . The conclusion follows from Theorem 6. �

The preceding result does not hold if the assumption x ∈ rint dom f is removed, since every nonempty closed convex set
is the subdifferential of its support function at the origin.

To get a counterpart of Theorem 4 in terms of extr(F ∩ (lin F )⊥) instead of M(F ) we need a lemma.

Lemma 8. Let F be a closed convex set, ∅ �= F ⊂ Rn, and let L := lin F . Then the following statements hold:

(i) If F ∩ L⊥ is bounded, then M(F ) = F ∩ L⊥ .
(ii) If F ∩ L⊥ is unbounded, then

extr
(

F ∩ L⊥) ⊂ M(F ) ⊂ conv extr
(

F ∩ L⊥) ∩ rbd
(

F ∩ L⊥)
. (9)

Hence, M(F ) and extr(F ∩ L⊥) have the same convex hull and, so, both sets are simultaneously bounded or unbounded.
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Proof. Let K be as in (1).
(i) Assume that F ∩ L⊥ is bounded. Then K = (0+ F ) ∩ L⊥ = 0+(F ∩ L⊥) = {0n}, so that

M(F ) = {
x ∈ F ∩ L⊥: {x} ∩ F = {x}} = F ∩ L⊥.

(ii) Assume now that F ∩ L⊥ is unbounded. Let x ∈ extr(F ∩ L⊥) and y ∈ (x − K ) ∩ F . We have y ∈ F ∩ L⊥ because
x − K ⊂ L⊥ − L⊥ = L⊥ . Since x − y ∈ K ⊂ 0+ F , we also have 2x − y ∈ F ∩ L⊥; therefore, as x ∈ extr(F ∩ L⊥) is the midpoint
of the segment with endpoints y,2x − y ∈ F ∩ L⊥ , it follows that y = x. We have thus proved that (x − K ) ∩ F = {x}, that is,
x ∈ M(F ). So, extr(F ∩ L⊥) ⊂ M(F ).

Next we prove that M(F ) ⊂ rbd(F ∩ L⊥).
Let us take any point x ∈ M(F ), i.e., x ∈ F ∩ L⊥ such that (x − K ) ∩ F = {x}. Obviously,

rint(x − K ) ∩ rint
(

F ∩ L⊥) ⊂ {x}. (10)

On the other hand, 0n ∈ rbd K because K is pointed and does not reduce to {0n}, so that x ∈ rbd(x − K ) which together
with (10) gives rint(x − K ) ∩ rint(F ∩ L⊥) = ∅. Let H be a hyperplane separating x − K and F ∩ L⊥ properly. We have
F ∩ L⊥ � H (otherwise, since K = 0+(F ∩ L⊥) ⊂ H − H , x − K ⊂ H and H does not separate both sets properly). Hence,
x ∈ rbd(F ∩ L⊥) (otherwise, x ∈ rint(F ∩ L⊥) entails F ∩ L⊥ ⊂ H).

Observe that H supports F ∩ L⊥ properly at x, and the same is true for the hyperplane H ∩ L⊥ + lin F which supports F
properly at x too.

We will prove that M(F ) ⊂ conv extr(F ∩ L⊥) by induction on k := dim F .
Let k = 1. Then F is a closed halfline (if F is a whole line, then lin F = F , L⊥ is a hyperplane orthogonal to F and, so,

F ∩ L⊥ is singleton, contradicting the unboundedness of F ∩ L⊥). If F = {x + λy: λ � 0}, where x, y ∈ Rn and y �= 0n , then
lin F = {0n}, L⊥ = Rn , and M(F ) = {x} = extr(F ∩ L⊥).

Let k > 1. Let H be a hyperplane which supports properly F at x (we have already shown the existence of such a
hyperplane). Obviously, L = lin F ⊂ H − x (the linear subspace parallel to H). Let F̃ := F ∩ H , with dim F̃ < k, and let
L̃ := lin F̃ = lin F ∩ (H − x) = lin F . We have L̃⊥ := (lin F̃ )⊥ = L⊥ and

K̃ := (
0+ F̃

) ∩ L̃⊥ = 0+(F ∩ H) ∩ L⊥ = (
0+ F

) ∩ L⊥ ∩ (H − x) = K ∩ (H − x).

Let y ∈ (x − K̃ ) ∩ F̃ . Since x − y ∈ K̃ ⊂ K and y ∈ F̃ ⊂ F , and x ∈ M(F ), we have y = x. Hence, x ∈ M( F̃ ) :=
{x ∈ F̃ ∩ L̃: (x − K̃ ) ∩ F̃ = {x}} and x ∈ conv extr( F̃ ∩ L⊥) by the induction hypothesis. Because H supports F ∩ L⊥ at x,
extr( F̃ ∩ L⊥) = extr(F ∩ H ∩ L⊥) ⊂ extr(F ∩ L⊥) and we get x ∈ conv extr(F ∩ L⊥).

We have thus proved the required inclusion. �
The next two examples show that the three sets in (9) may coincide (even simultaneously) or not.

Example 9. Consider the unbounded closed convex set

F := {
x ∈ R3: −1 � x1 � 1, x2 � −

√
1 − x2

1

}
.

We have 0+ F = cone{(0,1,0),±(0,0,1)}, L⊥ = (lin F )⊥ = R2 × {0}, K := (0+ F ) ∩ L⊥ = cone{(0,1,0)}, and

extr
(

F ∩ L⊥) = M(F ) = conv extr
(

F ∩ L⊥) ∩ rbd
(

F ∩ L⊥)
= {

(x1, x2,0) ∈ R3: −1 � x1 � 1, x2 = −
√

1 − x2
1

}
.

Notice that M(F ) is the smallest compact component of F ∩ L⊥ . Observe also that the unique plane supporting properly
F at x = (1,0,0) ∈ M(F ) is H = {x ∈ R3: x1 = 1} whereas any plane containing the line {x ∈ R3: x1 = 1, x3 = 0}, except
{x ∈ R3: x3 = 0}, separates properly x − K and F ∩ L⊥ . Any of the latter planes contains the translated cone x − K whereas
its intersection with F yields the facet {x ∈ R3: x1 = 1, x2 � 0, x3 = 0}.

Example 10. Consider the polyhedral closed convex set

F := {
x ∈ R3: x1 + x2 � 1, x3 � xi � 0, i = 1,2

}
.

Obviously, L⊥ = R3, 0+ F = conv{(0,0,1)}, extr F = {c1, c2, c3, c4}, where c1 = (0,0,0), c2 = (1,0,1), c3 = (0,1,1), and c4 =
( 1

2 , 1
2 , 1

2 ),

M(F ) = conv{c1, c2, c4} ∪ conv{c1, c3, c4},
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and

conv extr F ∩ bd F = M(F ) ∪ conv{c2, c3, c4}.
Thus,

extr F � M(F ) � conv extr F ∩ bd F .

Here the smallest compact component of F is

F = conv{c1, c2, c3, c4}.

Theorem 11. Let F be a closed convex set, ∅ �= F ⊂ Rn. Then the following statements hold:

(i) F is M-decomposable if and only if extr(F ∩ (lin F )⊥) is bounded. In that case,

F = cl conv extr
(

F ∩ (lin F )⊥
) + 0+ F (11)

is a Motzkin representation of F .
(ii) If F is an M-decomposable set containing no lines, then the compact component of F in (11) is the smallest one, with

extr(F ∩ (lin F )⊥) = extr F satisfying

∅ �=
⋃{

(F )∗(c):
∣∣(F )∗(c)

∣∣ = 1, c ∈ Rn} ⊂ extr F

⊂ cl
( ⋃{

(F )∗(c):
∣∣(F )∗(c)

∣∣ = 1, c ∈ Rn}). (12)

Proof. Statement (i) and the first part of (ii) are straightforward consequences of Theorem 4 and Lemma 8 whereas (12)
follows from Straszewicz’s Theorem (see, e.g., [7, Theorem 18.6]). �

If F is a polyhedral convex set, F ∩ (lin F )⊥ is polyhedral too, so that extr(F ∩ (lin F )⊥) is finite. Thus, any polyhedral
convex set is M-decomposable. Even more, from (11), the smallest compact component of F is a polytope (this proves the
classical Motzkin’s Theorem in [6]). Thus, for polyhedral convex sets, the first inclusion in (9) is generally strict except in
particular cases (as lines and hyperplanes) because extr(F ∩ (lin F )⊥) is finite whereas M(F ) is commonly infinite.

On the other hand, because {lin[F ∩ (lin F )⊥]}⊥ = {0n}⊥ = Rn ,

extr
((

F ∩ (lin F )⊥
) ∩ {

lin
[

F ∩ (lin F )⊥
]}⊥) = extr

(
F ∩ (lin F )⊥

)
.

Thus, by Theorem 11, F ∩ (lin F )⊥ is M-decomposable if and only if F is decomposable (this is an alternative proof of
Theorem 6).

4. M-decomposable functions

A function f : Rn → R is decomposable in Motzkin’s sense (M-decomposable in short) if epi f is M-decomposable. In this
event, f is convex, lower semicontinuous (also abbreviated as lsc) and non-identically +∞. Moreover, the conic compo-
nent of epi f is 0+(epi f ) = epi f 0+ , where f 0+ denotes the recession function of f (obviously, any recession function is
M-decomposable). Theorem 13 and Proposition 15 characterize the proper and the improper M-decomposable functions,
respectively. We will need the following lemma:

Lemma 12. Let f be a proper convex function and M be an affine manifold parallel to (lin epi f )⊥ . Then

extr(epi f ∩ M) ⊂ gph f .

Proof. Let (x,α) ∈ extr(epi f ∩ M), and denote by π the orthogonal projection mapping from Rn onto M . Since (x,α) ∈ M ,
we have

(x,α) = π(x,α) = π

(
1

2

[(
x, f (x)

) + (
x,2α − f (x)

)])

= 1

2

[
π

(
x, f (x)

) + π
(
x,2α − f (x)

)]
.

From (x,α) ∈ epi f it follows that (x,2α − f (x)) ∈ epi f . Consequently, π(x, f (x)), π(x,2α − f (x)) ∈ (epi f + lin epi f )∩ M =
epi f ∩ M and hence, by (x,α) ∈ extr(epi f ∩ M), we must have (x,α) = π(x, f (x)). This equality implies that (x,α) −
(x, f (x)) ∈ lin epi f and therefore, since epi f contains no vertical lines (as f is proper), we conclude that (x,α) = (x, f (x)) ∈
gph f . �
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Theorem 13. Let f be an lsc proper convex function. Then the following statements hold:

(i) f is M-decomposable if and only if extr[epi f ∩ (lin epi f )⊥] is bounded.
(ii) If gph f ∩ (lin epi f )⊥ is bounded, then f is M-decomposable.

(iii) If dom f is bounded and f is bounded on dom f , then f is M-decomposable.
(iv) If f is M-decomposable and finite-valued, then f cannot be strictly convex.

Proof. (i) It is straightforward consequence of Theorem 11 applied to the nonempty closed convex set epi f .
(ii) By Lemma 12,

extr
[
epi f ∩ (lin epi f )⊥

] ⊂ gph f ∩ (lin epi f )⊥,

and the conclusion follows from (i).
(iii) Since gph f ⊂ dom f × f (dom f ) and this set is bounded, the conclusion follows from (ii).
(iv) If f is finite-valued and strictly convex, then epi f does not contain lines and extr epi f = gph f , so that

extr
[
epi f ∩ (lin epi f )⊥

] = gph f

is unbounded and the conclusion follows again from (i). �
Corollary 14. Let ∅ �= F ⊂ Rn be a closed set. Then the following statements are equivalent:

(i) F is M-decomposable.
(ii) The indicator function δF is M-decomposable.

(iii) The distance function ρ(·, F ) is M-decomposable.

Proof. The three statements (i)–(iii) imply the convexity of F because

{x ∈ epi δF : xn+1 = 0} = {
x ∈ epiρ(·, F ): xn+1 = 0

} = F × {0}.
Let L = lin F .

(i) ⇔ (ii) It follows from Theorems 13 and 11 applied to δF and F , respectively. Indeed, since

(lin epi δF )⊥ = [
lin(F × R+)

]⊥ = L⊥ × R,

δF is M-decomposable if and only if

extr
[
(F × R+) ∩ (

L⊥ × R
)] = extr

[(
F ∩ L⊥) × R+

]
= extr

(
F ∩ L⊥) × extr R+

= extr
(

F ∩ L⊥) × {0}
is bounded if and only if F is M-decomposable.

(i) ⇔ (iii) The argument is similar to the previous one, replacing δF (x) with f (x) := ρ(x, F ). In fact, since

(lin epi f )⊥ = [
lin

(
F × {0})]⊥ = L⊥ × R,

f is M-decomposable if and only if

extr
{
(x, γ ) ∈ L⊥ × R: ρ(x, F ) � γ

} = [
extr

(
F ∩ L⊥)] × {0}

is bounded if and only if F is M-decomposable. �
Proposition 15. Let f be an improper lsc convex function non-identically +∞. Then, f is M-decomposable if and only if f (x) = −∞
for all x ∈ dom f and dom f is an M-decomposable set.

Proof. The lower semicontinuity assumption on f entails that f (x) = −∞ for all x ∈ rint dom f . Let x ∈ rbd dom f
such that f (x) ∈ R. Because cl dom f = cl rint dom f , there exists a sequence {xk} ⊂ rint dom f such that xk → x. Then,
{(xk, f (x) − 1)} ⊂ epi f for all k ∈ N and (xk, f (x) − 1) → (x, f (x) − 1) /∈ epi f (contradiction). Thus f (x) = −∞.

We have shown that f (x) = −∞ for all x ∈ dom f . Since dom f × R = epi f is a closed convex set, dom f is also closed
and convex. Moreover, we have

lin epi f = (lin dom f ) × {0} + {0n} × R.

Thus, applying Theorem 6 to epi f and dom f , we conclude that epi f is M-decomposable if and only if
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epi f ∩ (lin epi f )⊥ = [
dom f ∩ (lin dom f )⊥

] × {0}
is M-decomposable if and only if dom f is M-decomposable. �

The next result gives an interesting property of the M-decomposable functions in the optimization framework.

Proposition 16. Let f : Rn → R be an M-decomposable function bounded from below on Rn. Then f achieves a global minimum
on Rn.

Proof. Let α ∈ R be such that f (x) � α for all x ∈ Rn . Then α � xn+1 for all (x1, . . . , xn+1) ∈ epi f . Since the linear mapping
(x1, . . . , xn+1) �→ xn+1 is bounded from below on the M-decomposable set epi f , by [3, Proposition 13(iv)], there exists
(x1, . . . , xn+1) ∈ epi f such that xn+1 � xn+1 for all (x1, . . . , xn+1) ∈ epi f . Obviously, we must have xn+1 = f (x1, . . . , xn)

(otherwise (x1, . . . , xn, f (x1, . . . , xn)) ∈ epi f is preferable to (x1, . . . , xn+1)).
Since f (x1, . . . , xn) � xn+1 for all (x1, . . . , xn+1) ∈ epi f and (x1, . . . , xn, f (x1, . . . , xn)) ∈ epi f , we get f (x1, . . . , xn) �

f (x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn . Then (x1, . . . , xn) is a global minimizer of f on Rn . �
Given that support functions are sublinear and hence M-decomposable (as their epigraphs are closed convex cones),

from the observation we have made in Section 3 that every nonempty closed convex set is the subdifferential of its support
function at the origin, it follows that the subdifferential of an M-decomposable function at a relative boundary point of its
domain is not necessarily M-decomposable.

It is well known that, if f is a polyhedral convex function bounded from below on a polyhedral convex set F , then f
attains its minimum on F [7, Corollary 27.3.2]. The next example shows that we cannot replace in this statement “polyhedral
convex” by “M-decomposable”.

Example 17. Consider the closed convex cone

K := cone

{(
1, t,

1 − t

t

)
, t > 0; (0,1,0); (0,0,1)

}
.

Let f : R2 → R be the M-decomposable function whose epigraph is epi f = K and let F = [0,1] × R. We have
inf{ f (x): x ∈ F } = −1 but f (x) �= −1 for all x ∈ F .

It is worth observing that any lsc proper convex function is the pointwise limit of a sequence of M-decomposable
functions as an immediate consequence of the next result.

Proposition 18. Every lsc proper convex function is the pointwise limit of a sequence of polyhedral convex functions.

Proof. Let f : Rn → R be an lsc proper convex function. Let ϕ : N → Qn be an arbitrary bijection. Then, for every x ∈ Rn

one has

f (x) = f ∗∗(x) = sup
u∈Rn

{〈x, u〉 − f ∗(x)
} = sup

u∈Qn

{〈x, u〉 − f ∗(x)
}

= sup
k∈N

sup
u∈{ϕ(0),...,ϕ(k)}

{〈x, u〉 − f ∗(x)
}

= lim
k→∞

sup
u∈{ϕ(0),...,ϕ(k)}

{〈x, u〉 − f ∗(x)
}
,

where supu∈{ϕ(0),...,ϕ(k)}{〈x, u〉 − f ∗(x)} is a polyhedral convex function for all k. �
Proposition 18 shows that the pointwise limit of M-decomposable functions is not necessarily M-decomposable. The next

example shows that this statement still holds for the uniform limit.

Example 19. The convex non-M-decomposable function f : R → R defined by f (x) = √
x2 + 1 is the uniform limit of a

sequence of polyhedral convex functions because the second order derivative of f is bounded and the graph of f has the
asymptotes {(x, y) ∈ R2: y = x} and {(x, y) ∈ R2: y = −x}.

We finish this section by showing that the Motzkin decomposability of a function is independent of the correspond-
ing property of its sublevel sets. This is obvious in one sense (the non-M-decomposable function f (x) = ‖x‖2 has M-
decomposable sublevel sets). In the particular case that f is a polyhedral convex function, given α ∈ R, the sublevel set
{x ∈ Rn: f (x) � α} is the projection of the polyhedral convex set epi f ∩ {x ∈ Rn+1: xn+1 � α} on Rn × {0}, so that it
is a polyhedral convex set too. The last example in this section shows that we cannot replace “polyhedral convex” with
“M-decomposable” in the latter statement.
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Example 20. Consider the function f : R2 → R such that

f (x, y) =
{−√

y2 − x2, if y � |x|,
+∞, otherwise,

whose epigraph is the closed convex cone

cone
{
(cos t,1, sin t), t ∈ [π,2π ], (0,0,1)

}
.

Obviously, f is an M-decomposable function but

{
(x, y) ∈ R2: f (x, y) � α

} = {
(x, y) ∈ R2: y � |x|}

(a closed convex cone) when α � 0 and

{
(x, y) ∈ R2: f (x, y) � α

} = {
(x, y,α) ∈ R3: y2 � x2 + α2, y � 0

}
(the convex hull of a branch of hyperbola and, so, a non-M-decomposable set), when α < 0.

5. Calculus with M-decomposable sets and functions

Obviously, the decomposability property of sets is preserved under scalar multiplication. Moreover, if F is M-
decomposable, the set {x ∈ Rn: ρ(x, F ) � ε} is M-decomposable too for all ε > 0. Concerning the ordinary binary operations
with sets, only the Cartesian product is closed in the class of the M-decomposable sets. This statement is obvious for the
union (it does not preserve convexity) and for the Minkowski sum (because the sum of closed convex cones is not necessar-
ily closed), and was proved in [3, Example 24] for the intersection. The next result shows that applying convex hulls and/or
closures to sums and unions (but not to intersections, because they are already closed and convex) we get M-decomposable
sets.

Theorem 21. If F1, . . . , Fm are M-decomposable sets, then cl(
∑m

i=1 Fi) and cl conv(
⋃m

i=1 Fi) are M-decomposable.

Proof. It is sufficient to prove the statement for m = 2. Let Fi = Ci + Di , with Ci compact convex and Di closed convex
cone, i = 1,2.

First of all, recall that if C is a compact and convex subset of Rn and D ⊂ Rn is a convex cone, then cl(C + D) = C + cl D .
Thus,

cl(F1 + F2) = cl(C1 + C2 + D1 + D2) = C1 + C2 + cl(D1 + D2),

which is obviously an M-decomposable set.
Let x ∈ conv(F1 ∪ F2). Then there exist α ∈ [0,1] and (ci,di) ∈ (Ci, Di), i = 1,2, such that

x = α(c1 + d1) + (1 − α)(c2 + d2)

= αc1 + (1 − α)c2 + αd1 + (1 − α)d2 ∈ conv(C1 ∪ C2) + D1 + D2.

Hence,

conv(F1 ∪ F2) ⊂ conv(C1 ∪ C2) + D1 + D2, (13)

where conv(C1 ∪ C2) is a compact set by Mazur’s Theorem.
Now, let x ∈ conv(C1 ∪ C2) + D1 + D2. Therefore, there exist α ∈ [0,1] and (ci,di) ∈ Ci × Di , i = 1,2, such that

x = αc1 + (1 − α)c2 + d1 + d2.

If α ∈ ]0,1[, then

x = α

(
c1 + d1

α

)
+ (1 − α)

(
c2 + d2

1 − α

)
∈ conv(F1 ∪ F2).

If α = 1, then
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x = lim
α↗1

[
α

(
c1 + d1

α

)
+ (1 − α)

(
c2 + d2

1 − α

)]
∈ cl conv(F1 ∪ F2),

where c2 ∈ C2 is an arbitrary point.
The same is true when α = 0. Hence, we have

conv(C1 ∪ C2) + D1 + D2 ⊂ cl conv(F1 ∪ F2). (14)

From (13) and (14) we get

cl conv(F1 ∪ F2) = cl
[
conv(C1 ∪ C2) + D1 + D2

]
= conv(C1 ∪ C2) + cl(D1 + D2),

where the latter set is the sum of a compact convex set and a closed convex cone. �
Finally, we analyze the usual operations which provide convex functions from other convex functions from the point of

view of the preservation of the M-decomposability.

Proposition 22. Let f : Rn → R be M-decomposable and λ > 0. Then λ f is M-decomposable.

Proof. Let A be the (n + 1)× (n + 1) matrix obtained by replacing the last element of the diagonal of the identity matrix by
λ and let epi f = C + D , where C is a compact convex set and D is a closed convex cone. Then, epi(λ f ) = A epi f = AC + AD
is the sum of a compact convex set with a closed convex cone. �
Lemma 23. Let f : Rn → R and let g : Rn → R be linear. Then, given u ∈ Rn and γ ∈ R, (u, γ ) ∈ lin epi f if and only if
(u, γ + g(u)) ∈ lin epi( f + g).

Proof. We have

(u, γ ) ∈ lin epi f ⇔ (x, y) + λ(u, γ ) ∈ epi f , ∀(x, y) ∈ epi f , ∀λ ∈ R

⇔ f (x + λu) � y + λγ , ∀(x, y) ∈ epi f , ∀λ ∈ R

⇔ ( f + g)(x + λu) � α + λ
(
γ + g(u)

)
, ∀(x,α) ∈ epi( f + g), ∀λ ∈ R

⇔ (
u, γ + g(u)

) ∈ lin epi( f + g). �
Lemma 24. Let f be a proper convex function and let g : Rn → R be linear. Then, (x, y) ∈ extr[epi f ∩ (lin epi f )⊥] if and only if(

x, y + g(x)
) ∈ extr

{
epi( f + g) ∩ [(

lin epi( f + g)
)⊥ + (

x, y + g(x)
)]}

. (15)

Proof. First, we prove the direct statement. Let (x, y) ∈ extr[epi f ∩ (lin epi f )⊥]. By Lemma 12, (x, y) = (x, f (x)). Let(
x, ( f + g)(x)

) = (1 − λ)(x1, y1) + λ(x2, y2), (16)

with λ ∈ ]0,1[, (x1, y1) �= (x2, y2), and

(xi, yi) ∈ epi( f + g) ∩ [(
lin epi( f + g)

)⊥ + (
x, y + g(x)

)]
, i = 1,2. (17)

Then,

0n+1 �= (x1 − x2, y1 − y2) ∈ (
lin epi( f + g)

)⊥
(18)

because (xi, yi) ∈ (lin epi( f + g))⊥ + (x, y + g(x)), i = 1,2.
If (x1 −x2, y1 − y2 − g(x1)+ g(x2)) ∈ lin epi f , Lemma 23 yields (x1 −x2, y1 − y2) ∈ lin epi( f + g), and this contradicts (18).

Thus we have(
x1 − x2, y1 − g(x1) − (

y2 − g(x2)
))

/∈ lin epi f . (19)

From (16), x = (1 − λ)x1 + λx2, so that g(x) = (1 − λ)g(x1) + λg(x2). Summing up (0n,−g(x)) to both members of (16), we
get (

x, f (x)
) = (1 − λ)

(
x1, y1 − g(x1)

) + λ
(
x2, y2 − g(x2)

)
, (20)
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with (xi, yi − g(xi)) ∈ epi f , i = 1,2, by (17). According to (19), these two points have different orthogonal projections on
(lin epi f )⊥ , say (̃xi, ỹi), i = 1,2. Because the projection is along lines contained in epi f , (̃xi, ỹi) ∈ epi f , i = 1,2. Applying
the orthogonal projection on the linear subspace (lin epi f )⊥ to both members of (20) we get (x, f (x)) = (1 − λ)(̃x1, ỹ1) +
λ(̃x2, ỹ2), with (̃xi, ỹi) ∈ epi f ∩ (lin epi f )⊥ , so that (x, f (x)) /∈ extr[epi f ∩ (lin epi f )⊥].

Now, we shall prove the converse statement. Let(
x, y + g(x)

) ∈ extr
{

epi( f + g) ∩ [(
lin epi( f + g)

)⊥ + (
x, y + g(x)

)]}
.

Since f + g is a proper convex function, by Lemma 12 we have (x, y + g(x)) ∈ gph( f + g), that is, y = f (x). Suppose there
exist λ ∈ ]0,1[ and (x1, y1) �= (x2, y2), such that (xi, yi) ∈ epi f ∩ (lin epi f )⊥ , i = 1,2, and(

x, f (x)
) = (1 − λ)(x1, y1) + λ(x2, y2).

Obviously, 0n+1 �= (x1 − x2, y1 − y2) ∈ (lin epi f )⊥ , x = (1 − λ)x1 + λx2, and g(x) = (1 − λ)g(x1) + λg(x2). So,(
x, y + g(x)

) = (
x, f (x) + g(x)

) = (1 − λ)
(
x1, y1 + g(x1)

) + λ
(
x2, y2 + g(x2)

)
.

We have that (xi, yi + g(xi)) ∈ epi( f + g), i = 1,2. If(
x1 − x2, y1 + g(x1) − (

y2 + g(x2)
)) ∈ lin epi( f + g),

Lemma 23 yields (x1 − x2, y1 − y2) ∈ lin epi f , which is not true. Thus, we have(
x1 − x2, y1 + g(x1) − (

y2 + g(x2)
))

/∈ lin epi( f + g).

The points (xi, yi + g(xi)) ∈ epi( f + g), i = 1,2, have different orthogonal projections on the linear manifold
(lin epi( f + g))⊥ + (x, y + g(x)), say (̃xi, ỹi), i = 1,2. Because the projection is along lines contained in epi( f + g),
(̃xi, ỹi) ∈ epi( f + g), i = 1,2. So, finally we get(

x, f (x) + g(x)
) = (1 − λ)(̃x1, ỹ1) + λ(̃x2, ỹ2),

with

(̃xi, ỹi) ∈ epi( f + g) ∩ [(
lin epi( f + g)

)⊥ + (
x, f (x) + g(x)

)]
,

whereby(
x, f (x) + g(x)

)
/∈ extr

{
epi( f + g) ∩ [(

lin epi( f + g)
)⊥ + (

x, f (x) + g(x)
)]}

,

which is a contradiction. �
Theorem 25. Let f : Rn → R be an M-decomposable function and let g : Rn → R be an affine function. Then, f + g is M-
decomposable.

Proof. If f is improper, the conclusion follows from Proposition 15. Let us consider the case when f is proper. We can
assume w.l.o.g. that g is linear. By Theorem 13, extr[epi f ∩ (lin epi f )⊥] is a bounded set, so that its orthogonal projection
onto Rn ×{0} is bounded too. Since g is linear, it is bounded on the latter set. Let k1 and k2 be scalars such that ‖(x, f (x))‖ �
k1 and |g(x)| � k2 for all (x, f (x)) ∈ extr[epi f ∩ (lin epi f )⊥]. Then, by Lemma 24,∥∥(

x, ( f + g)(x)
)∥∥ �

∥∥(
x, f (x)

)∥∥ + ∥∥(
0n, g(x)

)∥∥ � k := k1 + k2

for all (
x, ( f + g)(x)

) ∈ extr
{

epi( f + g) ∩ [(
lin epi( f + g)

)⊥ + (
x, ( f + g)(x)

)]}
= extr

{[
epi( f + g) − (

x, ( f + g)(x)
)] ∩ (

lin epi( f + g)
)⊥} + (

x, ( f + g)(x)
)
. (21)

Since epi( f + g) − (x, ( f + g)(x)) = epi h, h : Rn → R being the function defined by h(y) = ( f + g)(y + x) − ( f + g)(x),
and lin epi( f + g) = lin epi h (because epi h is a translate of epi( f + g)), it follows that the set extr{epi h ∩ (lin epi h)⊥} is
bounded. Hence, by Theorem 11, the set epi h is M-decomposable and therefore the set epi( f + g) = epi h + (x, ( f + g)(x))
is M-decomposable, too. This proves that the function f + g is M-decomposable. �

When f and g are proper polyhedral convex functions, f + g is a polyhedral convex function. Analogously, when f
and g are support functions of two nonempty convex sets C1 and C2, their sum is the support function of C1 + C2 and,
so, it is an M-decomposable function. Nevertheless, neither the sums of support functions with proper polyhedral convex
functions nor the sums of support functions with translated support functions are necessarily M-decomposable, as the next
two examples show.
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Example 26. f (x, y) = ‖(x, y)‖ is the support function of the closed unit ball and g(x, y) = |y − 1| is a finite polyhedral
convex function, but their sum is not M-decomposable because extr epi( f + g) = gph( f + g).

Example 27. Let f be the same function as in Example 26 and g(x, y) = ‖(x, y − 1)‖. Even though g is the composition
of f with a translation, its sum with f is not M-decomposable because the projection of extr epi( f + g) ⊂ R3 on R2,
[R2�R(0,1)] ∪ {(0,0), (0,1)}, is unbounded.

Proposition 28. Let f , g : Rn → R be M-decomposable functions. Then conv min{ f , g} is M-decomposable.

Proof. Let h := min{ f , g}. Then epi h = epi f ∪ epi g , where epi f and epi g are M-decomposable sets. By Theorem 21,
cl conv epi h is M-decomposable, i.e., the function conv h is M-decomposable. �

The next four examples show that the Fenchel conjugate, the maximum (even the lsc envelope of the maximum of
indicator functions of M-decomposable sets), and the infimal convolution of M-decomposable functions are not necessarily
M-decomposable neither (although the three operations are closed in the class of polyhedral convex functions).

Example 29. If F is a nonempty closed convex set not M-decomposable, its support function δ∗
F is an M-decomposable

function whose Fenchel conjugate δ∗∗
F = δF is not M-decomposable by Theorem 13.

Example 30. Let f , g : R2 → R be such that f = ‖ · ‖ and g = δH , where H ⊂ R2 is an arbitrary line such that 02 /∈ H . Both
functions are M-decomposable but epi max{ f , g} is the convex hull of a branch of hyperbola, so that the lsc convex function
max{ f , g} is not M-decomposable.

Example 31. Let F1 and F2 be two M-decomposable sets in R3 whose intersection is closed but not M-decomposable
(see [3, Example 24] for the existence of such sets). According to Corollary 14, the indicator functions δF1 and δF2 are
M-decomposable but the lsc envelope of their maximum max{δF1 , δF2 } = δF1∩F2 = δcl F1∩F2 = δF1∩F2 is not.

Example 32. Let f , g : R2 → R be

f (x, y) =

⎧⎪⎨
⎪⎩

x2

y , y > 0,

0, (x, y) = 02,

−∞, otherwise,

and g(x, y) =
{−∞, (x, y) ∈ {0} × R+,

+∞, otherwise.

Since epi f = {(x, y, z): (x2 � yz, y > 0) ∪ ({02} × R++)} and epi g = {02} × R+ × R are closed convex cones, both functions
are M-decomposable. Moreover,

s- epi( f � g) = (s- epi f ) + (s- epi g) = [
(R × R++) ∪ {02}

] × R,

so that the infimal convolution of f and g is the function

( f � g)(x, y) =
{−∞, (x, y) ∈ (R × R++) ∪ {02},

+∞, otherwise,

whose epigraph,

epi( f � g) = (
(R × R++) ∪ {02}

) × R,

is not even closed.

However, the last proposition states that the lsc hull of the infimal convolution of two M-decomposable functions is
M-decomposable.

Proposition 33. Let f , g : Rn → R be M-decomposable functions. Then f � g is M-decomposable.

Proof. Since epi f � g = cl epi( f � g) = cl(epi f + epi g), the statement follows from Theorem 21. �
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