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We consider the following free boundary problem in an unbounded domain Ω in two
dimensions: �pu = 0 in Ω , u = 0, ∂u

∂n = g0 on J0, u = 1, ∂u
∂n = g1 on J1, where ∂Ω =

J0 ∪ J1. We prove that if 0 < u < 1 in Ω , J i is the graph of a function in C1,α
loc (R) and gi is

a constant for each i = 0,1, then the free boundary ∂Ω must be two parallel straight lines
and the solution u must be a linear function. The proof is based on maximum principle.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following free boundary problem in two dimensions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�pu = 0, in Ω,

u = 0,
∂u

∂n
= g0, on J0,

u = 1,
∂u

∂n
= g1, on J1,

(1.1)

where �p , 1 < p < ∞, is the p-Laplacian, gi, i = 0,1 are prescribed functions, Ω ⊂ R
2 is unbounded with ∂Ω = J0 ∪ J1,

and n is the unit exterior normal.
This kind of free boundary problems arises from the theory of nonlinear potential flows of power-law types. In (1.1),

the p-Laplacian may be seen as an incompressibility condition, the level sets of u correspond to the stream lines, and the
conditions about ∂u

∂n on the free boundary are pressure conditions on the boundary of the fluid due to Bernoulli’s law. We
refer to [3] for more detailed background of this problem and the research book [2] for general theory of free boundary
problems.

In this paper, we will prove the following Liouville-type theorem about the free boundary problem (1.1).

Theorem 1.1. Assume that u ∈ C1,α
loc (Ω̄) satisfies (1.1) and 0 < u < 1 in Ω . If J i is the graph of a function in C1,α

loc (R) and gi is
a constant for each i = 0,1, then u is a linear function and J i , i = 0,1 are two parallel straight lines.

The above theorem extends the result of [5], where the authors proved similar result for uniformly elliptic equations of
the form F (D2u) = 0.
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Notice that it is not trivial to extend the result of [5] to p-Laplacian. One of the difficulties lies in the fact that, for
p-Laplacian, the solution u and the free boundary have at most C1,α regularity. Thus, sometimes we cannot apply the
Hopf lemma directly even if |∇u| is away from zero. This difficulty is overcome by perturbing the comparison functions
appropriately.

Comparing with [5], another different point in our proof is that we do not invoke the Harnack inequality to analyze the
level sets of u in Ω . We will perform analysis only on J0 and J1 and prove that they are straight lines directly. We sketch
the idea of the proof as follows. First, we notice that the blow up limits of the level sets of the fundamental solution are
all straight lines. Based on this observation, we can prove that the free boundary is nearly flat in the following sense: there
exists a linear function g , such that J0 lies below the 0-level set of g and J1 lies below the 1-level set of g . Then, by
comparing u with linear functions, we show that the free boundary tends to be more and more flat. We remark that this
method can be applied to more general elliptic equations.

From now on, we assume that u satisfies the assumptions in Theorem 1.1. That is, we assume that there exist φi ∈
C1,α

loc (R), i = 0,1, such that

Ω = {
(s, t); φ0(s) < t < φ1(s), s ∈ R

}
,

J i = {
(s, t); t = φi(s), s ∈ R

}
, i = 0,1

and u ∈ C1,α
loc (Ω̄) satisfies⎧⎨

⎩
0 < u < 1, �pu = 0, in Ω,

u = 0, |∇u| = c0, on J0,

u = 1, |∇u| = c1, on J1,

where ci , i = 0,1 are constants. For convenience, we extend u to the whole of R
2 by setting u = 1 above J1 and u = 0

below J0.
In the proof, we will use some properties of the p-Laplacian. We recall that

�pu = ∇ · (|∇u|p−2∇u
)
, 1 < p < ∞.

As is well known, the weak comparison principle holds for the p-Laplacian. The strong comparison principle and the Hopf
lemma hold as well if the gradient of one of the comparison functions does not vanish (see, e.g., [4,6]).

The proof of Theorem 1.1 is based on maximum principle. Particularly, we will employ the sliding method, for which we
refer to [1].

We fix some notations and terminologies which will be used frequently in the proof. For x, y ∈ R
2, x · y is the inner

product of x and y. We define the vertical distance of two sets A and B in the plane to be

dv(A, B) = inf
{
(x − y) · e2; x ∈ A, y ∈ B, x · e1 = y · e1

}
,

where e1 = (1,0) and e2 = (0,1). We say A lies above B if dv(A, B) � 0, and A lies strictly above B if A ∩ B = ∅ in addition.
The notation that A lies below or strictly below B is defined in a similar way. If A lies above B and A ∩ B 
= ∅, we say A
touches B from above. Let v : A → R and w : B → R. We say v touches w from above if v � w in A ∩ B and v(x) = w(x)
for some x ∈ A ∩ B , and x is called a contact point.

The rest of the paper is organized as follows. In Section 2, we will prove two comparison lemmas. In Section 3, we will
present the proof of Theorem 1.1.

2. Two comparison lemmas

In this section, we prove two comparison lemmas, where u is compared with fundamental solution of the p-Laplacian
and linear functions respectively.

Denote α = p−2
p−1 for p 
= 2. We define

ψR0,R1(x) = ψR0,R1

(|x|) =
⎧⎨
⎩

Rα
0 −|x|α

Rα
0 −Rα

1
, p 
= 2,

ln R0−ln |x|
ln R0−ln R1

, p = 2,

where R1 � |x| � R0. Notice that ψR0,R1 is the fundamental solution of the p-Laplacian and

ψR0,R1 = i on ∂ B Ri , i = 0,1,

0 < ψR0,R1 < 1 in B R0 − B̄ R1 .
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Lemma 2.1. Assume that c1 = 1. Let 0 < δ < 1, k > 1 and

R1 =
{

α
δ(kα−1)

, p 
= 2,

1
δ ln k , p = 2,

R0 = kR1.

If B R0(z) lies above J0 , then B R1 (z) lies above J1 and

u(x) � ψR0,R1(x − z), ∀x ∈ B R0(z) − B̄ R1(z).

Proof. By a translation, we may assume that z = 0.
We slide ψR0,R1 up–down.
Denote

Vt = B R0 − B̄ R1 + te2, t ∈ R,

vt(x) = ψR0,R1(x − te2), x ∈ V t .

Let

t∗ = inf{t ∈ R; vs < u in V s ∩ Ω or V s ∩ Ω = ∅, for all s > t}.
We claim that t∗ � 0. Clearly, if this holds, then we are done.

We prove by contradiction. Suppose that t∗ > 0. We will derive a contradiction.
Since u = 1 on J1 and ψR0,R1 = 0 on ∂ B R0 , we have (∂ B R0 + t∗e2) ∩ Ω 
= ∅, and hence Vt∗ ∩ Ω 
= ∅. By definition of t∗ ,

u touches vt∗ from above at some point in Vt∗ ∩ Ω .
Let x∗ ∈ Vt∗ ∩ Ω be a contact point. By the strong comparison principle, we may assume that x∗ ∈ ∂(Vt∗ ∩ Ω). Then, we

have either x∗ ∈ J0 ∩ (∂ B R0 + t∗e2) or x∗ ∈ J1 ∩ (∂ B R1 + t∗e2).
Since t∗ > 0, ∂ B R0 + t∗e2 lies strictly above J0. Hence

u > 0 on ∂ B R0 + t∗e2.

Thus, we must have x∗ ∈ J1 ∩ (∂ B R1 + t∗e2). Since u touches vt∗ from above at x∗ and 0 < u < 1 in Ω , we conclude that∣∣∇u
(
x∗)∣∣ �

∣∣∇vt∗
(
x∗)∣∣ = δ < 1.

This contradicts the assumption that c1 = 1. Hence, we must have t∗ � 0. This proves the lemma. �
Let y, z ∈ R

2. We use [y, z] to denote the line segment jointing y and z which contains both y and z. We denote
[y, z) = [y, z] − {z} and (y, z) = [y, z] − {y, z}.

Lemma 2.2. Assume that c0 = c1 = 1. Let y0, z0 ∈ R
2 be such that

(y0 − z0) · e1 
= 0.

Denote by ν = (ν1, ν2) the unit normal of [y0, z0] with ν2 > 0 and let

f (x) = (x − y0) · ν, x ∈ R
2,

y1 = y0 + e2/ν2, z1 = z0 + e2/ν2,

D = {
x ∈ R

2; x = θ y0 + (1 − θ)z0 + λe2, 0 < θ < 1, 0 < λ < 1/ν2
}
.

If

u � f on [y0, y1] ∪ [z0, z1], (2.1)

then the parallelogram D lies above J0 and

u � f in D.

The proof of Lemma 2.2 is more complex than that of Lemma 2.1. When we slide f up–down, we cannot apply the Hopf
lemma if the contact point lies on J1 since J1 has only C1,α

loc regularity. To obtain the desired conclusion, we will perturb f
and slide the perturbed function up–down.
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Proof of Lemma 2.2. First, we observe that |∇ f | = 1 and

[y0, z0] ⊂ { f = 0}, [y1, z1] ⊂ { f = 1}.
The assumption (2.1) implies that {y0, z0} lies above J0, and {y1, z1} lies above J1.

We slide f up–down.
Denote

Vt = D + te2, t ∈ R,

vt(x) = f (x − te2), x ∈ V t .

Let

t∗ = inf{t ∈ R; vs < u in V s ∩ Ω or V s ∩ Ω = ∅, for all s > t}.
If we can show that t∗ � 0, then we are done. We prove this by the method of contradiction. Suppose that t∗ > 0. We

will derive a contradiction.
Since u = 1 on J1 and f = 0 on [y0, z0], we have Vt∗ ∩ Ω 
= ∅. By definition of t∗ , u touches vt∗ from above at some

point in Vt∗ ∩ Ω . Let x∗ be an arbitrary contact point.

Claim 1. x∗ ∈ J1 ∩ ((y1, z1) + t∗e2).

Proof. Since t∗ > 0, by assumption (2.1), we have

u > vt∗ on [y0, y1) ∪ [z0, z1) + t∗e2. (2.2)

Since {y1, z1} lies above J1 and t∗ > 0, {y1 + t∗e2, z1 + t∗e2} lies strictly above J1. Hence

y1 + t∗e2, z1 + t∗e2 /∈ Vt∗ ∩ Ω.

So we have x∗ /∈ [y0, y1] ∪ [z0, z1] + t∗e2.
If x∗ ∈ Vt∗ ∩ Ω , then, by the strong comparison principle, we have u ≡ vt∗ in Vt∗ ∩ Ω . This implies that Vt∗ ∩ Ω = Vt∗

and u ≡ vt∗ on Vt∗ , which contradicts (2.2). Hence, we have x∗ /∈ Vt∗ ∩ Ω and u > vt∗ in Vt∗ ∩ Ω .
If x∗ ∈ J0 ∩ ((y0, z0) + t∗e2), then∣∣∇ f

(
x∗)∣∣ = ∣∣∇u

(
x∗)∣∣ = 1.

This contradicts the Hopf lemma. Hence, we also have x∗ /∈ J0 ∩ ((y0, z0) + t∗e2).
Thus, we must have x∗ ∈ J1 ∩ ((y1, z1) + t∗e2). �
Claim 1 implies that [y1, z1] + t∗e2 touches J1 from above and [y0, z0] + t∗e2 lies strictly above J0.
We perturb f a little and slide the perturbed function up–down again.
Let 0 < ε < 1 be a small constant to be chosen later and δ = 1 − ε . Denote

f̃ = δ f ,

ỹ1 = y0 + e2/(δν2), z̃1 = z0 + e2/(δν2),

D̃ = {
x ∈ R; x = θ y0 + (1 − θ)z0 + λe2, 0 < θ < 1, 0 < λ < 1/(δν2)

}
.

Notice that |∇ f | = δ < 1 and

[y0, z0] ⊂ { f̃ = 0}, [ ỹ1, z̃1] ⊂ { f̃ = 1}.
Denote

Wt = D̃ + te2,

wt(x) = f̃ (x − te2), x ∈ W t,

and let

t̃ = inf{t ∈ R; ws < u in W s ∩ Ω or W s ∩ Ω = ∅, for all s > t}.

Claim 2. If ε is small enough, then 0 < t̃ � t∗ and [y0, z0] + t̃e2 lies strictly above J0 .
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Proof. By definition, we have f̃ < f in D̃ . Hence, t̃ � t∗ . Since t∗ > 0, we may choose ε small enough such that t̃ > 0.
As ε tends to zero, we have

dv
([ ỹ1, z̃1] + t∗e2, [y1, z1] + t∗e2

) = dv
([ ỹ1, z̃1], [y1, z1]

) → 0.

Since dv ([y0, z0] + t∗e2, J0) > 0, we may choose ε small enough such that

dv
([ ỹ1, z̃1] + t∗e2, [y1, z1] + t∗e2

)
< dv

([y0, z0] + t∗e2, J0
)
.

It follows that [y0, z0] + t̃e2 lies strictly above J0. �
Now, we may argue as before. By definition of t̃ , u touches wt̃ from above. Let x̃ be an arbitrary contact point.

Claim 3. x̃ ∈ J1 ∩ (( ỹ1, z̃1) + t̃e2).

Proof. Since t̃ > 0, by assumption (2.1), we have x̃ /∈ [y0, ỹ1] ∪ [z0, z̃1]. Invoking to the strong comparison principle, we
derive x̃ /∈ Wt̃ ∩ Ω . Since [y0, z0] + t̃e2 lies strictly above J0, we have x̃ /∈ J0 ∩ ([y0, z0] + t̃e2). Thus, we obtain x̃ ∈ J1 ∩
(( ỹ1, z̃1) + t̃e2). �

As a consequence of Claim 3, we have∣∣∇u(x̃)
∣∣ �

∣∣∇wt̃(x̃)
∣∣ = δ < 1.

This contradicts the assumption that |∇u| = 1 on J1. Hence, we must have t∗ � 0. This completes the proof. �
3. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. The proof consists of three steps. First, we prove that c0 = c1 
= 0
(Lemmas 3.1, 3.2). Then, we show that there exists a linear function g , such that J i lies below the i-level set of g for i = 0,1
respectively (Lemmas 3.3–3.5). At last, we prove that u ≡ g in Ω by the sliding method (Lemmas 3.6, 3.7).

Lemma 3.1. ci > 0, i = 0,1.

Proof. Let x0 ∈ Ω, x1 ∈ J0 and r > 0 be such that Br(x0) ⊂ Ω and ∂ Br(x0) ∩ ∂Ω = {x1}. Denote

v(x) = mψr, r
2
(x − x0)

where m = min∂ B r
2
(x0) u > 0. By the weak comparison principle, we have

u � v in Br(x0) − B̄ r
2
(x0).

It follows that

c0 = ∣∣∇u(x1)
∣∣ �

∣∣∇v(x1)
∣∣ > 0.

Let w = 1 − u. We observe that w satisfies a similar free boundary problem as u with J0 and J1 interchanged. Hence,
according to the above conclusion, on the 0-level set of w , we have

|∇w| = |∇u| = c1 > 0.

This completes the proof. �
Lemma 3.2. c0 = c1 .

Proof. By a dilation, we assume that c1 = 1.
Let δ,k, R0 and R1 be as in Lemma 2.1. There exists t ∈ R, such that B̄ R0(te2) touches J0 from above at some point x0.

By Lemma 2.1, we have

c0 = ∣∣∇u(x0)
∣∣ �

∣∣∇ψR0,R1(R0)
∣∣. (3.1)

Take δ,k → 1 in (3.1). Noticing that

lim
δ,k→1

∣∣∇ψR0,R1(R0)
∣∣ = 1,

we get c0 � c1.
Consider w = 1 − u. By the above conclusion, we have c1 � c0 as well. Hence, c0 = c1. �
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By a dilation, we will assume that c0 = c1 = 1 from now on.
Let

Ω1 = {
x ∈ R

2; x lies strictly above J1
}
,

Ω0 = {
x ∈ R

2; x lies strictly below J0
}
.

We denote by COV(Ωi) the convex envelope of Ωi , i = 0,1.

Lemma 3.3. J0 lies below COV(Ω1) and J1 lies above COV(Ω0).

Proof. Let y0, z0 ∈ Ω1 and y0 
= z0. We claim that [y0, z0] lies above J0. If (y0 − z0) · e1 = 0, the claim holds obviously. If
(y0 − z0) · e1 
= 0, then, we invoke to Lemma 2.2 to obtain the claim. This proves the first assertion of the lemma.

We consider w = 1 − u and obtain the second assertion of the lemma. �
Lemma 3.4. The boundaries of COV(Ωi), i = 0,1 are two parallel straight lines.

Proof. The boundaries J̃ i of COV(Ωi), i = 0,1 are graphs of Lipschitz functions, which we denote by φ̃i , i = 0,1 respectively.
Suppose by contradiction that they are not parallel straight lines. Then

lim
s→∞

(
φ̃1(s) − φ̃0(s)

) = ∞. (3.2)

Let δ, k, R0, R1 be as in Lemma 2.1. By (3.2), there exists s0 ∈ R, such that

φ̃1(s) − φ̃0(s) > 2R0, ∀s > s0. (3.3)

Denote s1 = s0 +2R0. There exists t ∈ R, such that B̄ R0(s1e1 + te2) touches J̃0 from above. Then, by Lemma 2.1, we conclude
that B̄ R1 (s1e1 + te2) lies above J̃1. This contradicts (3.3). Hence, J̃ i , i = 0,1 are two parallel straight lines. �

Let l0 be the boundary of COV(Ω0), and μ = (μ1,μ2) be its unit normal with μ2 > 0. By a translation, we assume that
0 ∈ l0. Then

l0 = {
x ∈ R

2; x · μ = 0
}
.

We denote

g(x) = x · μ, x ∈ R
2

and let l1 be the 1-level set of g . Define T 0
1 to be the truncation function at levels 0 and 1, that is

T 0
1 (t) = min

{
max{t,0},1

}
, t ∈ R.

We wish to prove u ≡ T 0
1 (g). Clearly, this will establish Theorem 1.1.

Lemma 3.5. l1 lies above J1 and u � T 0
1 (g).

Proof. Let δ, k, R0, R1 be as in Lemma 2.1. Since B̄ R0(R0μ) lies above l0, it lies above J0. In view of Lemma 2.1, we have

u(x) � ψR0,R1(x − R0μ), ∀x ∈ B R0(R0μ) − B̄ R1(R0μ).

Taking δ,k → 1, we get the desired conclusion. �
Lemma 3.6. For each z ∈ l0 , we have either z ∈ J0 or z + e2/μ2 ∈ J1 .

Proof. Without loss of generality, we assume that z = 0.
We prove by contradiction. Suppose that 0 /∈ J0 and e2/μ2 /∈ J1. Then, by Lemma 3.5, we have

u(x) > g(x), ∀x ∈ [0, e2/μ2).

So there exists ε > 0, such that

u(x) > g(x + εe2), ∀x ∈ [−εe2, (1/μ2 − ε)e2
)
. (3.4)

Denote y0 = −εe2. Let s ∈ R, s 
= 0. Then, z0 = (s, (1 − sμ1)/μ2) ∈ l1. Denote by ν the unit normal of [y0, z0] with
ν · e2 � 0. We observe that

lim (ν − μ) = 0. (3.5)
|s|→∞
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We wish to employ Lemma 2.2. Let y0, z0 be defined as above and y1, z1, f be as in Lemma 2.2.
First, we check (2.1). Since z0 lies above J1, we have

u � f on [z0, z1].
According to (3.4) and (3.5), there exists s0 > 0, such that

u � f on [y0, y1]
if |s| > s0. Hence, (2.1) holds if |s| > s0.

Now it follows from Lemma 2.2 that J0 lies below [y0, z0] if |s| > s0. Taking |s| → ∞, we find that J0 lies below l0 −εe2.
But this contradicts the fact that l0 is the boundary of COV(Ω0). Hence, we must have either 0 ∈ J0 or e2/μ2 ∈ J1. �
Lemma 3.7. u ≡ T 0

1 (g).

Proof. If l0 touches J0 from above or l1 = J1, we get u ≡ T 0
1 (g) by the Hopf lemma. Otherwise, there exists z ∈ l0, such that

z /∈ J0 and z + e2/μ2 /∈ J1. But this contradicts Lemma 3.6. This proves the lemma. �
The proof of Theorem 1.1 is completed.
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